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Allelic association between pairs of loci is derived in terms of the
association probability r as a function of recombination u,
effective population size N, linear systematic pressure v, and
time t, predicting both rrt, the decrease of association from
founders and rct, the increase by genetic drift, with rt 5 rrt 1 rct.
These results conform to the Malecot equation, with time
replaced by distance on the genetic map, or on the physical map
if recombination in the region is uniform. Earlier evidence
suggested that r is less sensitive to variations in marker allele
frequencies than alternative metrics for which there is no
probability theory. This robustness is confirmed for six alterna-
tives in eight samples. In none of these 48 tests was the residual
variance as small as for r. Overall, efficiency was less than 80%
for all alternatives, and less than 30% for two of them. Efficiency
of alternatives did not increase when information was estimated
simultaneously. The swept radius within which substantial val-
ues of r are conserved lies between 385 and 893 kb, but
deviation of parameters between measures is enormously sig-
nificant. The large effort now being devoted to allelic associa-
tion has little value unless the r metric with the strongest
theoretical basis and least sensitivity to marker allele frequen-
cies is used for mapping of marker association and localization
of disease loci.

Dependence of alleles at two loci is called allelic associa-
tion, gametic association, or linkage disequilibrium (LD).

It has long been of interest for evolutionary genetics (1) and
now has become a focus for genetic epidemiology. Its appli-
cations include localizing genes of unknown sequence (posi-
tional cloning), determining whether a particular allele is
descended from a single founder (monophyletic), identifying
regions of unusually high or low association that may ref lect
variations in recombination or a selective sweep, and recog-
nizing effects of population structure and history. Many
metrics have been used for LD, for most of which there is no
genetic theory (2, 3). Some measure statistical significance and
are therefore sensitive to sample size. All metrics are sensitive
to variations in marker allele frequencies, and some are acutely
sensitive in comparisons of expected and simulated LD. This
variability has become increasingly important as many re-
searchers explore LD in different chromosome regions and
populations. Their observations are ineffectual unless they use
the metric with the strongest theoretical basis and least
sensitivity to marker allele frequencies. Fortunately, the two
optima coincide. Here we derive genetic and statistical theory
and examine the performance of alternative metrics on large
samples of random haplotypes.

Genetic Theory
Let the four haplotype frequencies in a random sample for two
diallelic loci, A and B, be arranged as in Table 1 with p11 p22
$ p12 p21, p12 # p21, and Q # R, 1 2 Q. These constraints can
always be satisfied by exchanging rows and columns. As QyR
decreases, the probability increases that A1 is the youngest
allele that by chance arose in a gamete carrying B1. Because pij

is a linear function of r $ 0, Table 1 may be written as a
commingling of two tables

rFQ 0
R 2 Q 1 2 RG 1 ~1 2 r!FQR Q~1 2 R!

~1 2 Q!R ~1 2 Q!~1 2 R!G
5 Fp11 p12

p21 p22
G [1]

with 0 # r # 1 defined as the association probability. Given
the observed haplotype frequencies, all other measures of
association are functions of Q, R, and r. Under certain
conditions to be examined, r is an estimate of the probability
that a random haplotype has descended without recombina-
tion from a founder population in which p12 was zero, whereas
the complementary class with frequency 1 2 r has undergone
at least one crossover between the loci and so the alleles are
independent. When r 5 0, there is linkage equilibrium. When
r 5 1, there is complete disequilibrium. However, this limit was
not reached for the founder population if the A1 B2 haplotype
was polyphyletic because of gene conversion, population ad-
mixture, or recurrent mutation.

