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Abstract
Mast cells are well known for their role in allergic and anaphylactic reactions, as well as their
involvement in acquired and innate immunity. Increasing evidence now implicates mast cells in
inflammatory diseases where they are activated by non-allergic triggers, such as neuropeptides and
cytokines, often exerting synergistic effects as in the case of IL-33. Mast cells can also release pro-
inflammatory mediators selectively without degranulation. In particular, IL-1 induces selective
release of IL-6, while corticotropin-releasing hormone secreted under stress induces the release of
vascular endothelial growth factor. Many inflammatory diseases involve mast cells in cross-talk
with T cells, such as atopic dermatitis, psoriasis and multiple sclerosis, which all worsen by stress.
How mast cell differential responses are regulated is still unresolved. Preliminary evidence
suggests that mitochondrial function and dynamics control mast cell degranulation, but not
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selective release. Recent findings also indicate that mast cells have immunomodulatory properties.
Understanding selective release of mediators could explain how mast cells participate in numerous
diverse biologic processes, and how they exert both immunostimulatory and immunosuppressive
actions. Unraveling selective mast cell secretion could also help develop unique mast cell
inhibitors with novel therapeutic applications.
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Introduction
Mast cells derive from distinct precursors in the bone marrow or other hematopoietic tissues
[1,2]. They mature under the influence of local tissue microenvironmental conditions,
through various cytokines such as stem cell factor (SCF) [2,3]. SCF enhances mast cell
degranulation and cytokine production through cross-linking of their high affinity surface
receptors for IgE (FcεRI), even though it does not induce degranulation on its own [4-7].
Other molecules that promote mast cell maturation include nerve growth factor (NGF) [8],
which acts via tyrosine kinase receptors (TrkA, B, C), different from the c-kit activated by
SCF [9]. Neurotrophin-3 was also shown to promote maturation of both fetal mouse skin
mast cells [10] and human intestinal mast cells [11]. Moreover, human mast cells express
mRNA and protein for the Trk ligands NGF, brain-derived neurotrophic factor (BDNF) and
neurotrophin-3 [9], suggesting autocrine actions. However, unlike NGF, which stimulates
mast cell degranulation [12], neurotrophins do not. Mast cell chemoattractants include SCF,
monocyte chemoattractant protein-1 (MCP-1) and the “regulated upon activation, normal T
cell expressed and secreted” (RANTES) [13]. SP is also a potent chemoattractant for human
basophils [14]. Depending on their location, stage of maturation or species [15], mast cells
express different types and levels of surface antigens and receptors, some of which are
involved in activation and others in cell recognition (Table 1) [16].

In addition to IgE and antigen [5], immunoglobulin free light chains [17,18],
anaphylatoxins, hormones and neuropeptides [19,20] can trigger mast cell secretion [21-23]
(Table 2). The latter include substance (SP) [24], hemokinin [25], neurotensin (NT) [26],
NGF [12,27] which is released under stress [28], and pituitary adenylate cyclase activating
polypeptide (PACAP) [29,30]. Skin mast cells are located close to sensory nerve endings
and can be triggered by neuropeptides [21,31], such as NT [26], NGF [12], SP [32], and
PACAP [30] (Fig. 1), which can be released from dermal neurons. In fact, skin mast cells
contain SP [33], while cultured mouse and human mast cells contain and secrete NGF [34].
Thymic stromal lymphopoietin (TSLP), released in response to inflammation, pathogens and
trauma [35], also activates mast cells, but only in the presence of interleukin-1 (IL-1) and
tumor necrosis factor (TNF) [35,36]. A number of additional immune and infectious triggers
(e.g. stimulants of Toll-like receptors, TLR) can lead to selective release of mast cell
mediators (See under “Selective release” below).

Once activated, mast cells secrete numerous vasoactive and pro-inflammatory mediators
[37-42]. These include pre-formed molecules such as histamine, serotonin, TNF, kinins and
proteases stored in secretory granules. Leukotrienes (LT), prostaglandins and platelet
activated factor (PAF) are synthesized during mast cell activation from arachidonic acid
liberated by the action of phospholipases. In addition, a number of cytokines (e.g. IL-1, 2, 5,
6, 8, 9, 13, TNF) and vascular endothelial growth factor (VEGF) [43] are synthesized de
novo and released several hours after stimulation (Table 2). VEGF is also released from
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normal human cultured mast cells selectively in response to corticotropin-releasing hormone
(CRH) [44].

CRH is secreted from the hypothalamus under stress and regulates the hypothalamic-
pituitary-axis (HPA) axis [45] through specific receptors [46]. These include CRHR-1 [47]
and CRHR-2 [48], the latter being subdivided in CRHR-2α and CRHR-2β [49]. All CRHR
are activated by urocortin (Ucn), a peptide with about 50% structural similarity to CRH [50].
Ucn II [51] and Ucn III [52] are potent selective CRHR-2 agonists. CRH can also be
secreted from immune cells [53] and mast cells [54]. CRH and related peptides released
locally under stress may regulate mast cell function [55], and the brain-skin connection [56].
It was recently reported that CRH stimulates generation of mast cells from human hair
follicle precursors [57].

