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Abstract

Background—Annuloplasty ring or band implantation during surgical mitral valve repair
perturbs mitral annular dimensions, dynamics and shape, which have been associated with changes
in anterior mitral leaflet (AML) strain patterns and suboptimal long-term repair durability. We
hypothesized that rigid rings with non-physiological 3-D shapes, but not saddle-shaped rigid rings
or flexible bands, increase AML strains.

Methods and Results—Sheep had 23 radiopaque markers inserted: 7 along the anterior mitral
annulus and 16 equally spaced on the AML. True-sized Edwards Cosgrove flexible, partial band
(COS, n=12), rigid, complete St. Jude saddle-shaped annuloplasty ring (RSAR, n=12), Carpentier-
Edwards Physio (PHYSIO, n=12), Edwards IMR ETlogix (ETL, n=11) and Edwards GeoForm
(GEO, n=12) annuloplasty rings were implanted in a releasable fashion. Under acute open-chest
conditions, four-dimensional marker coordinates were obtained using biplane videofluoroscopy
along with hemodynamic parameters with the ring inserted and after release. Marker coordinates
were triangulated and the largest maximum principal AML strains were determined during
isovolumetric relaxation (IVR). No relevant changes in hemodynamics occurred. Compared to the
respective Control state, strains increased significantly with RSAR, PHYSIO, ETL and GEO
(0.14+0.05 vs. 0.16+0.05, p=0.024, 0.15+0.03 vs. 0.18+0.04, p=0.020, 0.11+0.05 vs. 0.14+0.05,
p=0.042 and 0.13+0.05 vs. 0.16+0.05, p=0.009), but not with COS (0.15+0.05 vs.
0.15+0.04,p=0.973).

Conclusions—Regardless of 3-D shape, rigid, complete annuloplasty rings, but not a flexible,
partial band, increased AML strains in the normal beating ovine heart. Clinical studies are needed
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to determine if annuloplasty rings affect AML strains in patients, and, if so, whether ring-induced
perturbations in leaflet strain states are linked to repair failure.
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INTRODUCTION

METHODS

Surgical mitral valve repair most commonly includes the insertion of an annuloplasty band
or ring. While bands are flexible devices that spare the anterior, fibrous portion of the mitral
annulus, rings encircle the entire annulus and may be either flexible, semi-rigid or rigid.
Rigid rings are available in various shapes. The most commonly used ring (Carpentier-
Edwards Physio) is flat, semi-rigid and D-shaped. Recently, saddle shaped, rigid, complete
annuloplasty rings have been introduced (e.g. Saint Jude Medical RSAR, Medtronic Profile
3-D or Carpentier-Edwards Physio 1) in order to account for the physiological 3-D shape of
the mitral annulus [1, 2]. Furthermore, rigid rings with non-physiological shapes and
dimensions have been designed specifically for patients with functional/ischemic mitral
regurgitation (e.g. Edwards GeoForm and IMR ETLogix). These rings aim to counteract the
main determinants of functional/ischemic mitral regurgitation (i.e. mitral annular dilatation,
left ventricular (LV) dilatation and papillary muscle displacement) on an annular level via
their specific designs, all of which include disproportionate annular septal-lateral
downsizing [3]. While some studies demonstrate that such rings may reduce mitral leaflet
strains in the diseased heart [4], other studies suggest that, by perturbing the natural mitral
annular saddle-shape, disease-specific or non-physiologically shaped rings may increase
leaflet strains in the normal heart [5-7]. Due to these results from in vitro measurements the
authors speculate that such perturbations in mitral leaflet strain patterns could be associated
with impaired long-term results after mitral valve repair [5-7]. Our goal was, therefore, to
assess the effects of one flexible partial band and four different, complete annuloplasty rings
on anterior mitral leaflet strains in healthy, beating ovine hearts. We tested the hypothesis
that rigid, complete rings with non-physiological 3-D shapes, but not saddle-shaped rigid
rings or flexible partial bands, increase maximum principal strains across the anterior mitral
leaflet.

All animals received humane care in compliance with the Principles of Laboratory Animal
Care formulated by the National Society for Medical Research and the Guide for Care and
Use of Laboratory Animals prepared by the National Academy of Sciences and published by
the National Institutes of Health (DHEW [NIH] Publication 85 to 23, revised 1985). This
study was approved by the Stanford Medical Center Laboratory Research Animal Review
Committee and conducted according to Stanford University policy.

