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Abstract
The application of residual dipolar couplings (RDCs) in studies of RNA structure and dynamics
can be complicated by the presence of couplings between collective helix motions and overall
alignment and by the inability to modulate overall alignment of the molecule by changing the
ordering medium. Here, we show for a 27-nt TAR RNA construct that variable levels of helix
elongation can be used to alter both overall alignment and couplings to collective helix motions in
a semi-predictable manner. In the absence of elongation, a four base-pair helix II capped by a
UUCG apical loop exhibits a higher degree of order compared to a six base-pair helix I (ϑI/ϑII =
0.56±0.1). The principal Szz direction is nearly parallel to the axis of helix II but deviates by ∼40°
relative to the axis of helix I. Elongating helix I by three base-pairs equalizes the alignment of the
two helices and pushes the RNA into the motional coupling limit such that the two helices have
comparable degrees of order (ϑI/ϑII = 0.92±0.04) and orientations relative to Szz (∼17°).
Increasing the length of elongation further to twenty-two base-pairs pushes the RNA into the
motional decoupling limit in which helix I dominates alignment (ϑII/ϑI = 0.45±0.05), with Szz
orientated nearly parallel to its helix axis. Many of these trends can be rationalized using PALES
simulations that employ a previously proposed three-state dynamic ensemble of TAR. Our results
provide new insights into motional couplings, offer guidelines for assessing their extent, and
suggest that variable degrees of helix elongation can allow access to independent sets of RDCs for
characterizing RNA structural dynamics.
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1. Introduction
There is great interest in utilizing NMR residual dipolar couplings (RDCs) [1,2] to
characterize the structure and dynamics of biomolecules [3-5]. RDCs can be measured in
molecules that are partially aligned, either spontaneously when they have a significant
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magnetic susceptibility anisotropy [1,6] or, more commonly, by dissolution in an
appropriate ordering medium [2,7-10]. Several studies have established the utility of
measuring RDCs under multiple linearly independent alignment conditions [11] to increase
the spatial resolution with which structure and dynamics can be simultaneously
characterized [12-18].

Two challenges can arise when using RDCs to characterize the conformational dynamics of
nucleic acids, particularly globally flexible RNAs. First, it cannot be generally assumed, as
is done in most formalisms, that internal motions do not lead to coupled changes in overall
alignment [12,13,19]. Rather, rigid-body collective movements of helical domains about
flexible junctions can lead to significant changes in the RNA overall molecular shape and
thus global alignment [20,21]. Second, though the alignment of proteins can be modulated
by changing the alignment medium and altering the balance between electrostatic and steric
forces governing alignment [11,22], this has proven difficult if not impossible for nucleic
acids because their uniform charge distribution closely follows that of their molecular shape
[23-28]. Although spontaneous magnetic field alignment can yield one additional
independent alignment [26,28], the degree of order generally remains unfavorably small
under current magnetic field strengths.

Recently, we showed that correlations between internal motions and overall alignment could
be reduced and overall alignment altered by chemically perturbing the overall RNA
molecular shape [20]. In particular, the alignment of the transactivation response element
(TAR) RNA from HIV-1 dissolved in the Pf1 phage ordering medium [8,9] was modulated
by independently elongating each of its two helices by twenty-two Watson-Crick base-pairs
[20,29]. The elongation renders the overall molecular shape, and consequently overall
alignment, far less sensitive to collective motions of helices. It also serves to predefine
overall alignment by fixing the principal axis of order (Szz) to be nearly parallel to the
elongated helix axis. A similar mutagenesis strategy that serves to alter the surface
electrostatic properties has successfully been used by Bax and co-workers to modulate the
alignment of proteins [30].

In RNA, extensive helix elongation (>20 base-pairs) is generally required to adequately
decouple internal and overall motions. However, this results in an unfavorable increase in
the size of the RNA under study and also necessitates preparation of two specifically labeled
samples to minimize spectral overcrowding from elongation residues [29]. Many RNAs,
including TAR bound to ligands [31] or at high monovalent and divalent ion concentrations
[32], are globally rigid and may not require extensive helix elongation to decouple motions.
In these cases, moderate degrees of elongation may offer an approach for modulating
alignment. Even for globally flexible RNAs, moderate elongation may help expose
collective helix motions and provide physical insights into the motional couplings
themselves [33]. Here, we examine the utility of moderate degrees of helix elongation in
modulating both the alignment and degree of motional couplings in a TAR mutant, EI(3)-
TARm, in which the apical wild-type loop has been replaced with a UUCG loop and in
which the terminal helix is elongated by three base-pairs (Figure 1a).

2. Results and Discussion
We prepared uniformly 13C/15N labeled EI(3)-TARm by in vitro transcription as previously
described [34]. As shown in Figure 1b, spectra of EI(3)-TARm are in excellent agreement
with those of non-elongated TARm, indicating that the elongation does not affect its
structural and dynamical integrity, as reported previously for a twenty-two base-pair
elongated TAR sample (EI(22)-TARm, Figure 1a) [20,29]. A total of 9 N-H and 53 C-H
RDCs (Table S1) were measured in sugar (C1′H1′) and base (C2H2, C5H5, C6H6, C8H8,
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N1H1, and N3H3) moieties of EI(3)-TARm using ∼22 mg/ml of Pf1 phage as an ordering
medium [8,35]. A plot of RDCs as a function of secondary structure is shown in Figure 2a
and 2b for TARm and EI(3)-TARm, respectively. The RDCs measured in helix I of TARm
are consistently attenuated relative to counterparts in helix II. This has previously been
attributed to inter-helical motions and a smaller degree of order for helix I compared to helix
II [36]. Differences between helix RDCs are far less pronounced in EI(3)-TARm, indicating
that elongation of helix I by three base-pairs increases its degree of order relative to helix II.
The poor agreement (R2=0.61) observed between the EI(3)-TARm and TARm RDCs (Figure
2c) qualitatively suggests that the three-base pair elongation modulates overall alignment
and/or motional couplings. An even poorer correlation (R2=0.07) is observed upon
elongating helix I by twenty-two base-pairs (Figure 2d), consistent with elongation-
dependent modulation of alignment and/or motional couplings.