Population genetics theory provides the expected association
rt in the tth generation after founders. Association between loci
plays the same role as identity by descent in kinship theory,
except that it deals with one gamete instead of two and the initial
value r0 need not be zero. For loci A and B, a random haplotype
in generation t is identical by descent from a specified haplotype
in t 2 1 with probability 1y2Nt21, where Ni is the effective
population size in the ith generation. In the complementary
event, the probability that a random haplotype in t 2 1 has
undergone no recombination since the founder generation is
rt21. Therefore the association probability is

rt 5 ~1 2 v!~1 2 u!F 1
2Nt 2 1

1 ~1 2 1y2Nt 2 1!rt 2 1G , [2]

where v is the linear pressure toward linkage equilibrium from
migration and mutation and u is the recombination frequency.
The role of N is to describe stochastic variation, and the role
of v is to ensure that over many generations the allele
frequencies remain realistically close to their present values.
This recurrence satisfies

rt 2 L 5 ~r0 2 L!~1 2 v!t~1 2 u!t P
i 5 0

t 2 1

~1 2 1y2Ni!

where L is the association as t 3 `.
As implied by Crow and Kimura (4), we may equate Pi50

t21

(1 2 1y2Ni) to e2t/2N, where N is the unknown effective size
over the unknown sequence N0, N1, . . . , Nt21. This is a
definition of N, not an approximation, and so the Ni may be
constant, randomly varying, exponentially increasing, or an
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arbitrary sequence, for a change in the order of the Ni does
not alter rt. Because t is large relative to v and u, we may take
(1 2 v)t (1 2 u)t 5 e2(v1u)t. Rearranging, we finally obtain

rt 5 rr t 1 rct

rr t 5 r0e2~1y2N 1 v 1 u!t [3]

rct 5 L@1 2 e2~1y2N 1 v 1 u!t#

where rrt is residual kinship that declines from r0 in founders,
and rct is the increasing kinship caused by drift from founders.
As t increases, rrt 3 0 and rct 3 L. If N is constant,

L 5
~1 2 v!~1 2 u!

2N 2 ~2N 2 1!~1 2 v!~1 2 u!

> 1y@1 1 2N~v 1 u!# for u 3 0 [4]

> 1y~1 1 2N! for u 5 1y2.

Whether N is constant, rt may be expressed as

rt 5 ~1 2 L!Me2ut 1 L [5]

where M 5 (r0 2 L)e2(v11/2N)ty(1 2 L).
The exponential term in M is nearly zero if v 1 1y2N ,, 1yt, and
then M 5 1 if r0 5 1. A value of M not significantly less than 1
is consistent with monophyletic inheritance and a relatively short
history. A value of M significantly less than 1 is evidence for r0
, 1, and in that sense for polyphyletic origin. Mutation and gene
conversion are not negligible over large t, and so polyphyletic
origin is likely for a common marker in a large population.

Most population genetics theory deals not with a single path
between generation t and the founders but with a double path
from founders to two gametes in t (e.g., ref. 4, equation 6.6.2).
Sved (5) derived a theory for kinship w, the probability that locus
B is identical by descent (ibd), conditional on ibd for locus A.
This double path replaces 1 2 u by (1 2 u)2, the term e2t/2N

remaining the same. For constant N, the limit of wt as t
approaches infinity is 1y(1 1 4Nu) for small u, and 1y(1 1 6N)
for u 5 1y2 (ref. 5, equations 6 and 7). Because kinship does not
have a simple relation to LD, we shall not pursue it.

Association as a function of time is not observable except in
replicate populations simulated over large t. The theory becomes
much more useful when time is transformed into distance along
the chromosome, replacing ut by «d where « is assumed constant
for a specified region and d is the distance between loci on the
genetic scale as centimorgans (cM) or on the physical scale as
kilobases (kb). The association at distance d is predicted as

rd 5 ~1 2 L!Me2«d 1 L, [6]

which is the Malecot equation for isolation by distance (ref. 6, p.
84; ref. 7, p. 75; and ref. 8, equation 3). Let z be the number of
distance units per morgan, or 100 if d is expressed in cM and the
genetic map is accurate. If the physical scale is used, distance is
more precise but proportionality of the genetic and physical
scales is assumed and the value of z is uncertain. The rule of
thumb that equates megabases (Mb) with cM predicts z 5 (100

cMymorgan) (1,000 kbyMb) 5 105 if z is expressed in kb, but
there is as much variability in z as in mutation rates. The
estimated duration is z« generations, and the swept radius over
which M is reduced by e21 and LD is useful for positional cloning
is 1y«. Whether the Malecot equation is expressed in terms of t,
cM, or kb, the L parameter predicts association between un-
linked loci, and so provides an efficient alternative to the
transmission disequilibrium test that requires family data and
makes no use of homozygous parents and their children (9).