Surgical Preparation

Fifty nine adult, Dorsett-hybrid, male sheep (49+5kg) were premedicated with ketamine
(25mg/kg intramuscularly), anesthetized with sodium thiopental (6.8mg/kg intravenously),
intubated and mechanically ventilated with inhalational isoflurane (1.0-2.5%). A left
thoracotomy was performed and the heart was suspended in a pericardial cradle. Thirteen
miniature radiopaque tantalum markers were surgically implanted into the sub-epicardium to
silhouette the LV chamber at the intersections of two longitudinal and three crosswise
meridians as shown in Figure 1A. Using cardiopulmonary bypass and cardioplegic arrest a
total of 33 radiopaque tantalum markers were sewn to the following sites (Figure 1B): 16
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around the mitral annulus (17-32, Fig 2A, B), 16 equally spaced on the atrial aspect of the
anterior mitral leaflet (AML, 1-16, Fig 2B) and 1 on the central edge of the middle scallop
of the posterior mitral leaflet (PML, 33, Fig 2B). A single tantalum loop (0.6mm ID, 1.1mm
OD, 3.2 mg) was used for each leaflet marker.

After marker placement, five different annuloplasty ring models, the Cosgrove-Edwards
band (COS, Edwards Lifesciences, Irvine, CA, USA, n=12), St. Jude Medical rigid saddle
ring (RSAR, St. Jude Medical Inc, St. Paul, MN, USA, n=12), Carpentier-Edwards Physio
(PHYSIO, n=12), Edwards IMR ETlogix (ETL, n=11) and Edwards GeoForm (GEO, n=12,
all three Edwards Lifesciences, Irvine, CA, USA) were implanted in a releasable fashion as
described earlier [8]. In brief, the annuloplasty devices were prepared before the operation in
the following manner: The middle parts of eight double-armed polyester braided sutures
were stitched evenly spaced around the ring or band from the bottom to the top side using a
“spring eye” needle. The resulting loops were “locked” with two polypropylene sutures. The
polyester sutures were stitched equidistantly in a perpendicular direction from the
ventricular to the atrial side through the mitral annulus. The annuloplasty devices were
secured to the mitral annulus by tying these sutures. The “locking sutures” (polypropylene)
and the drawstrings were exteriorized before closing the atrium. Ring and band sizes were
determined by assessing the entire area of the anterior mitral leaflet using a sizer from
Edwards Lifesciences. All annuloplasty devices were true-sized (as all animals had similarly
sized leaflets, each received size 28 rings or bands). The left atrium (LA) was closed and the
left circumflex artery (LCx) was encircled with a vessel loop for a parallel study [9]. Data
from mitral annular and leaflet geometry using this dataset have been published earlier
[8-11]. The animals were then transferred to the experimental catheterization laboratory for
data acquisition under acute open-chest conditions.

Data Acquisition

Videofluoroscopic images (60 frames/sec) of all radiopaque markers were acquired using
biplane videofluoroscopy (Philips Medical Systems, North America, Pleasanton, CA, USA).
First, images were acquired under baseline conditions with the ring inserted (COS, RSAR,
PHYSIO, ETL, GEO). Following the data acquisition under baseline conditions, 90sec of
ischemia were induced, for a parallel study, by tightening the encircling LCx vessel loop
with a tourniquet. Thereafter, the “locking sutures” were pulled out and the ring was lifted
away from the mitral annulus towards the left atrial roof using the drawstrings. After
hemodynamic values returned to baseline, a third data acquisition was performed and
images were acquired under baseline conditions with the ring released (COS-CTRL, RSAR-
CTRL, PHYSIO-CTRL, ETL-CTRL, GEO-CTRL). Marker coordinates from two
consecutive sinus rhythm heart beats from each of the biplane views were then digitized and
merged to yield the 3-D coordinates of each marker centroid in each frame using semi-
automated image processing and digitization software [12]. Simultaneously, analog left
ventricular pressures (LVP) as well as electrocardiogram (ECG) signals were recorded in
real-time on the video images during data acquisition.