Mature mast cells vary considerably in their cytokine [58] and proteolytic enzyme content,
but their phenotypic expression is not fixed [59,60]. Mast cells in the presence of SCF
produce predominantly pro-inflammatory cytokines, whereas when used together with SCF
and IL-4, they produce mostly Th2 cytokines [61]. For instance, human umbilical cord-
derived mast cells (hCBMCs) primed with IL-4 or IL-5 before stimulation with IgE released
more TNF, IL-5, and granulocyte-macrophage colony-stimulating factor (GM-CSF),
compared to hCBMCs maintained in SCF alone. In contrast, IL-4 enhanced SCF-dependent
mast cell proliferation and shifted IgE-stimulated response to Th2 cytokines such as IL-3,
IL-5 and IL-13, but not IL-6 [62].

Mast cells play an important role in innate or acquired immunity [63], bacterial infections
[64-66], as well as in autoimmunity [67]. Mast cells are also important for maturation of
Th17 cells and are recognized as key cells in autoimmune disorders [68]. For instance, mast
cells in the presence of IL-6 and transforming growth factor β (TGFβ) are necessary for the
production of Th17 cells [69], while TNF and vasoactive intestinal peptide (VIP) drive IL-6-
independent Th17 cell maturation [69-71]. A number of immune molecules also contribute
to mast cell activation. Addition of complement fragment 3a (C3a) led to increased
degranulation of human mast cells stimulated by aggregated IgG [72]. Immunoglobulin-free
light chains elicited immediate hypersensitivity-like reactions [18,73], with subsequent T
cell-mediated immune responses. The antibacterial peptides, human B-defensins, can
activate mast cells and induce degranulation [74]. In fact, mast cells interact with T cells
[75,76] and superactivate them through TNF, as shown with mouse [77,78] and human
[79,80] mast cells. It was recently shown that T cells release “microparticles” that stimulate
human mast cell degranulation and IL-8 release [81]. Mast cells, in turn, secrete heparin
“microparticles” that contain and deliver TNF to lymph nodes [82].

Mast cells, specifically a subset highly expressing both FcεRI and MHC II [83], can function
as antigen presenting cells [84-86]. Basophils can also act as Th2-inducing antigen-
presenting cells [87,88]. Basophils promote Th2 responses [89,90] and co-operate with
dendritic cells for optimal Th2 responses [91]. Moreover, basophil activation by
“autoreactive IgE” induces their “homing” to lymph nodes, where they promote Th2 cell
differentiation and production of auto-reactive antibodies that contribute to lupus nephritis
[92]. Interestingly, mast cells can act both as positive and negative modulators of immunity
[93]. In addition, mast cells can coordinate the adaptive immune response by directing
migration of dendritic and T cells to lymph nodes and secreting T cell-polarizing cytokines
[94]. Such regulatory activities of mast cells may stem from selective release of
immunomodulatory molecules that could have both autocrine and paracrine actions (Fig. 2).

Mast cells also have the unusual ability to be triggered by certain molecules and then either
activate them or degrade them. For instance, mast cells can act on precursor protein
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molecules and generate active peptides [95], such as histamine-releasing peptides [96] and
NT, [97] from plasma. However, mast cells can also degrade NT [98] and limit its biologic
effects [99]. Mast cells can also synthesize endothelin [100], but also release proteases that
degrade endothelin [64]. Finally, mast cells can be activated by snake toxins [101,102], but
also degrade them [103]. Whether these actions will prove useful or detrimental obviously
depends on the ability of mast cells to secrete specific mediators selectively in a well-
regulated fashion.

Inflammatory processes and the role of selective release
Increasing evidence indicates that mast cells are critical for the pathogenesis of
inflammatory diseases [19,20], such as arthritis [104], atopic dermatitis, psoriasis [105,106],
and multiple sclerosis [107] (Fig. 3). Gene array analysis of human mast cells activated by
IgE showed overexpression of numerous, mostly inflammation-related genes [108].
Proteases released from mast cells could act on plasma albumin to generate histamine-
releasing peptides [96,109] that would further propagate mast cell activation and
inflammation. Proteases could also stimulate protease-activated receptors (PAR) inducing
microleakage and widespread inflammation [110,111]. However, unlike allergic reactions,
mast cells are rarely seen to degranulate during inflammatory processes. The only way to
explain mast cell involvement in non-allergic processes would be through “differential” or
“selective” secretion of mediators without degranulation [112].