The Malecot equation or other realistic model for LD has
several advantages. The parameters are meaningful and they
illuminate differences among populations and chromosome re-
gions. Oligogenes with effects on a particular phenotype large
enough to be detectable by current methods have a density less
than 1 per morgan. If the model is fitted to n markers in such a
large region to test the null hypothesis that « 5 0, there is no need
for a Bonferroni correction that would increase the critical
logarithm of odds (lod) from 3 to at least 3 1 log n if the markers
were tested individually (10). Therefore, testing each marker
individually has low efficiency by comparison with the Malecot
model.

Statistical Theory
An estimate ĉ of an association metric with expected value c has
an amount of information, Kc, that allows for simultaneous
estimation of Q and R but not for the evolutionary variance that
accumulated over time. If n independent samples are tested and
m parameters are estimated, the composite likelihood is exp
[2(i(ĉi 2 ci)2Kciy2], where the quadratic form has a xn2m

2

distribution under a true hypothesis. Several of the alternatives
to r are of the form c 5 DyC, where C is a function of Q and
R only and so C 5 ­Dy­c and Kc 5 C2KD. They include the
covariance D, the correlation r, the frequency difference f, and
the regression b (Table 2). Other alternatives to r are of a more
complicated form in which ­Dy­c is a function of D. Examples
of this class are D2yC, d, and the Yule (12) metric y (two or more
other symbols have been used for all these metrics). If c 5 D2yC,
then ­Dy­c 5 Cy2D, a function of association that is indeter-
minate under the null hypothesis. Therefore metrics like r2, r2,
and f2 should be avoided. The d metric approaches r as Q 3 0
and is invariant under case-control sampling. It is defined as d 5
up11 p22 2 p12 p21uyQ p22 5 Dy[Q (1 2 R 2 Q 1 RQ 1 D)]. The
efficiency of d relative to r decreases as Q increases. The
asymptotic standard error for ln(1 2 d) (11) implies Kd 5 0 if p21
5 0. For determinacy and comparability, we take D 5 Cc,
­Dy­c 5 C2y[C 2 D(­Cy­D)], and Kc 5 KD(­Dy­c)2. On the
null hypothesis, ­Dy­c 5 C, and x2 5 d2 Kd. Yule’s measure (12)
is y 5 (p11 p22 2 p12 p21)y(p11 p22 1 p12 p21) 5 Dy[2Q (1 2 Q)
R(1 2 R) 1 D (1 2 2Q)(1 2 2R) 1 2D2]. Yule (12) gave the
information in an expression that is quartic in y and goes to zero
if any of the pij is zero. This problem can be solved in the same
way as for d. Table 2 provides ĉ and Kc, distinguishing between
the predicted covariance D and its estimate D̂.

If there is no doubt about a candidate region, Kc should be
evaluated under the null hypothesis that D 5 0, but this is not
optimal once a candidate region has been demonstrated and the
goal is to obtain the most accurate estimates of the Malecot
parameters, perhaps including the location S of a gene affecting

Table 1. Haplotype frequencies in a random sample

Locus A

Locus B

Allele frequencyAllele 1 Allele 2

Allele 1 p11 5 Qr 1 QR(1 2 r) p12 5 (1 2 r)Q(1 2 R) Q 5 p11 1 p12

Allele 2 p21 5 (R 2 Q)r 1 R(1 2 Q)(1 2 r) p22 5 (1 2 R)r 1 (1 2 Q)(1 2 R)(1 2 r) 1 2 Q 5 p21 1 p22

Allele frequency R 5 p11 1 p21 1 2 R 5 p12 1 p22 1
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a quantitative trait or disease. Under H1, both c and Kc depend
on D. The ALLASS program has an option to estimate c and Kc

simultaneously (http:yycedar.genetics.soton.ac.ukypublicohtml).
We find that this refinement has little effect on estimates and
standard errors, and does not increase the relative efficiency of
alternatives to r0.

