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Abstract
Molecular biology and genomics have made notable strides in the sharing of primary data and
resources. In other domains of neuroscience research, however, there has been resistance to
adopting formalized strategies for data exchange, archiving, and availability. In this article, we
discuss how neuroscience domains might follow the lead of molecular biology on what has been
successful and what has failed in active data sharing. This considers not only the technical
challenges but also the sociological concerns in making it possible. Though, not a pain-free
process, with increased data availability, scientists from multiple fields can enjoy greater
opportunity for novel discoveries about the brain in health and disease.

“Pain shared is pain lessened; joy shared is joy increased. Thus we do refute
entropy.”

–Spider Robinson, The Callahan Chronicles.

Whether or not we can refute the effect of entropy, it is widely assumed that scientific data
are - like joy – an important thing to share. The ability to understand and even re-purpose
data from others can only increase the likelihood of novel scientific discovery. However, the
sharing of data does not come without some amount of pain. The question is whether
different fields of biomedical research can learn from one another on how to best share and,
thereby, lessen the pain of exchanging data.

Like many biomedical efforts, brain researchers routinely find themselves awash in a sea of
complex data (Miles 2001). Neuroscientists, in particular, actively leverage functional
genomics to study the brain, notably elements associated with spoken language (Oldham and
Geschwind 2006), polygenic disease (Konradi 2005), and the role of entire evolutionary
systems on the brain (Boguski and Jones 2004). More broadly, researchers use a range of
sophisticated technologies attempting to better understand the fundamental elements
comprising the multi-scale physiological basis of cognitive and behavioral processes of the
brain. For instance, the relatively new capabilities of advanced neuroimaging have created
the possibility of evaluating and predicting complex human behavior and disease in
unprecedented ways (Raichle 2003). Functional brain mapping studies have explored the
domain of cognitive function (D'Esposito 2000) and dysfunction in patient samples
(Laurens, Kiehl et al. 2005). More recently, diffusion tensor imaging (DTI) has enabled the
tracking in vivo of white matter fiber pathways (Basser and Jones 2002) (e.g. Fig. 1a). On a

Correspondence to: John Darrell Van Horn.

NIH Public Access
Author Manuscript
Neuroinformatics. Author manuscript; available in PMC 2012 April 4.

Published in final edited form as:
Neuroinformatics. 2008 ; 6(2): 117–121. doi:10.1007/s12021-008-9019-9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



smaller scale, single unit recording studies examine the behavior of individual neurons from
human (Hodaie, Cordella et al. 2006) and non-human (Walton, Bechara et al. 2007)
samples. Across domains in neuroscience, a greater dependence is being placed on acquiring
data in digital form, subjecting it to high-throughput analysis, and leveraging advanced
graphical techniques as aids in visualization. All these steps require considerable processing
power, storage, and rendering capability. Yet despite this amount of data and the different
forms of representing the information they contain, little is made publicly available for other
researchers to examine and explore (Kennedy 2003). Where neuroimaging data have been
made available to the community (Van Horn, Grafton et al. 2004), intriguing results have
been obtained when considered in new analytical light (Buckner, Snyder et al. 2000;
Greicius, Krasnow et al. 2003).

By contrast, in the field of molecular biology, microarray usage has expanded rapidly since
the mid-1990s, where applications include basic research, target discovery/selectivity,
biomarker determination, pharmacology, toxicology, the development of screening tests, and
disease-subclass determination (Butte 2002). The development of high-throughput gene and
microarray technology (Fig. 1b) and its applications in all facets of biology has been
considered as one of the great success stories in the scientific community (Hood 2003). For
example, public data repositories for microarray data (Parkinson, Kapushesky et al. 2007)
and the availability of efficient data analysis tools (a PubMed search for “microarray data
analysis tools” yields 327 articles) now mean that a generation of biological researchers are
exploring these rich resources without physically collecting the data which they are
studying.

To encourage greater data sharing and meta-data availability, the Society for Neuroscience
(SfN) has addressed the issue of sharing data head-on by hosting the PubMed Plus New
Directions in Publishing and Data Mining conference in St. Louis MO last June 18–19,
2007. The overarching goal of the SfN leadership was to explore methods for journals and
on-line neuroscience data repositories to operate more collaboratively and to facilitate more
effective data mining. Much of the discussion at this gathering of leading neuroscientists,
informaticists, and science publishers was focused on finding more convenient and effective
ways to share neuroscience data that cannot be adequately captured or represented in a
traditional publication. Of particular interest was the use of ontologies (Whetzel, Parkinson
et al. 2006; Thomas, Mi et al. 2007) and structured abstracts (Seringhaus and Gerstein 2007)
to describe how experiments were designed, executed, and to highlight major conclusions.
Since these new means for description are currently the subjects of a great deal of work and
debate in biology, it seems likely that the neuroscience field can take advantage of the
resulting tools and experiences. However, many attendees also expressed deep concern
about whether the neuroscience community can make the sociological changes needed to
either share data or to use tools and resources developed elsewhere. The meeting encouraged
the development of a SfN Meta-Data Task Force to begin examining more closely how to
encourage authors to provide more detailed information concerning study methods and
materials. They also examined how best to link this information to formalized
nomenclatures and online resources to further enrich these published studies. These
developments suggest that, in fact, the neuroscience community as a whole is in an excellent
position to 1) carefully examine the experiences of other disciplines so as to more quickly
enjoy the benefits that can come from the sharing of primary and meta- data, and 2) to then
act on what they learn to help neuroscientists in the field make the most from these rich
sources of information. The experience of the genomics and microarray communities
provide examples of where one might start.

