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Abstract

Smoking is associated with a wide variety of adverse health outcomes including cancer, chronic
obstructive pulmonary disease, diabetes, depression and heart disease. Unfortunately, the
molecular mechanisms through which these effects are conveyed are not clearly understood. To
examine the potential role of epigenetic factors in these processes, we examined the relationship of
smoking to genome wide methylation and gene expression using biomaterial from two
independent samples, lymphoblast DNA and RNA (n=119) and lung alveolar macrophage DNA
(n=19). We found that in both samples current smoking status was associated with significant
changes in DNA methylation, in particular at the aryl hydrocarbon receptor repressor (AHRR), a
known tumor suppressor. Both baseline DNA methylation and smoker associated DNA
methylation signatures at AHRR were highly correlated (r=0.94 and 0.45, respectively). DNA
methylation at the most differentially methylated AHRR CpG residue in both samples,
cg0557592, was significantly associated with AHRR gene expression. Pathway analysis of
lymphoblast data (genes with most significant methylation changes) demonstrated enrichment in
protein kinase C pathways and in TGF beta signaling pathways. For alveolar macrophages,
pathway analysis demonstrated alterations in inflammation-related processes. We conclude that
smoking is associated with functionally significant genome wide changes in DNA methylation in
both lymphoblasts and pulmonary macrophages and that further integrated investigations of these
epigenetic effects of smoking on carcinogenesis and other related co-morbidities are indicated.

INTRODUCTION

Despite extensive preventative and treatment interventions, approximately 19% of American
adults smoke on a daily basis (Centers for Disease Control 2011). This is a substantial
problem because smoking is the leading preventable cause of premature morbidity and
mortality. Smoking causes approximately 450,000 premature deaths annually through its
effects on the incidence of cancer, heart disease and chronic obstructive pulmonary disease
(Center for Disease Control 2005). National data indicate that while both prevalence of
smoking and mortality from lung cancer have significantly decreased for men between 1975
and 2007, these rates did not decrease for any racial or ethnic group or for women (Davis
and others 2010). In addition, projections suggest that because women who were born
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around 1960 have higher prevalence of smoking and morbidity than other cohorts, this
gender disparity may increase (Kohler and others 2011).

Many of the effects of smoking on the lung are thought to result from the direct effects of
cigarette smoke on pulmonary epithelium and alveolar macrophages. However, the exact
mechanism(s) through which smoking increases the risk for disease in non-pulmonary
tissues such as blood and brain are unclear. Recently, sets of convergent findings have
suggested that a portion of that vulnerability may be driven by differential DNA methylation
acquired by smoking (Breitling and others 2011; Chang and others 2004; Philibert and
others 2010; Suga and others 2008).

Altered DNA methylation that results from genetic lesions present at conception has long
been established as a cause of disorders affecting early development of disease in the soma
and the CNS. With respect to non-CNS disease, altered imprinting that usually results from
maternal monosomy at 15Q causes Prader-Willi syndrome (Gurrieri and Accadia 2009).
With respect to the CNS disease, almost all cases of Rett Syndrome result from mutations in
MECBP2 which exert their effects by altering DNA methylation (Chahrour and Zoghbi
2007). Guided by clues such as the observations that addition of folate, a methyl donor, to
the diets of pregnant women, markedly decreases the frequency of neural tube defects, the
field has embraced the concept that alterations in DNA methylation may be associated with
acquired early onset developmental disorders as well (Tsankova and others 2007). However,
whether environmentally acquired alterations could increase likelihood of disease in adults
has been an open question. A number of single gene and genome wide studies provide
evidence that altered DNA methylation is associated with smoking and may be a cause of
smoking associated illness. In particular, using both genome wide and single gene
approaches, we and others have demonstrated that altered DNA methylation is associated
with smoking (Breitling and others 2011; Chang and others 2004; Launay and others 2009;
Philibert and others 2010; Suga and others 2008). However, these studies have been
hindered by low coverage of the total number of genes and CpG residues in the human
genome and discrepancies as to the appropriateness of certain forms of biomaterials for
studies of epigenetic phenomena.

In this communication, we report our results with respect to smoking status on genome wide
methylation and focal gene expression using two independent sets of biomaterials: 1)
lymphoblast DNA and RNA derived from 119 female subjects from the lowa Adoption
Studies (1AS) and 2) alveolar macrophage DNA from cells isolated from the lungs of 10
smokers and 9 non-smokers.