Under the Malecot model, as many as four parameters may be
estimated: M, L, «, and S, the location of a disease locus as a
function of distance (13). The most general model may be
rejected because of a type I error, significant evolutionary
variance, nonindependence of samples, variable recombination,
map error, or other departure from the model. Then subhypoth-
eses may be tested by using the quadratic form as an error sums
of squares with n 2 m degrees of freedom. The optimal metric
consistently minimizes the sums of squares. Because the opti-
mum is chosen on general considerations and not on the sample
in hand, confidence intervals are not invalidated by choice of an
extremum (14).

Materials and Methods
We applied these methods to several large samples of haplo-
types. Two studies observed X chromosomes in males, the other
inferred autosomal haplotypes. Ennis et al. (15) studied more
than 7,000 haplotypes for 8 markers in the FRAX region,
spanning 790 kb (1.36 cM) on chromosome Xq27–q28. They
include two trinucleotide repeats (FRAXA and FRAXE) that
were the focus of the study, 5 dinucleotide repeats (DXS548,
FRAXAC1, FRAXAC2, DXS1691, and DXS6687), and a single-
nucleotide polymorphism (SNP), ATL1. Nontransmitted haplo-
types in mothers of typed males were inferred, assuming no
crossover in transmission to the son. This assumption was
supported in pedigrees and has minimal error in mother–child
pairs. Pre- and full-mutation haplotypes and haplotypes identical
by descent from a pedigree founder were excluded to make the
gametes representative of the Wessex population. Each common
allele or set of alleles of similar size was tested against the other
markers to reduce the data to 2 3 2 tables by an algorithm that
works well with major loci (13, 16). Taillon-Miller et al. (17)
studied 39 SNPs in three populations: an outbred European
sample (CEPH) and the more isolated populations of Finland

and Sardinia. The SNPs were selectively in two small regions of
1 Mb in Xq25 and 340 kb in Xq28 that suggested strong LD.
Eaves et al. (18) reported 21 microsatellites in a 6.5-cM interval
on chromosome 18q31, with multiple alleles dichotomized
around their modes. Families in four populations were studied
(U.K., U.S.A., Finland, and Sardinia), yielding 800 unrelated
haplotypes for each. Although the families were selected through
insulin-dependent diabetes, the putative IDDM6 locus has a very
small relative risk and ascertainment bias was not evident in
comparison with affected family-based controls.

For each sample, we fitted the Malecot model with informa-
tion evaluated under the null hypothesis and then estimated
simultaneously. The general model for «, M, and L gives a
residual variance for testing the subhypothesis L 5 0, which was
often tenable over small intervals (,1 Mb). However, over much
larger intervals, L was significantly greater than zero, often far
too great to be attributed to a small effective population size and
almost entirely because of bias in estimating association, which
is constrained to be positive, because negative values have no
useful interpretation. The bias for c is approximately =2ypK,
where K is the mean information per marker pair. Because the
bias is relatively large when Kc is small, and Kc is proportional
to sample size, the small samples tolerated by coalescence theory
are unsatisfactory for allelic association. Ideally, L would be
estimated in each study as the mean association for pairs of
unlinked loci. All tests and standard errors are adjusted for the
residual variance when it exceeded 1. Efficiency of c relative to
r was estimated as the ratio of the residual variance for r to the
residual for c. Goodness of fit to association parameters was
determined by the x2 test. We analyzed r beginning with ML
estimates for c, giving 22 ln lk 5 A. Then we estimated M (if M̂ ,
1 for r) and L (if L̂ . 0 for r) to give 22 ln lk 5 B. Then, if the
joint ML estimates for r give 22 ln lk 5 C with k 5 n 2 m degrees
of freedom and Cyk . 1, we took (A 2 B)y(Cyk) as a x2 with 1
or 2 degrees of freedom testing goodness of fit of M, L, and (B 2
C)y(Cyk) as x1