This ability could occur through different mechanisms: (A) mast cells can secrete the
content of individual granules [113]; (B) mast cells can secrete some granular contents
through a process associated with ultrastructural alterations of their electron dense granular
core indicative of secretion, but without evidence of degranulation [114], a process that has
been termed “activation” [115], “intragranular activation” [116] or “piecemeal”
degranulation [117] (Table 3, Fig. 4); (C) mast cells can undergo selective release of specific
mediators such as serotonin without histamine [118]. Selective release of serotonin occured
through sequestration from secretory granules inside vesicles containing high affinity
serotonin-binding proteins from which it was released [119]. A somewhat similar process
was reported for eosinophils where it was shown that eotaxin stimulation induced movement
of preformed IL-4 from granules into secretory vesicles from which it was released [120].
Human mast cells stimulated by IL-1 selectively released IL-6 without degranulation
through vesicles (40-80 nm) much smaller than the secretory granules (800-1000 nm) [121].
Selective release of eicosanoids has also been shown [122-124].

Selective release of IL-6 was reported in response to bacterial lipopolysaccharide (LPS), in
the presence of the phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin, or triggered
by SCF [125-127]. CRH induced selective VEGF release [128], and PGE2 also induced
release of VEGF [129] and MCP-1 without degranulation [130]. Yet, PGE2 inhibited FcεRI-
induced histamine release from human lung mast cells [131]. Stromal cell-derived factor-1
alpha (SF-1α) selectively produced IL-8 from human mast cells without degranulation as
well [132]. Activation of human cultured mast cells by CD30 ligands led to release of the
chemokines IL-8 and MCP-1 without histamine and without degranulation [133]. IL-33
induced IL-13 release independent of IgE stimulation [134].

TLR are critical in innate and acquired immunity [135,136]. TLR activation on mast cells
leads to release of different cytokines [137]. For instance, rodent mast cell TLR-4 activation
by LPS induces TNF release without degranulation. TLR-4 is also activated by extra domain
A of fibronectin to release several cytokines, including TNF, in the same way as LPS [138].
Furthermore, LPS induces secretion of IL-5, IL-10 and IL-13, but not GM-CSF, IL-1 or
LTC4. [139,140]. In contrast, staphylococcal peptidoglycan induces degranulation and
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histamine release through TLR-2 [139,141]. TLR-2 and TLR-4 activation has a synergistic
action with antigen in enhancing cytokine production from rodent mast cells [142].
Elsewhere, it was shown that TLR-2 activation produces IL-4, IL-6 and IL-13, but not IL-1,
while LPS produces TNF, IL-1, IL-6 and IL-13, but not IL-4 or IL-5, again without
degranulation [143].

TLR 3, 7 & 9 activation by poly-oligodeoxynucleotide and CpG induces release of TNF and
IL-6 without degranulation from fetal rat skin-derived mast cells [144]. Human mast cells
produce IL-6 through viral TLR-9 activation [145], while they produce interferon (IFN)
following TLR-3 activation by double-stranded RNA [146].

Regulation of mast cell activation
FcεRI-induced mast cell degranulation involves calcium-dependent exocytosis, and
SNAP-23 phosphorylation [147], but granule translocation to the surface is calcium-
independent [148]. Mast cell activation by different triggers apparently engages different
downstream pathways. FcεRI aggregation induces PI3K, ERK, JNK, NF-κB and PKC
activation, although the PKCε isozyme may be redundant [149,150]. PI3K inhibition by the
“phosphatase and tensin homologue deleted on chromosome ten” (PTEN) or PTEN
knockdowns induce constitutive cytokine production, without degranulation, that involves
phosphorylation of AKT, p38/MAPK and JNK [151]. Secretion in response to compound
48/80 requires PLC, tyrosine kinase, p38/MAPK and PKC [152]. In contrast, IL-1
stimulation of selective IL-6 release is extracellular calcium-independent and involves p38/
MAPK, but only PKCθ isozyme activation [153]. CRH-induced selective VEGF release
from mast cells is also extracellular calcium-independent, and involves only PKA and p38/
MAPK activation [128].

Degranulation in response to FcεRI-aggregation was severely impaired in IL-2-inducible T
cell kinase −/− mice [154]. FcεRI-induced mast cell activation in rat basophil leukemia
(RBL) cells was inhibited by the Syk-tyrosine kinase inhibitor Piceatannol [155].
Suboptimal antigen challenge of human mast cells led to FcεRI-unresponsiveness that
correlated with reduced Syk levels [156], apparently through actin assembly that blocked
degranulation [157]. However, low antigen still permitted MCP-1 release, suggesting yet
another mechanism of differential release [158].

The Src family kinase Lyn is a negative regulator of allergic mast cell activation, but Lyn −/
− mice had increased FcεRI expression, circulating histamine and eosinophilia [159]. Fyn
deficient mast cells could not generate IL-6, TNF or MCP-1 during FcεRI aggregation, but
IL-13 production was intact, suggesting divergent regulatory pathways [160].