Hemodynamic Parameters and Cardiac Cycle Timing

For each beat, the end-diastolic videofluoroscopic frame was defined as the frame that
coincided with the peak of the R-wave on the ECG. In order to calculate leaflet strains, a
reference configuration during diastole and a deformed configuration during peak systole
were determined for each beat (tp and t,, respectively, Figure 2). When defining these
configurations the goal was to quantify strains with the mitral valve closed in both
configurations and maximize the LVP difference between the two time points. To identify
the reference configuration, the distance between AML central edge (#4, Figure 1B) and
PML edge marker (#33, Figure 1B) was plotted throughout the cardiac cycle for each
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animal. For each heartbeat the time point of leaflet opening was defined as the time point
immediately before the AML and PML started to separate (Figure 2), thereby defining the
reference state for beat 1 (tg;, Figure 2) and beat 2 (tgp, Figure 2). To identify the deformed
configuration, LVVP curves were plotted throughout the cardiac cycle. The time point of
maximum LVP for each heartbeat was defined as the deformed state (t,1 and t,,
respectively, Figure 2). The embedded period between these two states closely reflects the
period of isovolumetric relaxation (IVR, Figure 2). Maximum systolic dP/dt (dP/dty,,x) Was
calculated for each beat for each animal. LV volumes (LVV) were calculated from space-
filling tetrahedral fit between all LV markers at each beat at end-diastole (LVEDV), tp1, tho,
tp1 and tpy (See Ref [13] for details). Changes in LVP and LVV (Apyp and Ap vy,
respectively) from tg; to tyq and from ty, to t,, were calculated as LVPt,; — LVPty, , LVPtyo
— LVPtgy, and LVVt,1 — LVt , LV — LV Vi, respectively.

Mitral Annular Dimensions

At tp1, tho, to1 and tgp distances between markers #20 and #28 and those between #32 and
#24 (Figure 1B) were calculated to determine septal-lateral (S-L) and commissure-
commissure (C-C) annular dimensions, respectively. Changes in mitral annular S-L and C-C
dimensions (As.. and Ac_c, respectively) from tg1 to t,1 and from tg, to t,, were calculated
asth1 —to1 and th2 — to2.

Global Maximum Principal (global g2%), Radial (global €,4) and Circumferential (global

£cir) Strains

In order to determine the largest (global) maximum principal, radial and circumferential
strains across the entire leaflet, the 16 AML mitral leaflet markers (#1-#16, Figure 1B) and
the seven mitral annular markers (#17-#23, Figure 1B) were triangulated and 30 triangular
membrane elements were generated. For each triangle, the co- and contravariant base
vectors at time points tgg, th1, to2, and tpp, were calculated to determine the corresponding
metric tensors and the resulting Euler-Almansi strain tensors for beats 1 and 2. The direction
defined by the belly markers #9 and 11# (Figure 1B) in the deformed configuration, i.e., at
times t,q and t,, for beat 1 and beat 2, respectively, was interpreted as the circumferential
direction. The radial direction was defined orthogonal to the circumferential axis, passing
through belly marker #10 (see Fig 1B). The largest projections of the Euler-Almansi strain
tensor onto the circumferential and radial directions were defined as global maximum
circumferential strain (global ;) and global maximum radial strain (global €;5g),
respectively. These values were determined for two beats in each animal, and each state
(with and without annuloplasty device implanted). The animal global maximum principal
strain (global gm,x) Was calculated as the two-beat average for each animal and each state by
solving the eigenvalue problem for the Euler-Almansi strain tensor.

Maximum Principal (¢max,), Radial (€59 ) and Circumferential (g, ) Strains Across the
Entire Anterior Mitral Leaflet

In order to provide a qualitative description of changes in strain patterns across the entire
AML with and without annuloplasty device implanted, the two-beat averages of emax, €rad
and &y values of each triangular element were calculated for each animal in each state.
These values were averaged for all animals (by extrapolating constant average element
strains to the individual marker positions using super-convergent patch recovery to obtain
smoothly varying strain profiles) and plotted onto color mapped schematics.

Statistical Analysis

Average values of all animals in the respective groups were reported as mean = 1 SD. All
data reported for individual animals and all data used for quantitative statistical comparisons
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are two beat averages. Data with and without annuloplasty ring (or band) were compared
using 1-way repeated-measures analysis of variance with a Holm-Sidak post hoc test
(Sigmaplot 11.0, Systat Software Inc). To look at strain differences between the ring groups,
maximum principal (emax.), radial (gr4q ) and circumferential (egj; ) strains with rings (COS,
RSAR, PHYSIO, ETL and GEO) were compared using 1-way analysis of variance. A P
value of less than .05 was considered statistically significant.