METHODS

Human Subjects

The first set of biomaterials was obtained from subjects participating in the lowa Adoptions
Studies (1AS) (Yates and others 1998). In brief, the IAS is a case and control adoption study
of the role of genetic, environmental and gene-environment interactions in the etiology of
common behavioral illness. The clinical material used in the current study is derived from
interviews with the Semi-Structured Interview for the Assessment of the Genetics of
Alcoholism, Version Il (Bucholz and others 1994), during each of the last two waves of the
IAS study (1999-2004 and 2005-2009). The biological material used in this study,
lymphoblast cell lines, was derived by Epstein Barr virus (EBV) mediated transformation
(Caputo and others 1991) of lymphocytes obtained from blood donated by 165 female
subjects during the last wave of the study.
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The second set of biomaterials for the current study was alveolar macrophages obtained by
bronchoalveolar lavage. Subjects were recruited from the community via advertisements and
word-of-mouth. In order to be included, case (smoking) subjects had to be actively smoking
with at least 10 pack year history of smoking. To be included as a control, the subject had to
deny ever smoking cigarettes. Subjects were excluded if they had any significant co-morbid
conditions such as pregnancy, or if a baseline spirometry revealed the Forced Expiratory
Volume in the first second (FEV1) was less than 60% of predicted. All of these procedures
and protocols were approved by the University of lowa Institutional Review Board.

Bronchoalveolar Lavage

To obtain human alveolar macrophages a bronchoalveolar lavage was performed. After
informed consent was obtained, subjects underwent standard flexible bronchoscopy. After
the application of local anesthesia, bronchoalveolar lavage was performed by instilling 20
ml of normal saline into a tertiary bronchus up to five times in three different lung segments.
The first collection out of five was discarded for possible contamination from upper airway
secretions or by lidocaine, which is used to locally anesthetize the subject during the
procedure. The remaining lavage was transported to the laboratory where fluid was filtered
through sterile gauze and centrifuged at 200 x g for 5 min to pellet cellular material. The
resulting pellet was suspended in phosphate buffered saline and centrifuged at 16,000 x g for
one minute. The macrophages were suspended in medium, labeled with Wright stain and
microscopically examined to ensure that greater than 95% of the cells were macrophages
(Monick and others 2008; Monick and others 2006; Monick and others 2010).

DNA and RNA Isolation

The lymphoblast DNA and RNA used in this study was prepared from growth-entrained cell
lines according to our standard procedures (Philibert and others 2008). In brief, on the day
before DNA preparation, one-half of the cell media for each culture flask was exchanged.
Twenty four hours later, DNA was prepared from the cell lines using cold protein
precipitation. Simultaneously, RNA was purified from independent aliquots of the same
culture using RNA Midi kits (Invitrogen, USA) according the instructions of the
manufacturer. After quantification and purity assessment using a Nanodrop (Thermo
Scientific, USA) spectrophotometer, DNA was stored at —20° C and RNA was stored at
—80° C until use.

DNA and RNA were isolated from alveolar macrophages using the Qiagen DNAeasy™ kit
(Qiagen, Valencia, CA) and MirVana (Applied Biosystems, Austin, TX) reagents according
to manufacturer's instructions. Quality assessment was by Nanodrop and Experion (Bio-Rad
Experion Automated Electrophoresis Station). After preparation, DNA was stored at —20° C
and RNA was stored at —80° C until use.

DNA Methylation

Genome wide DNA methylation of the DNA was assessed using the Illumina
HumanMethylation450 BeadChip under contract by the University of Minnesota Genome
Center using the protocol specified by the manufacturer and the contractor. The resulting
microarray data were inspected for complete bisulfite conversion of the DNA, and average
beta values (i.e. average methylation) for each CpG residue were determined using the
GenomeStudio V2009.2; Methylation module Version 1.5.5., version 3.2 (Illumina, San
Diego). The resulting beta values were exported into Microsoft Excel and JMP (SAS
Institute, USA) for data analysis. The HumanMethylation450 BeadChip contains 485,577
probes that recognize at least 20216 unique features (i.e. potential transcripts). With respect
to this sample, >99.76 % of the 485,577 probes yielded statistically reliable data.
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Data Analysis

After logarithmic conversion, data were inspected for outliers or confounding by plate or
chip variables, and then the initial data analyses were conducted using genome wide t-tests.
Subsequently, beta values for each of the probes were aligned according to their physical
location and the data reanalyzed using paired t-tests over a 11-probe sliding window in order
to more adroitly capture methylation signatures over larger regions (Dindot and others 2009;
Farthing and others 2008). All genome wide comparisons were corrected for multiple
comparisons using the method of Benjamini and Hochberg(Benjamini and Hochberg 1995).
For select loci, data were analyzed with respect to alcohol use status using ANOVA (Fleiss
1981).