2 for goodness of fit of «. These tests are conser-
vative, because they treat «̂, M̂, L̂ for r as parameters rather than
as estimates for a correlated trait in the same sample.

Results
Estimates of « for r range from 0.0011 to 0.0026, corresponding
to swept radii of 893 and 385 kb, respectively (Table 3). M is

Table 3. Estimates of parameters for association r under H0 (distance in kb)

Sample « s« M sM L sL 1y«, kb

Xq, Wessex 0.00238 0.00012 0.604 0.013 0 — 420
Xq, CEPH 0.00255 0.00027 0.793 0.041 0.1276 0.0067 392
Xq, Finland 0.00204 0.00022 0.782 0.039 0.1215 0.0083 490
Xq, Sardinia 0.00112 0.00031 0.675 0.026 0.1300 0.0578 893
18, U.K. 0.00253 0.00014 1 — 0.0342 0.0104 395
18, U.S.A. 0.00260 0.00014 1 — 0.0320 0.0095 385
18, Finland 0.00212 0.00012 1 — 0.0515 0.0118 472
18, Sardinia 0.00234 0.00013 1 — 0.0331 0.0103 427

Table 2. Measures of allelic association c in random haplotypes

Definition Symbol Estimate ĉ 5 D̂yC

Covariance D D̂ 5 up11p22 2 p12p21u
Association r D̂yQ(1 2 R)
Correlation r D̂y=Q(1 2 Q)R(1 2 R)
Regression b D̂yR(1 2 R)
Frequency difference f D̂yQ(1 2 Q)
Delta d D̂yQ(1 2 R 2 Q 1 RQ 1 D)
Yule y D̂y[2Q(1 2 Q)R(1 2 R) 1 D(1 2 2Q)(1 2 2R) 1 2D2]

D̂ is an estimate with expected value D and information KD.
KD 5 ny[Q(1 2 Q)R(1 2 R) 1 D(1 2 2Q)(1 2 2R) 2 D2] (ref. 34, equation 3.8).
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estimated to be 1 in the chromosome 18 sample of microsatel-
lites, which was dichotomized so as to conserve major modes and
is therefore nearly monophyletic. On the contrary, the FRAX
sample distinguished antimodal alleles that are known to be
polyphyletic, and this is reflected in the smallest estimate of M,
which has no genetic interpretation for metrics other than r.
Earlier work established that L is not significantly different from
zero in this 710-kb region (15). Estimates of L are greatest in
samples with small values of information, Kr.

The six measures alternative to r provide 48 tests in the eight
samples. In no case was the error variance as small as for r.
Efficiency relative to association is extremely low for D and b and
intermediate for r, corresponding to a loss of more than 20% of
the information for f, d, and y and more than 70% for D and b
(Table 4). This inefficiency was anticipated by the pilot study of
Collins et al. (19), which found a relative efficiency of less than
60% for r. Relative efficiency of alternatives to r is exceptionally
low in the FRAX sample from Wessex when information is
estimated under H1. Excluding this sample, there is little differ-
ence from the estimates under H0. Convergence under H1 is
slower and the estimates and their standard errors are robust.
This lack of improvement under H1 is not surprising, because the
evolutionary variance that exceeds the sampling variance is not
modeled. All these metrics are confounded seriously with the
gene frequencies Q and R (2). Devlin and Risch (3) simulated
case-control samples from a population with initial frequency
Q0 5 0.01. We take d as a benchmark, because this metric
approaches r as Q approaches 0 and is then a surrogate for r.
When the average variance among replicates within initial allele
frequencies is used, d has the highest efficiency, followed by
uD9umax, which equals r under random sampling but not in
case-control samples (13). Goodness of fit to association param-
eters under H0 is extremely poor (Table 5). Clearly, different
measures are not equivalent, either for estimates or for error
variances.

