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Abstract
Introduction—Built environment and health research have focused on characteristics of home
neighborhoods, whereas overall environmental exposures occur over larger spatial ranges.

Purpose—Differences in built environment characteristics were analyzed for home and nonhome
locations using GPS data.

Methods—GPS data collected in 2007–2008 were analyzed for 41 subjects in the Seattle area in
2010. Environmental characteristics for 3.8 million locations were measured using novel GIS data
sets called SmartMaps, representing spatially continuous values of local built environment
variables in the domains of neighborhood composition, utilitarian destinations, transportation
infrastructure, and traffic conditions. Using bootstrap sampling, CIs were estimated for differences
in built environment values for home (<833 m of home address) and nonhome (>1666 m) GPS
locations.

Results—Home and nonhome built environment values were significantly different for over 90%
of variables across subjects (p<0.001). Only 51% of subjects had higher counts of supermarkets
near than away from home. Different measures of neighborhood parks yielded varying results.

Conclusions—SmartMaps helped measure local built environment characteristics for a large set
of GPS locations. Most subjects had significantly different home and nonhome built environment
exposures. Considering the full range of individuals’ environmental exposures may improve
understanding of effects of the built environment on behavior and health outcomes.

Introduction
Recent studies have demonstrated relationships between aspects of the built environment
and physical activity, walking, and other health-related behaviors. This past research
suggests that built environment modifications may promote health by providing places
supporting active lifestyles.1–3 In view of the limited success of individually based
interventions, built environment modifications may be a promising avenue for improving
health outcomes and countering the obesity epidemic.4
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This paper addresses two questions raised by previous research showing relationships
between environment and physical activity. First, most studies focused on respondents’
home neighborhoods, measuring environmental attributes within a predefined distance of
homes.5,6 Whereas people spend considerable time away from home, and may be active at
work, school, or recreation locations, only a few studies investigated the role of the work
neighborhood on activity.7–9 In fact, people visit, move through, and hence are exposed to
multiple neighborhoods during a typical day. Thus, research considering only home
neighborhoods may erroneously attribute built environment effects on behavior to the home
environment, while ignoring possible effects of other environments. The conceptualization
of exposure to nonhome environments has been addressed by several researchers.10–14 In
one study, including characteristics of nonresidential census tracts was found to affect
models of self-reported health.15

A new trend in research uses GPS to measure location-specific activity of individuals as
they move through space.9,16–20 One study used GPS and accelerometry data to aggregate
built environment values within predefined distances to both home and work locations,
measuring time spent in moderate-to-vigorous physical activity (MVPA) within each of
those buffers.9 It showed that while total MVPA was not associated with either home or
work neighborhoods, physical activity occurring within each neighborhood was related to
different neighborhood-level environmental attributes.

Another study using GPS and accelerometry found differential patterns in MVPA between
home and nonhome neighborhoods.21 Also, adolescent girls tracked with GPS-enabled cell
phones were found to spend substantial time further than 1 km from home.22 Analyses based
on objective measures of activity and location thus suggest that relating activity solely to
home neighborhoods may lead to spurious associations between environment and behavior.
There is a need to capture environmental exposure across space and time, and to devise a
measurement framework that allows quantifying peoples’ activity and characteristics of the
built environment where activity occurs.

Second, using GPS and accelerometry to capture individual movements generates very large
data sets. Recording a GPS track during a normal 10-hour day would yield 36,000 locations
per individual (for a 1-second sampling interval). These locations effectively represent a
sample of the many neighborhoods to which people are exposed during daily activities. The
inclusion of multiple neighborhoods in modeling environmental influences on activity is
supported by past research documenting the multiplicity of neighborhoods with which
individuals routinely interact.23–25 At the same time, it introduces data capture and
measurement challenges that are nontrivial even in today’s advanced computational
environment.

The current study offers a new framework for measuring environment continuously through
space, allowing measurement of local environmental attributes for massive numbers of
locations such as those obtained using GPS. The study also analyzes differences in the built
environment characteristics of home and nonhome locations.

Methods
Population

The original convenience sample consisted of a group of 51 students, staff, and faculty of
the University of Washington (UW). Subjects gave signed consent and completed a brief
demographic survey, including home addresses that were geocoded to the nearest street
intersection. Subjects were instructed to wear the combined sensor device (described below)

Hurvitz and Moudon Page 2

Am J Prev Med. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



for 7 consecutive days. The study protocol was approved by the University of Washington
IRB and data were collected between November, 2007 and May, 2008.