Pathway analysis of differentially methylated genes was conducted using GoMiner™ using
default settings (0.05 settings for reports and all gene ontology as the root category setting)

using the gene set specified in the text as the “changed” gene set (Zeeberg and others 2003).
All values reported include nominal and FDR (false discovery rate) corrected values.

Specific gRT-PCR Analysis of AHRR

The relative expression of the aryl hydrocarbon receptor repressor (AHRR) was determined
using primer probe sets from ABI, a Fluidigm BioMark™ System and proprietary BioMark
Real-Time Analysis software according to manufacturer's guidelines. Briefly, first, RNA
was converted to cDNA using an ABI cDNA archiving kit according to manufacturer’s
suggestions. Then after a brief pre-amplification step, each cDNA sample was amplified in
quadruplicate with using primer probes for AHRR (Hs01005075) and five housekeeping
genes (CALR, RPL7A, PRS19, RPS20 and UBC) obtained from Applied Biosystems
(Foster City, USA). The Ct counts exported to the database, normalized using the geometric
mean of five housekeeping genes, and then converted to Z scores for statistical analysis.

RESULTS

lowa Adoption Study Cohort

The demographic and clinical characteristics of the 165 female subjects whose genome wide
methylation status was assessed are shown in Table I. Overall, the subjects were largely
white and tended to be in their mid-to-late 40s. Consistent with enrichment of the sample for
the diathesis of substance use, the majority of the subjects in the study reported daily
smoking at some period of their lives (85 of 165). However, many of these individuals
(n=46) have quit smoking or were not smoking every day at the time of phlebotomy leaving
only 39 subjects reporting daily smoking (i.e. seven days per week every week) at the time
of phlebotomy. Because our prior studies have indicated that they methylation signature of
those subjects who had recently quit smoking is highly variable, those 46 individuals were
excluded from further study (Philibert and others 2010). The number of cigarettes smoked
daily by the 39 subjects who smoked daily varied from 4 to 40 with the average number of
cigarettes consumed daily being 19 cigarettes or about a pack per day for greater than 20
years. Cigarette smoking tended to be the only form of nicotine use currently being
manifested by these 39 subjects with none of the subjects reporting the concomitant use of
cigars, chew or other forms of nicotine usage in 2 weeks prior to assessment. There were no
significant differences between the three groups (current smokers, never smokers, non-daily
smokers/quitters) with respect to alcohol use in the past six months or age.

We contrasted the methylation values for the 39 smokers (average beta value 0.443) with the
values for the 80 non-smokers (average beta value 0.446) using single point genome wide t-
tests. The results of those analyses are shown in Table Il. As the table indicates, only one
probe, 914817490, which maps to intron 3 of the of the aryl hydrocarbon receptor repressor
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(AHRR) survived genome wide Benjamini-Hochberg correction for multiple comparisons.
However, it is interesting to note that 3 other probes from AHRR, cg05575921, cg14454127,
and cg03991871, were ranked among the top 13 probes and that none of them were from the
rather small promoter associated CpG island. Instead, all 4 of the top AHRR probes target
the gene body which contains three (>100 CpG residues) large CpG island according the
UCSC genome browser. Finally, we note that cg03636183, a probe that was reported by
Breitling and colleagues to be significantly associated with smoking status in lymphocyte
DNA (Breitling and others 2011), was also nominally associated (p<0.003; rank 802nd of
485577 probes; smoker average 0.67; non-smoker average 0.74) with smoking status in the
current study (Breitling and others 2011).

One possible concern is that some of the differential methylation signature could be
secondary to alcohol use. Therefore, even though there were no significant differences
between the rate of drinking for smoker and non-smoker groups, we analyzed the data for
alcohol-related changes. The relationship of methylation to alcohol intake over the past 6
months to the methylation at loci controlling for alcohol use status was examined. Only two
of the top 30 probes, cg07812589 and cg17231418, were even nominally related to amount
of alcohol intake in the past 6 months, both at a p-value of 0.04< x<0.05. Hence, there does
not appear to be any effect of alcohol intake on the methylation status at the most
differentially methylated loci (data available upon request).