Discussion
Classical population genetics considered Dij for an arbitrarily
specified haplotype, ij. If pi, pj are the corresponding allele
frequencies, Dij lies in the 6 pi pj interval. Defined in this way,
Dij is as likely to be decreased as increased by genetic drift. This
model leads to Dt 5 (1 2 u)t D0, which approaches zero as t
increases, and does not attempt to explain the initial disequilib-
rium measured by Dt. The more perceptive geneticists recog-
nized that genetic drift during population contraction was a
likely cause, although selection and hybridization between pre-
viously isolated populations are not excluded. Hill and Robert-
son (20) remarked that ‘‘any restriction of population size may

cause disequilibrium as a result of genetic sampling, and the
return to equilibrium will be slow if the loci are tightly linked.’’
Sewall Wright (21) characteristically incorporated this reality
into his evolutionary theory:

This bottleneck effect is greatest in cases in which the
total population consists of small demes, each likely to
become extinct after a few generations but, if so, always
replaced sooner or later by a few stray migrants from
populations that have persisted. In this way, every deme
at any given time has a history of passage through a great
many bottlenecks of small numbers on being traced
back from place to place, and since a few momentarily
f lourishing demes may be the source from which many
new colonies are founded, large areas or even the whole
species may, in the course of time, trace to a single deme
that has passed through many bottlenecks. . . .

The expected value of Dt is D0 e2(1/2N1u)t in a closed population
without mutation (22). This forward equation encounters allele
fixation, which led Hill and Robertson (20) to conclude that the
expected value of Dt

2 reaches a maximum and then declines to 0.
Fixation is obviously irrelevant to a sample polymorphic in gener-
ation t, and Sved (5) noted that ‘‘the derivation of the recurrence
relation is a backward calculation, since the value of [LD] is
calculated conditional on the observed genotypic distribution in the
present generation.’’ Sved was able to show that genetic drift can
increase as well as decrease conditional identity by descent, which
traces back to the founders and down to the current generation.
This seminal result is not directly applicable to allelic association.
However, partition of association into a decreasing term (rrt) and
an increasing term (rct) is made plausible by abandoning Dij in favor
of the probability r, which in random samples for two diallelic loci
(but not for case-control samples) equals uD9ijumax, where Dij was
defined by Lewontin (23) as a maximum or minimum, without
implying a probability. Limitation of r to the 0, 1 interval has the
same effect as tracing a double path or taking E(Dij

2), introducing
a positive value of rct, as in Eq. 3. As with other evolutionary
processes, LD now is modeled as the outcome of stochastic and
systematic forces.

Whereas classical theory was preoccupied with change in time,
current interest lies in change with distance along the chromosome.
For the nominal equivalence of 1 cM to 1 Mb, nearly 700 gener-
ations (14,000 years) are required to go halfway to equilibrium at
100 kb (Table 6). For much smaller distances, the halfway time is
large relative to duration of our species. Therefore, equilibrium is
unlikely for distances less than 100 kb, and doubtful for greater
distances.

Table 4. Efficiency relative to association r

Source D r b f d y uD9umax

Devlin and Risch (3),* H0 — 0.417 — 0.389 1.000 0.793 0.822
Collins et al. (19), H0 — 0.576 — — — — —
This study, H0 0.262 0.481 0.277 0.773 0.786 0.665 —
This study, except Wessex 0.476 0.610 0.505 0.703 0.652 0.540 —
This study, H1 0.134 0.231 0.141 0.278 0.449 0.372 —
This study, except Wessex 0.466 0.571 0.490 0.642 0.757 0.623 —

*Case-control sampling.