Geospatial Location Data
Movement and location were measured using a novel sensing device, the Multi-Sensor
Board (MSB), which contained independent sensors for 3D accelerometry, temperature,
humidity, barometric pressure, UV and high-frequency light, compass bearing, and audio.26

The sensors were housed in a pager-sized plastic box worn at the waist. Subjects recharged
the MSB each night.

Geospatial location was measured with an integrated SiRF III GPS receiver recording at 1
Hz, with accuracy <2.5 m (CSR, Cambridge, UK). GPS data were cleaned using automated
and manual data processing. Locations with less than four satellites or horizontal dilution of
precision ≤ 8 were automatically deleted. ArcGIS 9.3.1 (ESRI, Redlands, CA) was used
interactively to remove obvious spatial outliers. For efficient handling of the large point data
sets, most data storage and processing used PostGIS 1.51.27

Built Environment Data
The GIS data representing built environment variables covered King County, WA (KC)
(population 1.9 million in 5500 km2). Tax parcel polygon data, from KC GIS (KCGIS) and
the KC assessor, included attributes describing count of residential units and predominant
land use, which was used to estimate per-parcel employment counts based on land use.26

KCGIS also provided street and regional trail data. Traffic data came from the Puget Sound
Regional Council. Food establishment data were developed by the University of Washington
Urban Form Lab (UFL), based on geocoded food permits obtained from Public Health—
Seattle KC. Bus ridership data were obtained from KC Metro. Park data were compiled by
the UFL from individual jurisdiction GIS layers. Physical activity and fitness facility data
came from InfoUSA, and were geocoded by the UFL.

SmartMap Measurement
A novel approach to the measurement of the built environment was required to
accommodate the original 4.3 million GPS locations. Previous approaches used buffers
around subjects’ home locations to extract and summarize GIS data within the local
neighborhood, storing summary values as individual-level variables.5 This point-centric
approach requires a substantial amount of data processing for each location, and it is too
computationally intensive to be practical for large GPS data sets collected in free-roaming
conditions.

In this study, rather than performing point-centric built environment measures at all GPS
locations, a set of raster layers28—spatially continuous surfaces of grid cells—was created
for efficient measurements at any number of locations within the study area. These rasters
are referred to as SmartMaps. The point value at each SmartMap cell represents a summary
of the local neighborhood value around the cell. SmartMaps provide the same data as in the
traditional buffer method. However, instead of recording neighborhood summaries at
specific predefined point locations, SmartMaps do so for every cell, continuously across
space, enabling measures at any location in the study area.

SmartMaps were created using focal raster processing. The study area (KC) was represented
as a 30x30 m grid, which was previously shown to represent urban and suburban parcels
with sufficient spatial fidelity.29 Each “focal” grid cell was processed independently using
the ArcGIS Spatial Analyst Extension. Prescribed analytic steps were performed for the area
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around the focal cell, placing the resulting value on the focal cell, then moving to the next
cell, repeating the process until values were calculated for all cells in the study area.

For the set of SmartMaps used in this study, an 833-m radius circle was selected to represent
the focal “neighborhood”—a distance that could be walked in 10 minutes. For example, to
calculate a SmartMap of residential unit counts within 833 m of a grid cell, parcels were
converted to a raster, in which cell values represented the fraction of residential unit counts
within the cell (e.g., a 9000 m2 parcel containing 20 residential unit counts yielded 10 cells
with a value of 2 units/cell). The process then summed the values of all cells within each
focal buffer to represent the number of residential unit counts for the focal cell’s
neighborhood. SmartMap cell values were extracted for GPS points using the Surface Spot
method in ArcGIS.

Fifteen SmartMaps served to characterize built environment elements in domains which past
research had associated with physical activity and obesity. Neighborhood composition was
represented by counts of employees and residential units.30,31 Utilitarian destinations were
captured as counts of supermarkets, fast food and traditional restaurants, coffee shops, and
fitness facilities,32,33 and by count, area, and percentage of neighborhood covered by
parks.34,35 Transportation infrastructure was measured as intersection, street, and trail
density.30,36–38 Traffic conditions included estimated traffic volume39 and bus ridership.40

Analyses
Analyses used the entire set of subjects’ GPS points on an individual basis. To examine
differences in built environment values between home and nonhome locations, GPS points
were dichotomized as being within 833 m (<10 minute walk), and beyond 1666 m (>20
minute walk) from the home address. GPS points situated between 833 and 1666 m were
discarded to clearly separate GPS locations associated with home and nonhome
environments.