Next, as part of our analyses, we conducted a sliding window analysis using an 11-probe
window and the same groups of case and control subjects. Table Il describes the result of
those analyses. The addition of the methylation data immediately flanking each probe
increased the overall significance of the findings with 36 comparisons surviving genome
wide correction. Not surprisingly, many of the top thirty probes from the analysis tended to
lie immediately adjacent to one another. Interestingly, despite the strength of four AHRR
probes in the single probe analyses, the gene region containing these probes, which is
interrogated by 149 separate markers, was not included in this list of top regions. Inspection
of this locus shows that differential methylation was largely confined to the 2 or 3 probe
windows surrounding each of these residues with each of these areas being several thousand
base pairs apart (Supplemental Table 1)..

Using GoMiner™, we conducted gene pathway analyses using the information from the 273
probes that were nominally differentially methylated at the p<0.001 level. Table IV shows
the top 30 most differentially methylated pathways. Overall, only one pathway, protein
kinase C (PKC) activity, survived false discovery rate (FDR) correction at the p<0.05 level.
However, a recurrent theme of differential methylation in gene pathways affecting ion
transport was found in many of the other less significant top thirty pathways.

Human Alveolar Macrophage Data

Because some may have concerns about the reliability of lymphoblast ability to model the
changes found in their cognate lymphocytes and other primary cell types, we repeated these
same case and control analyses using DNA from pulmonary alveolar macrophages again
using a case and control paradigm. The case macrophages were isolated from the lungs of 10
smokers with at least a 10 year history of > 1ppd smoking (6 male and 3 female) while the
control macrophage biomaterial set was isolated from 9 non-smokers (6 male and 4 female).
Although these two groups were roughly matched for ethnicity (smokers: 8 White, 2 African
Americans; non-smokers: 9 White), the control group was significantly younger than the
smoking group (smokers 31 + 3 yrs, non-smokers 40 + 4 yrs, p<0.01).

The results of the genome wide single probe contrasts are illustrated in Table V. Overall, the
effects of smoking were much more profound with 1381 probes surviving correction for
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genome wide comparison at a p<0.05 level. Of considerable interest given recent data
suggesting a prominent role for AHRR in carcinogenesis, 8 probes from AHRR, including
the 3" ranked probe, cg25648203, were significantly associated after correction for genome
wide comparisons. But of the top 4 AHRR probes from the lymphoblast analyses, only
cg05575921 was significantly associated after Bonferroni correction.

We next repeated the sliding window analyses for the macrophage data using the same
method delineated above. Once again, the results (see Table VI) were more robust than
those for the lymphoblast data with 40 eleven probe regions being significantly associated
after correction for multiple comparisons. Although many highly interesting genes were
once again implicated in this analysis, AHRR was once again notable with the 28 ranked
11 probe region being found in the body of the AHRR.

As a last part of our set of analyses with respect to the macrophage methylation data, we
repeated the GoMiner pathway analyses using the list of 1381 probes which were
significantly associated in the above analyses as our changed gene set. Table V11 shows
those results of those analyses. In brief, pathways involved with wound healing,
inflammation and G-protein/ras signaling were particularly prominent.

of Lymphoblast and Macrophage Data

In both the macrophage and lymphoblast analyses, probes from AHRR were repeatedly
associated with smoking status. Therefore, we compared the methylation signatures from
these two biomaterials with respect to smoking status. Supplemental Table | details the
average methylation and single point analyses for each of the 146 probes for the gene for
each biomaterial. In brief, 14 probes in the lymphoblast analyses and 40 of the probes in the
macrophage analyses were associated with smoking status at a p<0.05 with 8 of the 14
probes in the lymphoblast analyses also being nominally significantly associated with
smoking status in the macrophages with the direction of methylation being consistent at each
probe (greater methylation in smokers). The overall methylation signature between the
control lymphoblasts and macrophages at AHRR was highly correlated (r=0.95). Figure 1
illustrates the relationship between the differential methylation at each of the 146 residues
listed in Supplementary Table I for the lymphoblast and macrophage DNA samples. As the
figure shows, the differential methylation signature was also highly correlated across the
gene with over 20% of the differential methylation signature that was associated with
smoking status being shared between the two DNA sources (r=0.45; p<0.001).

An advantage of lymphoblasts is the ability to easily create high-quality RNA for gene
expression studies. Therefore, to determine whether this differential methylation had
functional consequences on lymphoblast gene expression, we then analyzed the relationship
between AHRR gene expression and methylation status at cg05575921, the AHRR probe
with the most consistent associations in the two analyses, using RNA prepared from the case
and control samples. Interestingly, increasing methylation at this probe was associated with
decreasing lymphoblast AHRR gene expression (p<0.03, n=108) which suggests that the
CpG residues in this region may have a functional in vivo role in regulating gene expression
at this locus.