Heart rate, LVEDV and dP/dty,ax

Group mean heart rates, LVEDVSs and dP/dt,ax are shown in Table 1. No significant
differences were found between ring and Control states in all five groups (except for
Cosgrove, where dP/dty,x Was slightly higher compared to Control).

LV Pressures and Volumes at Reference State (tg) and Deformed State (t,)

Table 2 shows LVPs and LVVs at tg and t, as well as A yp and Apyy. Apyp and Apyy are
also graphically depicted in Figure 3 (top row). A significant increase in LVPs by
approximately 80mmHg (note that changes in LVP and LVV (A yp and Apyy) are
described from tg to tp,, i.e. backward in time) occurred in both ring and Control states from
tg to t,, while no relevant LVV changes were observed.

Mitral Annular Dimensions at Reference State (tg) and Deformed State (t,,)

Table 3 shows the mitral annular S-L and C-C dimensions at t,, and tg as well as Ag_ and
Ac.c. As. and Ac_c are also graphically depicted in Figure 3 (middle row). Again, please
note that Ag.| and Ac.c are described from tg to t,,, i.e. backward in time. Consequently,
negative Ag. and Ac_c represent an increase, whereas positive Ag_| and Ac_c represent a
decrease in the respective dimension during the regular cardiac cycle. Relative to Control,
implantation of either complete, rigid rings (RSAR, PHYSIO, ETL or GEO) or the flexible
band (COS) resulted in significantly smaller mitral annular S-L and C-C dimensions.
Decreases in S-L and C-C diameters from tj to t, (negative Ag_| and Ac_¢, Table 3) were
observed for the Control cases (all groups). With the annuloplasty device implanted, the S-L
dimension became slightly smaller from tg to t, with COS (Ag_ : —0.9+£0.5mm, Table 3 and
Figure3, middle row) while no relevant decreases in S-L and C-C diameters from tg to t,,
were found with RSAR, PHYSIO, ETL or GEO.

Global Maximum Principal (global gy2%), Radial (global €,4) and Circumferential (global

£cir) Strains

Table 4 shows global emax, €rag and &g, for all five groups with and without annuloplasty
devices implanted. Global emax, €rag and &cjr (@verage from all animals) are also graphically
displayed in Figure 3 (bottom row). Compared to the respective Control state, strains
increased significantly with RSAR, PHYSIO, ETL and GEO (0.14+0.05 vs. 0.16+0.05,
p=0.024, 0.15+0.03 vs. 0.18+0.04, p=0.020, 0.11+0.05 vs. 0.14+0.05, p=0.042 and
0.13+0.05 vs. 0.16+0.05, p=0.009, respectively, all p<0.05), but not with COS (0.15+0.05
vs. 0.1520.04, n.s., p=0.973). Global ¢4 increased significantly compared to the Control
state only with RSAR, while greater global &g values were found with RSAR, PHYSIO,
ETL and GEO (however, insignificant for GEO, Table 4). No significant changes in global
€rad O &cjr Were found with COS compared to the Control state. With no annuloplasty device
implanted, global g,,q Was greater than global ¢, in all five groups (COS-CTRL, RSAR-
CTRL, PHYSIO-CTRL, ETL-CTRL, GEO-CTRL, Table 4 and Figure 3, bottom row). With
annuloplasty device implanted, global g, Values were either greater than global ¢, (COS,
RSAR), smaller (PHYSIO) or similar (ETL, GEO, Table 4 and Figure 3, bottom row). No
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differences in gmax (p=0.331, F=1.178), gr,q (p=0.188, F=1.598) or &, (p=0.160, F=1.716)
with rings implanted were found between the groups (COS, RSAR, PHYSIO, ETL and
GEO).

Maximum Principal (emax), Radial (g;59) and Circumferential () Strains Across the Entire
Anterior Mitral Leaflet

Figure 4 shows gmay, &rad and &jr across the entire AML for both states, with and without
annuloplasty device implanted in all five groups. Increases in gmax can be appreciated with
RSAR, PHYSIO, ETL and GEO compared to the respective Control state and
predominantly occur in the belly and edge region of the anterior mitral leaflet. No major
changes in strain patterns (€max, €rad OF &cir) Were observed with COS. g, Values across the
AML of the respective Control states were slightly different between groups with COS-
CTRL, RSAR-CTRL and PHYSIO-CTRL being more strained than GEO-CTRL and ETL-
CTRL.