The very large number of observations meant that typical statistical methods for comparing
built environment characteristics of home and nonhome locations (e.g., t- or Wilcoxon tests)
produced greatly inflated significance values. Instead, bootstrap sampling served to estimate
the empirical distribution of observed data, as parametric assumptions were not met.41 After
dichotomizing each subject’s data into home and nonhome location bins, six records per
hour were randomly sampled from each bin. These values were used to calculate the median
for each built environment SmartMap variable and the difference between the home and
nonhome median values. This process was repeated 10,000 times, resulting in a difference
of medians for all bootstrap samples for each subject by built environment variable.

A 95% CI was constructed from the set of differences of medians; if the 95% CI did not
contain 0, then the home and nonhome built environment characteristics were determined to
be significantly different.42 A set of CIs was constructed for all subjects, and the total
number of subjects with significantly higher, lower, or no difference, in median values
between home and nonhome environment built environment variables were tallied for Χ2

testing. Programming of the bootstrap and other statistical analyses were conducted using R
2.9.0.43

Results
Population

The final study sample included 41 adults (10 subjects had no data either near or away from
home). The mean age was 32 years, and the sample was predominantly male (64%). Most
subjects were white (72%), with 23% Asians and 5% Hispanics. The sample was highly
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educated, with more than 90% possessing college degrees. Income was bimodally
distributed, with more than 61% of subjects earning less than $25,000 annually, and 26%
earning greater than $51,000. The sample included 80% of subjects in the normal BMI
category, 15% overweight, and 5% obese (data not shown). The mean network distance
from subjects’ homes to campus was 8.7 km (SD 10.0).

GPS Locations
The 41 subjects yielded a total of 3.8 million GPS records (the 10 dropped subjects
accounted for 0.5 million dropped points). Automated and manual data cleaning removed
16% of the raw GPS locations. Table 1 shows that the count of GPS locations for home and
nonhome was about equally divided, with 5.8% of locations between 833 and 1666 m from
home (discarded). Most GPS locations were concentrated in the western and developed part
of KC, where the majority of people live (Appendix A, available online at
www.ajpmonline.org). The mean Euclidean distance between each GPS location and the
UW campus was 8.5 km (SD 21.7), with 52% of locations more than 3 km from campus.
Approximately 3.8 hours of data were collected per subject per day (range: 0.4–6.8 hours;
median: 3.2 hours).

SmartMaps
Each of the 15 SmartMaps of KC contained 6.8 million 900 m2 cells, with each raster
providing the neighborhood value for separate built environment variables. Appendix A
(available online at www.ajpm-online.org) shows a SmartMap of residential unit count for
the greater Seattle area. SmartMap data had a wide range of built environment values (Table
2). Differences in mean built environment values between home and nonhome locations
were split almost equally between higher and lower values.

In the neighborhood composition domain, mean residential unit counts ranged from 2700 for
nonhome locations (12.4 units/ha) to 4,600 (21.3 units/ha) for locations near home.
Employment counts had a greater range; the nonhome location mean was 12,600 (56.8
employees/ha), whereas home locations’ mean was 7100 employees (32 employees/ha). In
the traffic conditions domain, there were similarly higher values for traffic volumes and bus
ridership of nonhome than of home locations. However, in the transportation infrastructure
domain, street and intersection density were lower in locations away from home than near
home. Trail density was twice as high in nonhome locations than in home locations. In the
utilitarian destinations domain, home locations had lower values than nonhome locations for
traditional and fast food restaurants, and for total park area. Home locations had higher
values for supermarkets, coffee shops, fitness facilities, park count, and percentage of
neighborhood in park.

Built Environment Characteristics at GPS Locations
There was considerable intra-subject variation in home and nonhome built environment
variable values. Appendix B (available online at www.ajpmonline.org) shows that for
Subject 19, the 95% CI of the difference of medians for residential unit counts between
home and nonhome locations ranged from −175 to 485, indicating no difference for home
and nonhome neighborhoods; for Subject 67, the 95% CI did not include 0, indicating that
home and nonhome neighborhoods had significantly different residential unit counts.

