
Population Based Analysis of Directional Information in Serial
Deformation Tensor Morphometry

Colin Studholme1,2 and Valerie Cardenas1,2

Colin Studholme: colin.studholme@ieee.org
1Department of Radiiology, University of California San Francisco, U.S.A
2Northern California Institute for Research and Education, VAMC San Francisco

Abstract
Deformation morphometry provides a sensitive approach to detecting and mapping subtle volume
changes in the brain. Population based analyses of this data have been used successfully to detect
characteristic changes in different neurodegenerative conditions. However, most studies have been
limited to statistical mapping of the scalar volume change at each point in the brain, by evaluating
the determinant of the Jacobian of the deformation field. In this paper we describe an approach to
spatial normalisation and analysis of the full deformation tensor. The approach employs a spatial
relocation and reorientation of tensors of each subject. Using the assumption of small changes, we
use a linear modeling of effects of clinical variables on each deformation tensor component across
a population. We illustrate the use of this approach by examining the pattern of significance and
orientation of the volume change effects in recovery from alcohol abuse. Results show new local
structure which was not apparent in the analysis of scalar volume changes.

1 Introduction
Repeated structural magnetic resonance imaging (MRI) of the brain [1], when combined
with image analysis tools, is an increasingly useful tool in the study of neurodegenerative
conditions [2–8, 17]. In particular, non-rigid registration based methods have been
developed to map subtle geometric changes in brain anatomy, and separate true volume
changes from local tissue displacements [17]. This is important in both brain development
and degeneration where volume change is a key physical property of interest, whereas
displacements of tissue may only be a secondary surrogate marker of tissue integrity change
and collapse. In this paper we are interested in studying common patterns of volume change
across a population by using accurate spatial normalisation to bring individual volume
change maps into a common space. Previous studies have focused on examining the
determinant of the deformation tensor at each point, which provides a scalar measure
summarizing change. Such scalar data can be evaluated using univariate voxelwise
statistical parametric mapping [10] to examine the relationship between local atrophy rate
and variables of interest (such as diagnosis) together with other confounding variables (such
as age).

Critically, these studies cannot reveal orientation specific characteristics in the pattern of
volume changes and their relationship to clinical variables. For example: whether
contractions associated with a particular anatomical region in a clinical condition are
predominantly anterior-posterior or medial-lateral. Such characteristics may reveal changes
that are related to underlying tissue properties, and on a more basic level, they may be
important from a purely signal detection view point. For example: in regions where volume
changes at a given point in anatomy are only well defined in one axis and are poorly defined
in other directions, the determinant of the deformation tensor may be corrupted by the noise

NIH Public Access
Author Manuscript
Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2012 April 4.

Published in final edited form as:
Med Image Comput Comput Assist Interv. 2007 ; 10(Pt 2): 311–318.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



from the poorly defined directions. This may reduce the strength of the statistical
relationship with clinical variables of interest. Thus, looking at modeling specific orientation
components of the deformation tensor may provide a more sensitive correlation with clinical
variables of interest.

In this paper we describe the basic steps used to form a multivariate linear model of the
elements of the deformation tensor of anatomical change, and their relationship to clinical
variables across a population of subjects. This analysis includes the process of re-orienting
each subject’s deformation change tensor into a common space and then building a
statistical model of the relationship between clinical variables and the elements of the
deformation tensor matrix at each voxel.