DISCUSSION

In summary, we report that cigarette smoking is associated with significant changes in
genome wide methylation, and in particular, AHRR methylation, in DNA derived from
pulmonary alveolar macrophages and lymphoblasts. Strengths of this manuscript include
confirmation of the findings from lymphoblast DNA, which are immortalized lymphocytes,
with data from primary tissue from the lungs of smokers and the presentation of evidence

Am J Med Genet B Neuropsychiatr Genet. Author manuscript; available in PMC 2013 March 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Monick et al.

Page 7

that these changes at AHRR may be functional. Possible limitations include the relative poor
matching of the subjects who contributed lymphoblast and pulmonary macrophage DNA,
occasional mis-annotations in the probe descriptor files, possible unaccounted effects of
polymorphisms in the regions containing him the probes, and the fact that we did not verify
the results with bisulfite sequencing.

The most significant and consistent finding in the current study is with respect to AHRR
locus. AHHR is a feedback inhibition modulator of the aryl hydrocarbon receptor (AHR)
that exerts its effects by competing with AHR for binding with its cognate nuclear receptor
dimer partner (AHR nuclear translocator) or at xenobiotic response elements in AHR
regulated genes (Haarmann-Stemmann and others 2007). This feedback modulation plays a
pivotal role in AHR regulation and may be critical in moderating AHR role in oncogenesis
and altered immune function (Opitz and others 2011). Our finding of smoking associated
methylation at AHRR is highly plausible for several reasons. First and foremost, smoking is
the leading preventable cause of cancer. Hence, this association may explain part of the
connection. Second, the direction of the differential methylation was consistent among the 8
AHRR probes with nominal significance in both lymphoblast and macrophage comparisons
with a high degree of shared smoking associated differential methylation (see supplemental
table 1). Third, AHRR was the only gene locus that had significant localizations in both
studies after correction for multiple comparisons. Fourth, previous studies have shown that
smoking induces production of the AHR (Martey and others 2005; Meek and Finch 1999), a
process which is thought to be critical for certain forms of smoking related forms of
carcinogenesis (Andersson and others 2002; Gumus and others 2008; Shimizu and others
2000). Assuming that the decreased methylation at AHRR seen in smokers in the current
study may result from a feedback mechanism associated with smoking induction of AHR
transcription, the current findings are very consistent with previous findings and suggest
potential avenues for addressing AHR mediated neoplastic transformation. Unfortunately,
even given the promising gene expression findings, rigorous testing of this hypothesis may
be difficult because review of the Ensembl and University of Santa Clara (UCSC) genome
browser databases demonstrates the presence of three large CpG islands that are interspersed
throughout the gene and at least 11 AHRR transcripts, each of which codes for a differently
sized protein that may have unique competitive properties with respect to AHR. Hence,
while the current findings are encouraging, a more definitive understanding of relationship
between AHHR methylation and both AHRR gene expression and AHR function may
require more complex and detailed examination of this region.

The pathway analyses of the macrophage data were illuminating and consistent with our
understanding of the effects of smoking. The macrophage data was characterized by changes
in inflammation, wound healing and Ras/G-protein signaling pathways. The repeated
finding of altered methylation in Ras/G-protein signaling pathways seems logical since
activation of these proteins are thought to be part of the oncogenic process for many types of
cancers (Lewinski and Wojciechowska 2007; Tchevkina and others 2004). Similarly, the
recurrent identification of wound healing and inflammatory pathways seems logical since
smoking is the leading cause of Chronic Obstructive Pulmonary Disease (COPD), a
syndrome in which the vast morbidity of the pathology is secondary to inflammatory
moderated remodeling of the lung epithelium (Shapiro and Ingenito 2005). In contrast, the
results of the lymphoblast analyses were less robust with only two pathways, related to
peptidyl-threonine modification, surviving FDR correction. However, it is important to note
that while both pathways are closely related with the basis of their significance in our
analyses relying on the same five probes with the omission of one probe from either of these
comparisons would result in nonsignificant findings.
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The comparative weakness of the methylation findings in lymphoblasts as compared to
macrophages highlight the importance of incorporating studies of primary tissues directly
exposed to the substance in question. Overall, the smoking associated differential
methylation was markedly more pronounced in the alveolar macrophage DNA than in the
lymphoblast DNA. This is probably because circulating lymphocytes are less exposed to the
direct effects of smoke than the macrophages resident in the lung. During cell replication,
DNA methyltransferase 1 (DNMT1) stably copies cellular DNA methylation patterns
(Suzuki and Bird 2008). However, it is possible that our conversion of these same
lymphocytes into the transformed lymphoblast cell lines may further weaken the smoking
induced signal. The latter possibility needs to be considered because although lymphoblast
cell lines are excellent models of the lymphocytes from which they are derived, lymphoblast
lines are vulnerable to clonal selection artifacts and there are well documented differences
between lymphocyte and lymphoblast gene expression that occur as a function of EBV
mediated transformation (Grafodatskaya and others 2009; Rollins and others 2010).
Therefore, even though Vawter and colleagues have demonstrated that once transformed,
gene expression profiles of lymphoblasts are relatively stable (Rollins and others 2010), the
fact that the lymphoblasts by definition proliferate in non-smoking conditions, probably
impact the data. To certain a certain extent this makes sense, if exposure to smoke induces
an epigenetic change, the continued in vitro replication in the absence of smoking associated
chemicals may mute the findings. This supports the importance of examining primary cells
along with lymphoblasts.