Intersubject variation in residential unit count CIs is shown in Appendix C (available online
at www.ajpmonline.org) (left). The y-axis represents home medians minus nonhome
medians for each subject; and the vertical bars represent the 95% CI. Subjects with y-axis
values less than 0 had lower residential density near home, whereas those with values above
0 had higher residential density near home. About two thirds of subjects had higher
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residential density near home, and only one subject had no difference in residential density
near home versus away from home. The full set of CI graphs for all subjects’ built
environment variables is available in Appendix D (available online at www.ajpmonline.org).

Bootstrap sampling of the full set of subjects and built environment variables (n=615; 41
subjects × 15 built environment variables) showed significant differences between home and
nonhome locations (Χ2 p<0.001). About 48% of the subject built environment values
(n=292) were significantly higher near home than away from home; 44% (n=272) were
significantly lower; and 8% (n=51) showed no difference (Appendix C, right, available
online at www.ajpmonline.org). Median built environment values were significantly higher
in home than nonhome neighborhoods for counts of residential units, supermarkets, fitness
facilities, and parks; for percentage of neighborhood in park; and street and intersection
density. Values were significantly higher in nonhome locations for counts of employees, fast
food and traditional restaurants, and coffee shops; and for park size, trail density, traffic
density and bus ridership. Of the 8% of the subject built environment values with no
significant difference between home and nonhome locations, most were for percentage area
in parks, trail density, and counts of supermarkets.

Discussion
To the authors’ knowledge, this is the first study to combine high-frequency GPS data with
spatially continuous measures of built environment. Based on high-resolution and objective
data, the approach showed that more than 90% of the built environment values at locations
near individuals’ homes were significantly different from those away from individuals’
homes.

Built environment attributes selected for inclusion were those that past studies associated
with physical activity, overweight/obesity, and diet-related behaviors. Differences in built
environment variable values measured with SmartMaps for home and nonhome locations
might therefore explain inconsistent results among past studies attributing exposure at
subjects’ homes rather than at all activity locations. Differences found between home and
nonhome environments were expected for some variables. Near home, residential density
was higher and employment density lower; and away from home, traffic counts and bus
ridership were higher, reflecting the typically contrasting characteristics of residential and
work places. However, results for other variables suggested further study.

Supermarkets have been the focus of many obesity-related studies,44–46 yet only 51% of
subjects had more supermarkets near than away from home. Also, a large proportion of
subjects had no difference in the number of supermarkets between home and nonhome
locations. This finding suggested that exposure to supermarkets varied less than exposure to
other utilitarian destinations, such as fast food and traditional restaurants, and coffee shops,
whose counts were higher in nonhome locations.

Further, differing measures of the presence of parks yielded differing results; size and count
of parks were different between home and nonhome environments for most subjects, but the
percentage of area in park showed no differences for about one quarter of the subjects. Thus,
capturing the potential influence of parks on behavior might be highly dependent on the
measures used.47,48 The findings pointed to the importance of considering nonhome
environments in future estimations of exposure to the built environment. They mirrored
other GPS and accelerometry-based studies that investigated environmental influences on
physical activity, often observed outside of home or work neighborhoods.9,21
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Strengths and Limitations
Methodologically, this study presented a theoretically and operationally simple framework
for associating local neighborhood built environment characteristics with locations where
activities occurred. It took a step forward in estimating the effects of exposure to the
multifarious environments to which individuals are exposed on a daily basis.

Using SmartMaps to obtain environmental measures for point locations was considerably
more efficient than performing a series of point-centric buffer analyses for locations of
interest. It took less than 1 hour per SmartMap to extract built environment data for the 3.8
million collected GPS locations. Although the creation of SmartMaps required a substantial
amount of effort, once created, the rasters could be readily used for any study analyzing
point measures of environment within the study area.

SmartMaps would be useful either in traditional health studies assessing home or work
environment for large numbers of participants, or in the growing number of studies in which
individual movements are tracked using geolocational technologies. Ideally, urbanized
regions could develop sets of SmartMaps for use by multiple agencies or research entities
monitoring or analyzing the effects of built environment on behavior, as has been done in
other fields such as meteorology and noise mitigation.49 Further, SmartMaps may be
archived from data sources measured at different points in time, for use in longitudinal
studies.