2 Method
2.1 The Deformation Tensor of Anatomical Change

Given a pair of images of a subject n, using a fluid registration algorithm, we can estimate a
transformation TΔn(xn) = x + u(xn) that captures the anatomical changes from the earlier to
the later time point. The volume changes at a given location can then be characterized by the
deformation tensor [11–13]:

(1)

where the transformed coordinates at the second time point are:

(2)

This Jacobian can be normalised by the scan interval  to give the rate of deformation
over time in studies where the interval varies between subjects. For a population of subjects,
we can also estimate a transformation TRn(xR) which maps from a location xR in a reference
anatomy to the first time point for each subject, as illustrated in figure 1. To analyze the
deformation tensor matrix (1) describing the change in individual subjects in a common
reference coordinate system, we need to both spatially relocate and reorient JΔn(xn into the
reference coordinate system. Reorientation of the tensor from a locally affine transformation
is achieved by using information provided by the deformation tensor of the spatially

normalizing transformation, TRn, denoted by . We can follow a similar
approach to the analysis of diffusion tensor image data [14] and apply a normalisation
transformation matrix S to the subject change tensor JΔn(xn):

(3)

The required form of this normalisation transformation is influenced by our interests in
analyzing the pointwise volume change rate across subjects. If S is a full affine
transformation, then it will account for changes in the relative size and shape of this element
of anatomy when mapping from reference to subject space. Thus, for a subject with a
temporal lobe which is twice a big as another subject, their atrophy rate will be increased by
a factor of two when mapping the change deformations into the reference space. Here we are
interested only in the pointwise rate of change of a given tissue. i.e. we are investigating the
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equivalent rate of expansion of a tissue element at xR across different subjects. We thus use
the rigid components of the local deformation given by the decomposition [15]:

(4)

This locally describes the reorientation of an element of tissue from the reference
coordinates to the subject coordinates, without changing its local shape or size. To bring the
subject change tensor back into the coordinate system of the reference anatomy we therefore
set S(xR) = R(xR)−1 and apply equation (3). In terms of common reference anatomy
coordinates xR, the deformation matrix JΔn for subject n, in reference coordinates is then:

(5)

2.2 Modeling of Differences in the Deformation Tensor Components
After spatial normalisation, we have a set of maps of deformation tensor matrices, the
elements of which describe the rates of contraction or expansion of points of tissue in each
of the three axes with respect to the three axes in the reference anatomy. We want to
examine whether there is a relationship between one or more of these directions of volume
change and variables of interest related to each subject (such as age or clinical criteria). This
can be explored using a multivariate general linear model such that at a given voxel:

(6)

where Y(xR) are the deformation parameters at each voxel, XR are the clinical variables
associated with each subject, B(xR) are the parameters to be estimated, determining the
strength of the linear relationships, and U are the errors. Here, in general, there are n
subjects, 9 deformation variables at each voxel (the elements of the 3 × 3 deformation
tensor) and p numbers of parameters to estimate. We form matrix Y from the elements of the
spatially normalized Jacobian matrix, from each subject. The right hand side of the equation
is conventionally divided into the variable of interest and the p′ = p − 1 confounding
variables such that:

(7)

Standard linear least squares methods are used to solve for B(xR) of the full model and B2xR
of the reduced model. Statistical inference on B is obtained by computing the Wilks Λ test
statistic, where Λ is the determinant of the error sum of squares and products of the full
model divided by determinant of the error sum of squares and products of the reduced model
[13]. Significance and p-values are based on transforming Λ to an approximate F statistics
using Rao’s approximation [16].

The final estimated model B for each voxel consists of matrix for each model parameter
(age, grouping and offset). Each of these matrices holds the estimate of the increase or
decrease of the rate of contraction or expansion, in elements of (1) associated with a subject
variable X.

2.3 Implementation and Reduction of Spatial Normalisation Variance
For this work we have used a robust fluid based non rigid registration to map changes over
time in each subject dataset [17]. The derivatives of this deformation field were then
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evaluated using finite differences in the coordinate system of each subject’s first time point.
We then employed a fine scale B-Spline based spatial normalisation [18] regularized to
prevent folding, to estimate a mapping between a single subject reference brain and the first
time point scans of each individual. This deformation field, parameterized using a 1.8mm
regular B-Spline lattice, was converted to a voxel displacement field and local derivatives of
this were then evaluated using finite differences. One of the key factors in the population
based analysis is the spatial normalisation step. The transformation between subject
anatomies for spatial normalisation can be ill defined in many regions. Critically, in regions
of uniform tissue (for example in uniform white matter), the local orientation may be poorly
defined. In our orientation based analysis this can introduce significant unwanted variance
into the serial deformation tensor morphometry data (derived from within subject
registration). We have therefore used a pre-filtering step on the deformation field, using a
Gaussian kernel applied to the three directional components just prior to calculation of the
derviatives used to form JRn. (we note that this does not influence the spatial location since
that uses the unfiltered deformation field). In this initial work we choose a filter size
experimentally to reduce orientation variance and improve the final quality of the fitting.