Adaptor complexes such as B cell lymphoma 10-mucosal-associated lymphoid tissue 1
(Bcl10-Malt1) permit FcεRI-dependent IL-6 and TNF release without degranulation [161].
Mice deficient in either Bcl10 or MALT1 proteins did not produce TNF or IL-6 upon FcεRI
signaling: yet, degranulation and LT secretion was normal [162]. Neutralization of the
inhibitory receptor IRp60 (CD300a) in human cord blood mast cells in mice led to increased
mediator release [163]. In contrast, engagement of the myeloid cell inhibitory receptor
CD200 in human mast cells inhibited FcεRI-induced activation [164]. Mast cells also
express the inhibitory receptors CD300 and Siglec-8, as well as the death receptor TRAIL
[165]. Two peptides derived from the complement components C3a, C3a+ and C3a9
inhibited FcεRI-induced degranulation and TNF release [166].

There appear to be some innate inhibitors of mast cell secretion (Fig 2). Chondroitin sulfate
and heparin, the major constituents of mast cell granules, inhibit human mast cell secretion
[167]. Nitric oxide (NO) blocks FcεRI-induced cytokine secretion through inhibition of Jun
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[168]. In contrast IL-10 appears to have divergent effects depending on the mast cell type
and stimulus [169]. The natural chymase inhibitors alpha 1-antitrypsin and secretory
leukocyte protease inhibitor (SLPI) inhibit histamine release from human cells [170].

Recent evidence indicates that mitochondria are involved in the regulation of mast cell
degranulation (Fig. 4). Mitochondrial uncoupling protein 2 (UCP2) inhibited mast cell
activation [171]. Moreover, our recent results indicate that mast cell degranulation requires
mitochondrial translocation to the cell surface [172] (Fig. 5). Inhibition or downregulation of
Dynamin Related Protein 1 (Drp1), a cytoplasmic protein responsible for mitochondrial
fission and translocation, blocks mast cell degranulation [173]. The involvement of
mitochondria in mast cell regulation may also explain the ability of certain flavonoids [174]
to inhibit mast cell degranulation [175], since quercetin was shown to accumulate in
mitochondria [176].

Atopic dermatitis and psoriasis
Skin mast cells may have important functions as “sensors” of environmental and emotional
stress [56], possibly due to direct activation by CRH secreted under stress, and related
peptides [55]. Mast cell-related atopic dermatitis (AD) and psoriasis, are triggered or
exacerbated by stress through mast cell activation [177,178]. Mast cell activation in AD may
also be induced by cytokines, such as TSLP. We recently reported increased serum levels
and skin gene expression of TSLP in AD patients as compared to controls [179], in
agreement with previous studies [180,181].

Computer-induced stress enhanced allergen specific responses with concomitant increase in
plasma SP levels in patients with AD [182]. Similar findings with increased plasma levels of
SP, VIP and NGF, along with a switch to a Th2 cytokine pattern, was reported in patients
with AD playing video games [183]. Skin has its own equivalent of the HPA axis [184,185].
CRH and CRHR mRNA is expressed in human and rodent skin [186,187] and CRH can be
secreted from dorsal root ganglia and from sympathetic ganglia [188,189]. CRH
administration in humans causes peripheral vasodilation and flushing reminiscent of mast
cell activation [190]. Moreover, intradermal administration of CRH and Ucn activates skin
mast cells and increases vascular permeability in rodents [191] and humans [192,193],
through activation of CRHR-1 [56]. CRHR-1 expression was increased in chronic urticaria
[194]. Acute stress released CRH in the skin and increased local vascular permeability
[195]. Acute stress also exacerbated skin delayed hypersensitivity reactions [196], and
chronic contact dermatitis in rats, an effect that involved significantly increased mast cells in
the dermis, and was dependent on CRHR-1 [197]. Acute restraint stress induced rat skin
vascular permeability [198], which was inhibited by a CRH receptor antagonist, and was
absent in mast cell deficient mice [191,199].

Psoriasis is also triggered or exacerbated by acute stress [105,200-202]. We showed that
psoriasis is associated with increased serum CRH and decreased lesional skin CRHR-1 gene
expression possibly due to downregulation [203]. Psoriasis is characterized by keratinocyte
proliferation and inflammation, as well as mast cell accumulation and activation [106,204].
Mast cells are increased in lesional psoriatic skin [105,106]. Neuropeptides [205], especially
SP [206], are involved in the pathogenesis of psoriasis. In particular, SP reactive fibers are
localized close to mast cells [105,207]. SP can stimulate mast cells [208,209] and
contributes to inflammation [210,211]. SP-positive nerve fibers are more dense in psoriatic
lesions and have an increased number of mast cell contacts compared to normal skin
[207,212,213]. SP-positive nerve fibers and mast cell contacts are also increased by acute
stress in mice [214], leading to dermal mast cell degranulation [201,208,215]. Keratinocytes
also express neurokinin (NK) 2 receptors and can be stimulated by SP [216], to release IL-1
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[217]. Keratinocyte proliferation is accelerated by PAF, which can be secreted from mast
cells [218], and stimulates human mast cells [219].