It should also be recognized that most investigators, including Breitling and colleagues, use
Ficoll separated mononuclear cell pellets rather than purified lymphocytes(Breitling and
others 2011). Since these “lymphocyte pellets” contain a variety of cell types including B-
lymphocytes, T-lymphocytes, monocytes and Natural Killer T-cell, it may well be that use
of this heterogeneous cell mix may have obscured other potential findings which may
explain why Breitling and colleagues only identified one differentially methylated probe in
their study despite using a similar number of subjects.

Beyond the relative merits of lymphocyte and lymphoblast preparations, the current findings
suggest that the lymphoblast lines paired with primary pulmonary macrophages will be
useful in other investigations of the epigenetics of smoking because: 1) smoking has a broad
effect on tissues throughout the body including the blood, and 2) integration of histone
modification and gene expression status with DNA methylation status will require large
numbers of cells. Some types of histone modification examinations necessitate relatively
larger amounts of fresh cellular material. This suggests the utility of lymphoblasts in histone
modification studies. A clear picture of lymphoblast gene expression and DNA methylation
data relative to a primary smoking-relevant cell (alveolar macrophages) data will be needed
for these potential future studies. In this respect, our convergent finding in lymphocytes and
macrophages with respect to AHRR are reassuring.

One potential direction for future work is the determination of the specific AHRR transcripts
that are differentially affected by differential methylation. The Tagman™ gene expression
probe for AHRR used in this study (Hs01005075) recognizes the exon 3-4 exon boundary
that is included in most splice variants. However, given the numerous splice variants
produced by this gene, the epigenetic complexity of the gene (e.g. three large CpG islands
not associated with the promoter), and its putative role in oncogenesis, future studies that
examine specific splice variants altered by smoking is warranted.

The relationship of gene methylation to histone code modification should also be explored.
In particular, the relationship of H3K4 and H3K27 methylation and H3K27 acetylation to
AHRR gene expression should be examined because of the strong relationship of these
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modifications to gene expression (Heintzman and others 2009; Kharchenko and others).
Though DNA methylation is thought to have a weaker relationship to gene expression (Pai
and others 2011; Wu and others 2010), if we can establish a stronger understanding of the
histone-DNA modification relationship on a genome wide level, it well may be that we can
use DNA methylation at loci such as AHRR as a proxy for histone status, and thereby gene
expression status. Studies of DNA methylation are much cheaper and easier to conduct than
histone modification studies. A better understanding of the relationship of peripheral blood
methylation to methylation in other tissues, such as brain, may allow more informative
studies of the role of DNA methylation and other forms of epigenetic changes in normal and
disease related human development.

In summary, we report that cigarette smoking is associated with genome wide changes in
lymphoblast and pulmonary macrophage DNA methylation, in particular at AHRR. We
suggest replication and extension of the current findings and further investigations of the
role of epigenetic changes in smoking altered gene expression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table |

Clinical Characteristics of the 165 Female lowa Adoptions Studies Probands

Non-Smoker  Quit or Quitting

N 80 46
Age 46+ 8 47+8
Ethnicity

White 80 44

Other 0 4
Alcohol in Past 6 months

Yes 58 35

No 22 11

Daily Cigarette Usage

Daily Smoker
39
43+6

39
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