To accommodate genomic and microarray data, biologists have worked closely with
computer scientists to develop standards and tools to formalize and facilitate data sharing.

Van Horn and Ball Page 2

Neuroinformatics. Author manuscript; available in PMC 2012 April 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The most successful example is the Gene Ontology (GO) project -- a collaborative effort to
provide consistent descriptions of gene products in different databases (Ashburner, Ball et
al. 2000; Harris, Clark et al. 2004). In addition, the MGED (Microarray Gene Expression
Data) society has encouraged the adoption and use of concise data standards in order to
promote data sharing and longevity, notably the Minimum Information About Microarray
Experiments (MIAME) specification for the types of information that should be available
(Brazma, Hingamp et al. 2001), the MAGE object model that specifies a format for
exchanging data (Spellman, Miller et al. 2002) and the MGED Ontology that provides terms
for annotating microarray experiments (Whetzel, Parkinson et al. 2006). While the
microarray standards have provided a structure to formalize the description of microarray
studies, they have not to date achieved the same widespread adoption as GO. Yet, interest is
growing towards having a collection of highly focused and efficient standards for multiple
forms of biological data that can link information across domains, thereby making it easier
to see relationships that would have been difficult to examine otherwise. Efficient data
standards can enable the formulation of testable predictions that lead to additional empirical
investigation, testing, and assessment of disease.

While the genomics community has been proactive in building data sharing infrastructure
(in terms of data standards and data repositories), neuroscientists have remained skeptical to
the value of formalized standards and open data archives. This attitude persists despite a
variety of brain-specific databases that have been created for this purpose (e.g. The SfN
Neuroscience Database Gateway, http://www.sfn.org/index.cfm?pagename=NDG_main).
Many of these resources contain data from published articles that can be re-used to evaluate
new methods, confirm reported findings, or that can be combined in unique ways. For
genomics, the situation is slightly mitigated by the ability to divide up the problem, with
researchers agreeing to work on the pieces, share results, thereby working jointly to map the
genes on a chromosome. However, buy-in to neuroscience database submission has been
hard to achieve with many brain scientists expressing apprehension to data sharing efforts
largely concerning being scooped on some un-recognized result present in their own data
(Koslow 2000). In a field where the currency of merit is not how widely one’s data are being
shared but how many papers can be written about each dataset, it should be no surprise that
most neuroscientists have been resistant to pleas to share data.

In only the past few years have such data standards concepts began to appear for other
neuroscience domains. For instance, several standards for the efficient description of
neuroimaging studies (Keator, Gadde et al. 2006; Marcus, Olsen et al. 2007) have been put
forward, accommodating analysis annotations, activation threshold parameters, clustering
and voxel-level statistics. Neuroimaging file formats such as NIfTI
(http://nifti.nimh.nih.gov/) have been devised to make tools and data more interoperable.
Sophisticated informatics tools such as the LONI Pipeline (http://pipeline.loni.ucla.edu) help
to capture the manner in which data have been processed that can be stored and exchanged
between investigators. In particular, this documents the workflow provenance of data and
records the computational processing tools applied to them. Though not traditionally thought
of as integral to the final data analysis process, such factors associated with how the data
were treated can have profound effects on reported findings (Lukic, Wernick et al. 2002).

The interest in the application of standards to describe experimental data can, however, be a
source of some pain for biomedical researchers (Ball 2006). Ontologies (i.e. formal
hierarchical frameworks used to describe experiments) and data standards require two
minimal characteristics: they must be useful and they must be used. The development of
ontologies has an appeal for the biological sciences, especially neuroscience, in being able to
related disparate information across spatial, temporal, and paradigmatic scales while fully
leveraging the emerging Semantic Web (http://sciencecommons.org/projects/data/, for
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example) in which the context of the data is its principle attribute. Unlike the genomics
community’s GO, neuro-ontologies and standards describing experimental details and
conclusions are not necessarily user-friendly and so have not been widely adopted. We do
not doubt, however, that efficient meta-data frameworks for neuroscience are achievable
with the careful consideration of the needs of the users they are meant to serve. With these
standards in hand, researchers will be able to efficiently describe their research findings so
that others may be better able to examine, combine, and re-use these data beyond their
original scope.