Psoriasis is associated with chronic inflammation and it often co-exists with inflammatory
arthritis [220], in which IL-33 was recently implicated [221]. IL-33 is one of the newest
members of the IL-1 family of inflammatory cytokines [222], and can mediate IgE-induced
anaphylaxis in mice [223]. IL-33 also induces release of IL-6 from mouse bone marrow-
derived cultured mast cells [224], and IL-8 from hCBMCs [225]. We showed that IL-33
augments SP-stimulated VEGF release from human mast cells and IL-33 gene expression is
increased in lesional skin from patients with psoriasis [226]. Mast cells may, therefore, be
involved in the pathogenesis of psoriasis and other inflammatory skin diseases.

Multiple sclerosis
Functional mast cell-neuron interactions occur in the brain [227,228] and could mediate
neuroinflammation [20]. In the brain, mast cells are found in the leptomeninges [228,229],
the choroid plexus, thalamus and hypothalamus, especially the median eminence [230,231],
where most of histamine derives from mast cells [232-235]. We had proposed that mast cells
can act as “the immune gate to the brain” [107], and we later showed that mast cells
regulate BBB permeability [236,237]. BBB breakdown [238] precedes any pathological or
clinical signs of MS [239-241], as shown by MRI-gadolinium studies and trans-BBB
leakage of albumin [242]. Mast cells have been implicated in multiple sclerosis (MS), a
demyelinating condition involving brain and MS plaque infiltration [243] by lymphocytes
and activated mast cells [244,245]. Gene array analysis of MS plaques showed
overexpression of genes for FcεRI, the histamine-1 (H1) receptor and tryptase, all of which
are associated with mast cells [246,247]. A recent paper reported that experimental allergic
encephalomyelitis (EAE) development depends on H1 receptor activation [248]. Mast cells
are located close to the cerebral microvasculature and do not express FcεRI protein under
normal conditions [249]. This is not surprising as the brain is not known to develop allergic
reactions since IgE does not cross the blood-brain-barrier (BBB). Brain mast cells also do
not normally express their surface growth factor (c-kit) receptor [250], but do so during EAE
[251]. We first showed that mast cells migrate into the brain from the meninges, and it was
later shown that they can also enter the CNS from blood [252]. Mast cell-derived products
can enter neurons, a process termed “transgranulation”, indicating a novel form of brain-
immune system communication [253]. We further hypothesized that perivascular brain mast
cells could come in contact with circulating T cells and not only allow them to enter the
BBB, but also activate them [80]. TNF can be released from rat brain mast cells [254], and
is involved in both brain inflammation [255,256] and increased vascular permeability [257].
Mast cell tryptase is elevated in the CSF of MS patients [258] and can activate peripheral
mononuclear cells to secrete TNF and IL-6 [259], as well as stimulate PAR that can lead to
microvascular leakage and widespread inflammation [260]. It was recently reported that
meningeal mast cells promote T cell infiltration in the CNS by disrupting BBB integrity
through TNF [261]. However, this paper did not include any of earlier publications
discussed above and did not consider the possibility that lack of TNF may eventually worsen
EAE [262]. The above findings imply that mast cells may be able to secrete both prestored
and de novo synthesized TNF [263,264] with different biological actions.

The role of CD4+ T cells is well-documented in MS, but this CD4-Th1 model has recently
been questioned [265], because increasing evidence also implicates Th2 processes typically
associated with allergic reactions [266,267]. Some studies reported the inability of mast cell
deficient mice to fully develop EAE, but suggested that reduced T cell activation may also
be involved [268,269]. Mast cell contact with activated T cells leads to secretion of matrix
metalloproteinase (MMP)-9 and IL-6 from human mast cells [270]. Moreover, mast cells
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can promote IgE-dependent and T cell-independent proliferation and activation through
TNF release [77], [78]. We showed that mast cells superstimulate activated T cells, an action
which is further increased when mast cells are activated by myelin basic protein (MBP) and
is partially dependent on TNF [79,80]. MBP could induce homogeneic mast cell activation
and brain demyelination [271]. Moreover, virally-induced encephalomyelitis could not
develop in W/Wv mast cell deficient mice, and EAE was attenuated and delayed in these
mice [272].