DISCUSSION

The principle finding of this study was that, with no relevant changes in hemodynamics,
implantation of rigid, complete annuloplasty rings (RSAR, PHYSIO, ETL and GEO), but
not of the flexible partial band (COS), increased global maximum principal strains of the
AML. These changes predominantly occurred in the region of the AML belly and edge.

Several studies have determined mitral leaflet strains and stretches using a variety of
different techniques [4-7, 14-19]. In vitro studies have been employed to characterize
dynamic stretches on the anterior and posterior leaflet of excised porcine mitral valves using
a left heart simulator [6, 14-17]. In vivo studies, using sonomicrometer technology,
quantified AML strains in the beating ovine heart [16] and lastly, finite element studies
investigated strain patterns across the AML [4, 5, 18, 19].

Salgo et al. demonstrated in a numerical simulation that the native mitral annular shape is
important to minimize stresses acting on the leaflet [5]. In a previous analysis from the same
dataset we demonstrated that implantation of the Physio, IMR ETLogix and GeoForm, but
not RSAR, perturbed the physiological saddle-shape of the mitral annulus [11]. The
increased maximum principal leaflet strains observed with these three rings are therefore
consistent with engineering intuition quantified through the results of Salgo et al.. However,
to our surprise, the supposedly physiologically shaped RSAR also led to an increase in
maximum principal leaflet strains. Assuming that the shape of this ring is physiological it
could be speculated that the dynamic motion of the mitral annulus rather than its 3-D shape
is of major importance to preserve AML strain distribution. This hypothesis, however, is
contrary to previous studies that suggested changes in the physiological mitral annular 3-D
saddle shape lead to increases in leaflet strains [6]. It may therefore also be speculated that
the shape of the RSAR does not fully represent the natural 3-D annular shape and that, as
discussed earlier [6], increased strains are also a result of a non-physiological annular shape.

The partial, flexible band (COS) has been found to preserve the mitral annular saddle shape
[11] and allow minimal mitral annular S-L dynamics (Figure 3, middle row) during the
observed time period (from tg to t,). However, COS significantly reduced mitral annular
dimensions compared to the Controlstate (Table 3 and Ref [11]). Since COS did not affect
AML strains (Figure 3, bottom row) we speculate that preserving physiologic mitral annular
dynamics and shape rather than absolute mitral annular dimensions are the key components
to maintaining a physiological strain distribution across the AML.
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To our knowledge, Votta et al. were the only group that quantified the effects of
annuloplasty rings (GeoForm and Physio) on mitral leaflet strains and stresses [4]. The
group used a finite element model and demonstrated that the GeoForm, but not the Physio,
reduced maximum principal mitral leaflet stresses during simulated functional mitral
regurgitation [4]. In our study we found that all rigid rings (RSAR, PHYSIO, ETL and
GEO) increased maximum principal AML strains, irrespective of their 3-D shape. However,
unlike Votta et al., we used an in vivo model of the normal, beating heart. We therefore
cannot comment on the potential effects of FMR/IMR rings in the diseased state and it is
possible that these rings restore a physiological strain distribution in hearts with dilated LVs.

In our study we report the effect of different annuloplasty devices on radial and
circumferential strains. While global g.,q was only greater with RSAR, global ¢, was
greater with all rigid, complete rings (RSAR, PHYSIO, ETL and GEO, Table 4) compared
to the Control state (however, insignificantly for GEO), suggesting that rigid, complete
annuloplasty devices affect circumferential strains more than radial strains. The reason for
the insignificant increase in global ¢, observed with GEO could be a result of the larger
commissure to commissure dimension of this ring compared to RSAR, PHYSIO or ETL [3],
suggesting that the physiological circumferential AML strain distribution is sensitive to the
amount of mitral annular C-C decrease.