2.4 Application to the Study of Recovery from Alcoholism
We applied the analysis to a study of brain volume changes in alcohol abuse and recovery.
The data consisted of 24 pairs of high resolution T1W MPRAGE MRI scans of a group of
subjects recovering from alcohol abuse, imaged using a 1.5T MRI scanner. The subjects
were imaged twice, approximately 8 months apart. The baseline study was conducted within
a week of entering treatment for alcoholism. The 24 subjects were divided into 16 consistent
abstainers (188 ± 66 days since last drink), and 8 relapsers (8 ± 6) days since last drink) who
failed to abstain from alcohol. Collectively they had a mean age of 48 years. We analyzed
the data using deformation tensor morphometry and formed a voxelwise multivariate
analysis with the grouping as the variable of interest, and age as a covariate.

3 Results
Figure 2 shows a comparison of F statistic maps of the relationship between the grouping
(abstainer vs relapser) to the deformation parameters: using the Jacobian determinant
(scalar) and the full deformation tensor. Larger areas of improved model fitting are shown
for the model containing directional information. Figure 3 shows the corresponding maps of
the estimated group effect for the scalar determinant model and the direction effects. For the
directional effects, differing directional patterns of volume change are revealed in the deeper
white matter and sub-cortical grey matter structures.

4 Discussion
We have described an approach to population based analysis of directional information in
deformation tensor morphometry data from multi-subject serial MRI studies. The approach
takes into account the reorientation of deformation tensors evaluated in subject coordinates
and maps them into a common space for analysis. We then employ a multivariate linear
model to examine relationships between clinical variables and directional volume changes.
One step in this process is to transform deformation tensors to a common coordinate system.
We use approaches derived from the transformation and analysis of diffusion tensor data.
An alternative for this step is to examine the transformation of the underlying deformation
fields as in [19]. However we have focussed on the deformation tensor because of the
underlying interest in volume changes, rather than displacements.

By using directional information about the volume changes over time, we may reveal
additional relationships with underlying tissue properties, and additionally provide an

Studholme and Cardenas Page 4

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2012 April 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



improved model fitting in regions of anatomy for which volume changes are poorly
constrained, because of anatomical structure, in one or more axes. Preliminary results on an
imaging study of brain changes in recovering alcoholics show both improved significance of
model fits and the ability to reveal hidden directional characteristics in the volume changes
over time. It is also not clear for which clinical applications this methodology will be most
useful: it will certainly depend on the disease being studied and how it influences brain
tissue. Our aim in this paper is simply to present the methodology. Further work is underway
to examine how these directional patterns relate to the shape of regional brain anatomy and
to any underlying tissue properties.
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Fig. 1.
Using non-rigid registration to capture local shape differences between subjects from the
transformations TRn. To examine common patterns across subjects, maps of shape measures
derived from these transformations may be transformed and compared in the common
anatomical space.
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Fig. 2.
A comparison of the voxel F statistics showing the local quality of fits for conventional
analyses using the scalar Jacobian determinant (bottom row) and the individual Jacobian
matrix elements (top row).
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Fig. 3.
(a) A comparison of the effect maps for the difference between groups (abstainers vs
relapsers) for the scalar volume change maps (bottom) and the directional models (top).
Directional effects are shown by three effect vectors whose length indicates the relative size
of the effect and the colour indicates direction of effect. Enlargements of an area are shown
for one slice in (b) and (c).
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