Mast cell-derived mediators can increase BBB permeability [273]. Selective release of IL-6
could have profound effects on brain function [274] and could activate the HPA axis [275].
Selective release of VEGF, an isoform of which is particularly vasodilatory [43,276], could
lead to BBB disruption [277]. Mast cells are localized close to CRH-positive neurons in the
median eminence [278] and express functional CRH receptors [44]. Activation of
hypothalamic mast cells can stimulate the HPA axis [279-281], through histamine, which
regulates the hypothalamus, and can also increase hypothalamic CRH mRNA expression
[282]. Moreover, human mast cells can synthesize and secrete large amounts of CRH [283],
as well as IL-1 and IL-6 which are independent activators of the HPA axis [284].

The effect of stress and CRH on mast cell activation and BBB permeability may help
explain some of the clinical findings in MS patients. Acute stress worsens the symptoms of
MS, and the appearance of new MRI lesions has been repeatedly shown to be precipitated
by psychological stress [285-288]. In one study in Denmark, parents who had unexpectedly
lost a young child had a significantly increased risk of MS, compared to other bereaved
parents [289]. Meta-analysis of 14 prospective studies showed a significantly increased risk
of MS exacerbations after stressful events [290]. A review of the effect of stress on MS
proposed that it may be due to glucocorticoid-insensitive immune cells [291]. Another study
argued that stress could not affect MS because the function of peripheral blood leukocytes in
MS patients was apparently unaffected by stress [292]. However, such findings may not be
relevant as stress may predominantly affect mast cells and T cells, but not peripheral
leukocytes. Release of CRH and cytokines outside the brain may be more relevant instead.
For instance, examination-stress dramatically increased serum TNF levels in medical student
volunteers [293], and restraint stress induced mast cell-dependent increase in mouse serum
IL-6 [294]. Rat brain mast cells were activated by acute stress, and led to CSF elevation of
rat mast cell protease I [278], the equivalent of tryptase in humans. These effects were
abolished by polyclonal antiserum to CRH and by the CRHR-1 antagonist Antalarmin
[228,278]. A short period of restraint [295] or maternal deprivation stress [296] increased
the severity of EAE. Acute restraint stress also shortened the time required for the
development of EAE in mice [295]. Moreover, EAE was characterized by decreased clinical
disability and brain infiltration by immune cells in CRH −/− mice as compared to normal
controls [297]. Restraint stress was also reported to increase mortality rates and lead to
higher CNS viral load during Theiler’s virus infection [298]. Stressed mice had increased
inflammatory spinal cord lesions and developed autoimmune antibodies to MBP [299]. Mast
cell activation was shown to occur in response to isolation stress [300], restraint stress [278],
subordination stress [301], and during courtship following isolation of male doves [302].

Mast cells could, therefore, participate in the pathogenesis of MS in many different ways:
they could (A) be stimulated to release cytokines/chemokines selectively inducing T cell/
macrophage recruitment and activation; (B) present myelin antigens to T cells; (C) disrupt
the BBB and permit entry of active T cells that are sensitized to MBP; (D) damage myelin
and release fragments that could stimulate secretion of tryptase, which may in turn enhance
demyelination and induce further inflammation through stimulation of PAR. As a result
mast cells were considered as a possible therapeutic target for MS [303]. It is of interest that
flavonoids [174] known to inhibit mast cell secretion [175] have also been shown to inhibit
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macrophage myelin phagocytosis [304], and EAE [305,306]. The flavone luteolin, which is
structurally related to quercetin, was also a strong inhibitor of human autoimmune T cells
[307]. Quercetin and luteolin also inhibit IL-6 release from microglia [308] and induce an
anti-inflammatory phenotype [309]. Luteolin is neuroprotective [309] and is closely related
to dihydroxyflavone recently shown to mimic the action of BDNF [310]. We showed that
luteolin can inhibit mast cell activation and mast cell-dependent superstimulation of
activated T cells with or without stimulation by MBP [80]. Luteolin can also inhibit
activation of peripheral lymphocytes from MS patients [311], and it was, therefore, proposed
as adjuvant therapy for MS [312].

Conclusion
Mast cells clearly participate in the induction and/or propagation of certain inflammatory
diseases, through selective release of mediators. The pharmacologic inhibition of this
process would, therefore, have clear therapeutic potential. Luteolin formulations, alone or
together with drugs that can selectively inhibit the release of pro-inflammatory mediators
hold promise for the treatment of skin and brain inflammatory diseases.

Acknowledgments
Aspects of our work discussed here were supported in part by US National Institutes of Health (NIH) grants:
AR47652, NS71361, NS55681 and NS66205 to TCT. Konstantinos-Dionysios Alysandratos and Asimenia
Angelidou are recipients of postgraduate scholarships from the Hellenic State Scholarships Foundation (Athens,
Greece). Bodi Zhang is partially supported by a graduate fellowship from Galenica, SA (Athens, Greece).