Limitations included the small convenience sample, with a relatively large proportion of
young adults. Also, subjects shared the UW campus district as a work environment, which
could have introduced bias in the nonhome built environment values, despite the area’s large
size (about 400 ha) and varied residential, commercial, and open space uses. As with all
cross-sectional studies, self-selection of residential locations, as well as locations visited
throughout the day, may have played a role in determining the built environment
characteristics of subjects’ activity space, although even for this small sample, residential
locations were widely distributed across the study area.

The GPS data were temporally incomplete. The 3.8 million data points represented about
one third of those that would have been collected had the battery of the experimental MSB
devices maintained their charge for a full day. Thus, the data on visited locations were likely
biased toward locations visited earlier in the day.

The SmartMaps were created using circular, rather than network buffers. This basic
limitation in the ArcGIS focal processes will be addressed in further methods development.
Finally, a 10- minute walking-distance equivalent (833 m) was used to capture features of
the built environment that were reasonably accessible by walking. Future studies should
select and test optimal bandwidths for measuring local neighborhood characteristics with
respect to particular facilities, behaviors, or health outcomes.

Conclusion
This study introduced a conceptual and methodologic framework to quantify personal
environmental exposures across space and time. The use of SmartMaps facilitated
measurement of local neighborhood built environment characteristics for a very large set of
GPS track points. Findings showed that most home built environment exposures were
different from nonhome built environment exposures. These methods could be applied to
future research investigating associations of built environment with health-related behaviors
or health outcomes. Whereas existing studies have focused nearly exclusively on the home
neighborhood, the proposed methods could be used to estimate complete built environment
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exposures across individuals’ entire activity space. Taking into account the full range of
environmental exposures may lead to more-consistent results and hence a better
understanding of the relationship between built environment, behavior, and health outcomes.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Table 1

GPS location counts by distance to home and the University of Washington campus main entrance

Distances (m)

<833 833–1666 >1666 All

TO HOME

All observations

   % 48.6 5.8 45.6 100

   Count (millions) 1.9 0.2 1.7 3.8

By subject

   % (SD) 48.1 (27.3) 8.4 (11.5) 45.7 (24.4) 100

   Count: M (SD) 45,182 (33,728) 5,446 (6,622) 44,592 (33,506) 93,044 (43,598)

TO UNIVERSITY OF WASHINGTON

All observations

   % 24.1 14.1 61.8 100

   Count (millions) 0.9 0.5 2.4 3.8

By subject

   % (SD) 26.0 (24.2) 15.4 (22.8) 61.1 (30.0) 100

   Count: M (SD) 23,023 (23,396) 13,466 (25,403) 55,881 (42,136) 93,044 (43,598)

M (SD) distance 8,487 (21,712)
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Table 2

SmartMap built environment values by domain, M (SD)

Alla Home Nonhome

Neighborhood composition

   Residential units (count × 1000) 3.7(3.5) 4.6 (4)2 2.7 (2.3)

   Employment (jobs × 1000) 10.4(15.3) 7.1 (12.4) 12.6 (14.9)

Utilitarian destinations

   Supermarkets (count) 0.8(1.2) 1.0 (1.3) 0.7 (0.9)

   Traditional restaurant (count) 8.3 (11.3) 7.7(10) 8.4 (11.4)

   Fast food restaurants (count) 3.8 (4.3) 3.3 (4.2) 4.1 (4.2)

   Coffee shops (count) 8.9(11.5) 8.9 (11.7) 8.4(10.5)

   Fitness facilities (count) 1.6(1.7) 1.9 (1.9) 1.3(1.4)

   Park area (ha) 41 (806.9) 30.6 (42.8) 54.1 (1175.0)

   Parks (count) 3.7(2.3) 4.0 (2.3) 3.4(2.2)

   Park area (%) 5.4 (7.9) 7.1 (9.3) 3.9(6.1)

Transportation infrastructure

   Street density (km/km2) 13.6(5.0) 14.2 (4.9) 12.9(5.0)

   Trail density (km/km2) 0.5 (0.5) 0.3 (0.4) 0.6 (0.5)

   Intersection density (count/km2) 177.4 (78.0) 181.1 (75.4) 170 (79.8)

Traffic conditions

   Traffic volume (1000 vehicles) 115.3 (101.1) 97.2(101.9) 128.7 (95.5)

   Bus ridership (count × 1000) 14.9(19.2) 9.3 (13.4) 19.8 (21.4)

a
all = all GPS locations; home = GPS locations within 833 m of home locations; nonhome = GPS locations beyond 1666 m of home locations

Note: Bold indicates higher value for home than nonhome.
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