Study Limitations

Several limitations should be addressed to allow a better interpretation of these data. First,
the data were acquired from open-chest, anesthetized ovine hearts with normal preoperative
anatomy. Considerable caution must therefore be exercised when extrapolating these
findings to the human heart. This is especially true for the GeoForm and IMR ETLogix rings
that have been designed for patients with IMR/FMR (with distorted annular, leaflet and
ventricular geometry and function). As mentioned above, if these rings are implanted in the
setting of FMR/IMR, it could well be that they reduce (or restore physiological) leaflet
strains as demonstrated by Votta and colleagues in a computer simulation [4]. In future
analyses we aim to use our experimental in vivo data to determine whether these two FMR/
IMR-specific rings (GEO and ETL) are more efficient than conventional rings in terms of
reducing leaflet strains during acute myocardial ischemia. Second, AML strains were
quantified for only the IVR phase of the cardiac cycle and it could be that the rings affect
strain patterns differently in other phases of the cardiac cycle [20]. Third, although perturbed
leaflet strains have been associated with impaired mitral valve repair durability [6, 7]
currently no study exists that proves causation. Consequently, it remains to be determined
whether perturbations in AML strains impair long-term function of the mitral valve after
repair. Fourth, when radial and circumferential strains were plotted onto color mapped
schematics (Figure 4), we did not only observe tensile, but also compressive strains in both
Control states and with rings implanted (green and blue areas, Figure 4). Compressive
strains do not occur, e.g., in purely computational models that use simplified AML shapes
with the leaflet being entirely convex to the left ventricle [4] and, thus, may be a result of the
complex AML shape [21] that was included in our analyses. The finding of compressive
strains warrants further investigation; however, we focused on the tensile aspects of strain in
this manuscript and did not perform detailed analyses of compressive strain patterns. Fifth,
no statistically significant differences in strains were found between the different ring types.
We therefore cannot draw any conclusions from these data whether one ring design is
superior to another; however, this study was not adequately powered to demonstrate
differences between the different ring types. Sixth, we only studied a partial, flexible band.
Since no complete, flexible ring was examined in this experiment it is not possible to
distinguish whether the observed lack of increase in AML strains with a partial band is due
to its partial design, its flexibility, or due to a combination of the two. Lastly, strain patterns
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may change with varying annuloplasty device sizes [4]. Since only size 28mm annuloplasty
rings were used in this study, we are unable to draw any conclusions about the impact of
ring or band size on leaflet strains.

Conclusions

In conclusion, regardless of their three-dimensional shape, rigid, complete annuloplasty
rings (RSAR, PHYSIO, ETL, GEO), but not a partial flexible band (COS), increased
maximum principal anterior mitral leaflet strains predominantly in the belly and edge
regions in the normal beating ovine heart. Large, randomized, clinical trials are needed to
answer the question whether the observed ring-induced alterations in mitral leaflet strain
states exist in patients, and if so, whether they adversely affect long-term mitral valve repair
durability.
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Fig 1.

A: Schematic illustrating ventricular and annular marker locations. Marker #20 represents
the mitral annular saddle horn marker and markers #17 and #23 the anterior and posterior
commissural markers, respectively. B: Schematic magnification of a top view of the mitral
valve showing annular as well as leaflet markers. Sixteen markers were placed on the mitral
annulus (#17-#32), 16 markers were placed on the anterior mitral leaflet (#1-#16) and one
marker was placed on the free edge of the mid part of the posterior leaflet (#33). Inset shows
the radial (rad) and circumferential (cir) directions used for strain definitions.
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Fig 2.

[llustration of time point definitions. Time point t,, (strained state) was defined as maximum
LV pressure for beat 1 (t,1) and beat 2 (t,»). Time point ty (reference state) was defined as
last time frame before mitral leaflet separation (as represented by the rapid increase in
plotted curve of distances (cm) between marker #33 and #4, see Fig 1) for beat 1 (tp1) and
beat 2 (tg)).
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Fig 3.

Changes in LV pressure and volumes (ALVP and ALVV, respectively (top row), mitral
annular dimensions (middle row) from reference state (tg) to strained state (t,) as well as
global maximum principal (emax), radial (graq) and circumferential (&) (bottom row). Note
that changes from tg to t, include a calculation from a time point later in the cardiac cycle
(tp) to an earlier time point of the cardiac cycle (t,). COS=Edwards Cosgrove band,
RSAR=St Jude Medical rigid saddle-shaped annuloplasty ring, ETL=Edwards IMR
ETlogix, GEO=Edwards GeoForm. Values are mean+1SD.
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Color-mapped schematics of maximum principal (emax, two top rows), radial (grag, two
middle rows) and circumferential (ejr, two bottom rows) strains across the entire anterior
mitral leaflet for the Control state (CTRL) and with annuloplasty device implanted (RING).
Markers #17 and #23 depict anterior and posterior commissures, respectively, marker #20
represents the mid-septal mitral annulus (saddle horn, see Figure 1). COS=Edwards
Cosgrove band, RSAR=St Jude Medical rigid saddle-shaped annuloplasty ring,
ETL=Edwards IMR ETlogix, GEO=Edwards GeoForm.
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