Abbreviations

AD atopic dermatitis

BBB blood-brain barrier

Bcl10-Malt1 B cell lymphoma 10-mucosal-associated lymphoid tissue 1

BDNF brain-derived neurotrophic factor

CRH corticotropin-releasing hormone

CRHR corticotropin-releasing hormone receptor

Drp1 dynamin related protein 1

EAE experimental allergic encephalomyelitis

FcεRI high affinity surface receptors for IgE

GM-CSF granulocyte-macrophage colony-stimulating factor

hCBMCs human umbilical cord-derived mast cells

HPA hypothalamic-pituitary-adrenal

IFN interferon

IL interleukin

LPS lipopolysaccharide

LT leukotriene

MBP myelin basic protein

MCP-1 monocyte chemoattractant protein-1
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MS multiple sclerosis

MMP matrix metalloproteinase

NGF nerve-growth factor

NK neurokinin

NT neurotensin

PACAP pituitary adenylate cyclase activating polypeptide

PAF platelet activating factors

PAR protease activated receptors

PI3-K phosphatidylinositol 3-kinase

PTEN phosphatase and tensin homologue deleted on chromosome ten

RANTES regulated upon activation normal T cell expressed and secreted

RBL rat basophil leukemia

SCF stem cell factor

SF-1α stromal cell-derived factor-1 alpha

SLPI secretory leukocyte protease inhibitor

SP substance P

TGFβ transforming growth factor β

TLR toll-like receptors

TNF tumor necrosis factor

TSLP thymic stromal lymphopoietin

Ucn urocortin

UCP2 uncoupling protein 2

VEGF vascular endothelial growth factor

VIP vasoactive intestinal peptide.
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Research highlights

• Mast cells release pro-inflammatory mediators selectively without degranulation

• Mast cells are activated by CRH released under stress

• Neuropeptide mast cell triggers have synergistic action with cytokines, like
IL-33

• Unique flavonoid combinations can effectively block mast cell secretion

• Mast cells may serve as new therapeutic targets for psoriasis and multiple
sclerosis
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Figure 1.
Schematic representation of physiological and environmental mast cell triggers, and the
inhibitory effect of certain flavonoids, such as luteolin. Many of these triggers stimulate
selective release of mediators such as IL-6, TNF or VEGF without degranulation.
CRH, corticotropin releasing hormone; LPS, lipopolysaccharide; NT, neurotensin; PACAP,
pituitary adenylate cyclase activating polypeptide; PCBs, polychlorinated biphenols; PTH,
parathyroid hormone; SP, substance P; VIP, vasoactive intestinal peptide.
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Figure 2.
Schematic representation of mast cell autocrine triggers and modulators. Numerous
molecules secreted by mast cells can have autocrine actions, either activating or inhibiting
mast cells.
CRH, corticotropin-releasing hormone; IL, interleukin; NT, neurotensin; NO, nitic oxide;
ROS, reactive oxygen species; SCF, stem cell factor; SP, substance P; TGFβ, transforming
growth factor β; TSLP, thymic stromal lymphopoietin; UCP2, uncoupling protein 2.
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Figure 3.
Mast cell involvement in inflammatory diseases. Increasing evidence indicates that mast
cells are involved in many diseases. Colors indicate the strength of the association (red =
strongest, white = weakest).
CAD, coronary artery disease; IBD, inflammatory bowel disease; IBS, irritable bowel
syndrome.
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Figure 4.
Schematic representation showing mast cell degranulation as compared to selective mediator
release. During selective release, vesicles much smaller than secretory granules transport
mediators to the cell surface for exocytosis.
ER, endoplasmic reticulum; VEGF, vascular endothelial growth factor.
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Figure 5.
Two human cultured LAD2 mast cells, showing distribution of mitochondria stained with
MitoTracker and photographed using Confocal microscopy; (A) control in which
mitochondria form a “net” around the nucleus and (B) after stimulation with SP (2 M for 30
min at 37°C) in which mitochondria are distributed throughout the cell. (Magnification: x
1000). Arrows point to the areas with the highest concentration of MitoTracker (yellow
color); thus the highest aggregation of mitochondria.
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Table 1
Mast cell receptors and their agonists*

Adenosine receptors
A2A, A2B, A3

Adenosine

β2-Adrenoreceptor Adrenaline

C3αreceptor C3α

C5α receptor C5α

Cannabinoid CB2 receptor 2-Arachidonoyl-glycerol, anandamide

CD47 (=integrin-associated protein, IAP) Integrins

CD200 receptor CD200 (0X2)

Cd300α receptor Eosinophil granule proteins

Chemokine receptors CXCR1-4, CX3 CR1, CCR1,3-5 Chemokines

CRHR-1, CRHR-2 Corticotropin releasing hormone

Estrogen receptors (A,B) Estrogens

FcαR (CD89) IgA

FcεRI IgE

FcγRI IgG

FcγRIIA IgG

FcγRIIB IgG

FcγRIII IgG

GPR34 Lysophosphatidylserine

GPR92 Lysophosphatidic acid

Histamine receptors
H1, H2, H3, H4

Histamine

5-HT1A Serotonin

Kit receptor tyrosine kinase (CD17) Stem cell factor

LPA1, LPA3 Lysophosphatidic acid

Leptin receptor Leptin

Leukotriene receptors 1 and 2 Leukotrienes

MRGX2 Mastoparan, somatostatin, SP

Myeloid-associated Ig-like receptor 1 ?