Table 5. x2 goodness of fit to association parameters under H0

Source df D r b f d y

M, L 11 8961 2024 3841 2656 609 3025
« 8 48 32 87 32 170 316
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During the last 2 years, less parsimonious models have been
introduced, selecting the estimate that is closest to known
location (14, 24, 25). The overparametrized Bayesian variant (26)
uses a parameter termed ‘‘penetrance’’ that has no relation to
that genetic concept or other biological property. The propor-
tion 1 2 M of disease alleles not derived from the major founder
is miscalled penetrance, with the claim that ‘‘previous ap-
proaches fail to explicitly allow for this in their association
models.’’ The best estimates of location by these methods agree
with the Malecot model, but estimation with hindsight is not
feasible for an unknown location, and haplotype-based methods
are not applicable to genes with effects too small to be reliably
assigned to a haplotype.

Estimation of time back to founders is central to coalescence
theory but peripheral to allelic association. However, when time in
number of generation can be inferred correctly from other evi-
dence, it may be used in the Malecot model to estimate « as tyz,
where z is the number of distance units per morgan. If M 5 1 and
L 5 0, a single marker with association r to a disease locus provides
an estimate of distance as (2ln r̂)y«. For example, the DSTST locus
for diastrophic dysplasia was cloned positionally from this infor-
mation (27). Because the disease is distributed evenly in Finland
with a frequency of Q 5 0.008, it was assumed that the mutation was
present among the first Finnish settlers (t 5 100). The integrated
map available at that time, and currently, is consistent with z 5 105

kbymorgan and therefore with « 5 0.001. Association for restriction
fragment length polymorphisms within CSF1R increases toward the
centromere (28). The most proximal marker is EcoRI with r̂ 5 0.94,
about 64 kb away from the DSTST mutation with an error of about
8 kb. This precision was lucky, because the information about r
under H0 is Kr 5 x2yr̂2 5 268, and so the standard error is about

=1yKry«r̂ 5 65 kb. The Malecot model under these simplifying
assumptions is equivalent to the Luria–Delbruck model but is more
general. For example, the three points, BT1, CSF1RyEcoRI, and
CSF1RyTAGA, are consistent with « 5 0.001 and localize DSTST
88 kb proximal to the EcoRI marker with a standard error of 44 kb.
No method has been demonstrated to have higher power than the
association probability r under the Malecot model.

Turning now to marker 3 marker evidence, it is clear that most
genomic regions have swept radii much greater than the 3 kb
suggested by a recent simulation (29). Results in Table 3 are
consistent with other reports of significant disequilibrium extending
to several hundred kb (15, 19, 30–32). However, some small regions
have much less or greater LD, which may be caused by a recom-
bination hotspot, selection, or chance. Whatever the cause, an LD
map can make positional cloning more efficient by adjusting the
density of SNPs to be proportional to «. Each SNP has its own value
of «, estimated by fitting the Malecot equation to r for all pairs with
syntenic markers. Then, if two adjacent SNPs at distance d12 have
estimates «1, «2, their midpoint contributes [(«1 1 «2)](d12y2) to the
LD map, the midpoint of the «2, «3 pair at distance d23 contributes
[(«1 1 «2)](d12y2) 1 [(«2 1 «3)](d23y2), and so on. Collins et al. (33)
have shown how « estimated for each SNP delineates the same
transition from low to high LD in two populations, confirming the
reliability of this approach. Our evidence on relative efficiency of
association measures suggests that heterozygosity and other weakly
correlated surrogates will give less reliable estimates than r in this
application as in others.
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Table 6. Time to go halfway to equilibrium if u >> v 1 1y2N

Recombination, u cM Nominal kb Generations, t 5 (ln 2)yu Years, 20t

1026 0.0001 0.1 693,147 13,862,940
1025 0.001 1 69,315 1,386,294
1024 0.01 10 6,931 138,629
1023 0.1 100 693 13,863
1022 1 1,000 69 1,386
1021 10 10,000 7 139
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