The sociological process of acceptance of data sharing is of particular interest for other
fields wishing to begin their own data sharing efforts in earnest. While it certainly appears to
many as if the genetics community adopted data sharing willingly and easily overnight, it
wasn’t always so. Intellectual property concerns (Chokshi, Parker et al. 2006) and research
priority (Marshall 2002) have been widely debated, as well as what rules the research
community should follow when sharing (Roberts 2002). There are examples where DNA
sequence information from some studies had failed to be made available at all via GenBank
(Noor, Zimmerman et al. 2006). Competitiveness between databases and the reliability of
some data has led to a few squabbles (Soldatova and King 2005; Shields 2006). Willingness
to share data has often been inversely related to how difficult that data was to acquire or
analyze. The funding road has not always been smooth -- The Protein Data Bank (PDB), for
instance, was founded in the 1970’s and struggled to stay afloat through many challenges
only to now be considered the primary repository for protein structure data (Berman,
Battistuz et al. 2002). When new interpretations of these genomic data began to appear in
leading journals, the excitement was such that new domains of science were born that before
did not exist -- notably the relatively new discipline of systems biology (Hood 2003). In
time, many of the concerns over these aspects of data sharing have died down and the
concept has gained acceptance as the benefits have become clearer. This movement toward
digital biology and chemistry owes itself to achievements in organizing study data, in
persevering through hard times, and in making the data widely available to all of those who
can use it to conduct novel science.

For many brain researchers, determining the biological value of these ever-growing
collections of data has, indeed, become one of their greatest challenges. Funding ways to
accommodate this ever growing amount of brain data has required special consideration for
infrastructure, database construction, privacy concerns, and user access (Ascoli, De Schutter
et al. 2003). Despite support for data sharing and public archiving from the SfN, the
International Neuroinformatics Coordinating Facility (INCF), and other major scientific
bodies, the unclear directions for NIH funding, of particular concern to the biomedical
research community (Mitka 2007), has been especially disruptive for those interested in
informatics for the brain (Bloom 2006; De Schutter, Ascoli et al. 2006; Gazzaniga, Van
Horn et al. 2006). In order to maximize efforts, data sharing projects in molecular biology
and from neuroscience must learn from each other in terms of what has worked as well as
what has failed and exchange ideas for gaining acceptance with a busy and skeptical
community. This can occur more rapidly if journals call for deposition of primary data into
recognized archives as a condition of publication; if scientific societies demand greater
openness in scientific exchange; and, if data standards and useful software tools exist
explicitly for these purposes. These are painful ideas for some. Yet, only through the sharing
of this pain can uncertainty be reduced as we move toward a time when more data are
obtained digitally and expectations increase over its online availability under new models
for scientific publishing.

There is much to be taken from the intra-disciplinary experiences of the brain science
community in organizing data, sharing, and developing tools for its efficient analysis.

Van Horn and Ball Page 4

Neuroinformatics. Author manuscript; available in PMC 2012 April 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Examination of what has worked for one domain can be educational for another - leading to
brand new disciplines within neuroscience. With prompting and support from leading
societies, encouragement from government funders, and general interest in managing their
extensive collections of information, brain scientists might readily overcome disorder and
benefit from freely shared meta- and primary neuroscience data. Through cross-disciplinary
discussion and interactivity, perhaps then the entropy associated with the collecting of large
digital datasets on brain form and function can, indeed, be refuted – or most certainly
reduced – easing the way toward new and joyous neuroscientific discoveries.
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Figure 1. To share or not to share?
Neuroscience data is obtained in many forms - some are obtained using modern in vivo
neuroimaging techniques to examine brain function or structure (1a), while some form are
obtained from biological tissue samples to derive DNA sequences or gene expression
profiles (1b). In the end, these data are represented as digital information, either as text,
images, image volumes, time series, etc. Once they are digital, why not share them so that
others might benefit from the information they contain? In this figure one might ask is one
domain of more shareable than the other? Factors underlying the willingness of
investigators to share their data include how difficult or costly the digital information was to
obtain, a lack of efficient standards for data exchange, fear of being “scooped”, the overall
amount of data to be shared, concerns over patient privacy, as well as the seniority of the
investigator. Such factors can be difficult to quantify or overcome. But if they can be
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systematically surmounted with support from leading scientific organizations and
government agencies then neuroscience will be enriched and new discoveries may be closer
at hand. 1a) Diffusion tensor imaging (DTI; Philips 3.0 Tesla, 8-channel SENSE head coil,
32-gradient directions) white matter fiber tractography as determined via streamline
projections along image voxels with maximal directional preference. Color denotes fiber
orientation: Red=Left-to-Right, Green= anterior-posterior, and Blue=Inferior-to-Superior.
1b) A microarray segment from the frontal cortex chosen from the Stanford Microarray
Database (SMD; http://genome-www5.stanford.edu): Experiment = 27745, SlideName =
shcg212, Experiment = ”Brain(frontal)”, Category = Normal Tissue, Subcategory = Brain,
Experimenter = JJUNKERM, ExptDate = 2002-04-16.
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