Neurokinin receptors
NK1R, NK2R, NK3R, VPAC2

CGRP, Hemokinin-A, SP, VIP

Neurotensin receptor Neurotensin

Neurotrophin receptors
TrkA
TrkB
TrkC

NGF
BDNF
Neurotrophin 3

Nicotinic acetylcholine receptor Acetylcholine

0X40 0X40-ligand

Protease activated receptors 1-4 Serine proteases (e.g. trypsin, tryptase)

Peripheral benzodiazepine receptor ?
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Adenosine receptors
A2A, A2B, A3

Adenosine

Progesterone receptor Progesterone

Prostaglandin E receptors
EP2, EP3, EP4

Prostaglandin E

Purinoreceptors
P2Y1, P2Y12, P2Y13,
P2Y2,
P2Y11

ADP
ATP, UTP
ATP

Sphingosine-1-phosphate
S1P1, S1P2, S1P5

S1P

Toll-like receptors 1-9 Bacterial and viral products

Urokinase receptor Urokina5s2e

Vitamin D receptor Vitamin D

*
There are differences in the expression of cell surface receptors between human and rodent mast cells.
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Table 2
Mast Cell Mediators*

Mediators Main Pathophysiologic Effects

Prestored

Biogenic Amines

 Histamine Vasodilation, angiogenesis, mitogenesis, pain

 5-Hydroxytryptamine (5-HT, serotonin) Vasoconstriction, pain

Chemokines

 IL-8(CXCL8), MCP-1(CCL2), MCP-3(CCL7), Chemoattraction and tissue infiltration of leukocytes

 MCP-4, RANTES (CCL5), Eotaxin (CCL11)

Enzymes

 Arylsulfatases Lipid/proteoglycan hydrolysis

 Carboxypeptidase A Peptide processing

 Chymase Tissue damage, pain, angiotensin II synthesis

 Kinogenases Synthesis of vasodilatory kinins, pain

 Phospholipases Arachidonic acid generation

 Tryptase Tissue damage, activation of PAR, inflammation, pain

 Matrix metalloproteinases Tissue damage, modification of cytokines/chemokines

Peptides

 Angiogenin Neovascularization

 Corticotropin-releasing hormone Inflammation, vasodilation

 Endorphins Analgesia

 Endothelin Sepsis

 Kinins (bradykinin) Inflammation, pain, vasodilation

 Leptin Food intake regulator

 Renin Angiotensin synthesis

 Somatostatin Anti-inflammatory (?)

 Substance P Inflammation, pain

 Urocortin Inflammation, vasodilation

 VEGF Neovascularization, vasodilation

 Vasoactive intestinal peptide Vasodilation, mast cell activation

Proteoglycans

 Chondroitin sulfate Cartilage synthesis, anti-inflammatory

 Heparin Angiogenesis, nerve growth factor stabilization

 Hyaluronic acid Connective tissue, nerve growth factor stabilization

De novo synthesized

Cytokines

 Interleukins (IL)-1,2,3,4,5,6,8,9,10,13,16,18 Inflammation, leukocyte migration, pain

 IFN- α , IFN-β, IFN-γ; MIF; TGFβ; TNF-α, Inflammation, leukocyte proliferation/activation

 MIP-1α, MCP-1

Growth Factors

 SCF, GM-CSF, β-FGF, neurotrophin 3, NGF, Growth of a variety of cells
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Mediators Main Pathophysiologic Effects

 PDGF, TGFβ, VEGF

Nitric oxide Vasodilation

Phospholipid metabolites Leukotriene B4 Leukocyte chemotaxis

 Leukotriene C4 Vasoconstriction, pain

 Platelet activating factor Platelet activation, vasodilation

 Prostaglandin D2 Bronchonstriction, pain

β-FGF, β-fibroblast growth factor; GM-CSF, granulocyte monocyte-colony stimulating factor; IFNγ, interferon-γ; MCP, monocyte chemoattractant
protein; MIF, macrophage inflammatory factor; MIP, macrophage inflammatory protein; NGF, nerve growth factor; PDGF, platelet-derived growth
factor; SCF, stem cell factor; TGFβ, transforming growth factor β ; TNF-α, tumor necrosis factor-α; VEGF, vascular endothelial growth factor.

*
There are differences in the expression of mediators between human and rodent mast cells.
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