To characterize the alignment of EI(3)-TARm in phage, we used the RDCs measured in non-
terminal Watson-Crick base-pairs and structurally stable loop residues to determine order
tensors for each helix. The order tensors were determined by fitting measured RDCs to an
idealized A-form helical geometry and an X-ray structure of the loop[37] as described
previously [38-40]. An excellent fit was observed between the measured and back-predicted
RDCs, indicating that both EI(3)-TARm helices are accurately modeled using an idealized
A-form geometry as described previously for non-elongated [36] and elongated [20] TAR
(Figure 2e).

In Figure 3a, we use a Sauson-Flamsteed map to depict the best-fit principal orientational
solutions (Sxx, Syy, and Szz) obtained for each helix in EI(3)-TARm. The orientational
solutions are shown relative to a molecular frame in which the helix axis is oriented along
the molecular z direction. For comparison, the corresponding order tensors reported
previously for TARm [36] and EI(22)-TARm [20] are also shown. The estimated uncertainty
in the Szz orientations determined for helix I/II using the program Aform-RDC [39] is 7°/6°,
2°/2°, and 2°/4° for TARm, EI(3)-TARm, and EI(22)-TARm, respectively. In TARm, Szz
deviates by only ∼7° from the helix II axis but deviates by ∼40° from the helix I axis. As
expected, elongation of helix I by three base-pairs tips Szz towards its helical axis such that
Szz deviates by only ∼17° and is nearly fully aligned with the axis following a twenty-two
base-pair elongation (∼7°). The three Szz directions in TARm, EI(3)-TARm, and EI(22)-
TARm do not fall along a common plane, most likely because the A-form helices deviate
from perfect cylindrical axial symmetry (Figure 3a). The three base-pair elongation has an
opposite, albeit smaller effect on helix II. The angle between Szz and the helix II axis
increases from ∼7° to ∼16° to ∼32° upon elongation by three and twenty-two base-pairs,
respectively (Figure 3a). Changes are also observed in the Sxx and Syy orientations (Figure
3a) and the asymmetry parameter (η) (Figure S1a, S1b), indicating that elongation
modulates all five elements of the order tensor.

Elongation of helix I leads to changes in relative degrees of helix order that mirror those
observed for the principal Szz direction. In TARm, helix II dominates overall alignment,
yielding an internal generalized degree of order ϑint = ϑI/ϑII = 0.56±0.1 that is consistent
with large amplitude, inter-helical motions [36]. Elongating helix I by three base-pairs
increases its level of order compared to helix II such that both helices now have comparable
degrees of order (ϑint = ϑI/ϑII = 0.92±0.04). This, together with the similar angles between
the Szz direction and the two helical axes (Figure 3a), strongly suggests that the three base-
pair elongation equalizes contributions of the two helices to overall alignment and pushes
TAR into the motional coupling limit. Extending the elongation of helix I to twenty-two
base-pairs drives the system towards the decoupling limit in which helix I dominates
alignment (ϑint = ϑII/ϑI = 0.45±0.05). Because RNA helices are often not coaxially stacked,
moderate degrees of elongation are expected to modulate alignment. This was verified using
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PALES simulations on a variety of RNAs following elongation of the terminal helix by
three base-pairs (data not shown). The combination of helix-elongation with measurements
of magnetic field-induced RDCs [26,28] may make it possible to access the maximum of
five linearly independent sets of RDCs in nucleic acids. Access to such measurements will
make it possible to more fully characterize the structural dynamics of RNA.

To rationalize the observed trends in the alignment of TAR as a function of elongation, we
used the three-state dynamical ensemble determined previously using RDCs [20] in
conjunction with electrostatic-induced alignment simulations using the program PALES
[23,41] to simulate TAR alignment in phage at varying lengths of helix I elongation. The
three-state ensemble is a discrete approximation of what is likely a continuous distribution
involving many conformations. While we do not expect to observe quantitative agreement
between measured alignment parameters and values predicted using this three-state
ensemble approximation, we would like to obtain insights into the general trends observed
for orientation and alignment upon helix elongation. An elongated helix I was superimposed
onto each of the three TAR conformers of the ensemble, and PALES was used to predict the
RDCs for each conformer. Bulge residues were not included in the three-state dynamical
ensemble, so they were not included in PALES calculations. The three sets of RDCs
simulated for each conformer were then averaged and used to compute order tensors for
each helix. As shown in Figure 3a, we observe very good agreement between measured and
predicted Szz directions. The deviations range between 2-11° and 6-8°, for helices I and II,
respectively. The simulations reproduce the observed non-planar approach of the Szz
direction towards the helix I axis with increasing elongation. Interestingly, the Sxx and Syy
directions (Figure 3a) and the asymmetry (Figure S1) are also reasonably well reproduced
considering their much larger experimental uncertainty and given that exclusion of the bulge
has a strong effect on these predicted values (data not shown). The simulations reproduce
the increase in the helix I order compared to helix II upon helix I elongation (Figure 3b).
Also, the simulated ϑint values reflect the observed trend. The larger discrepancy in TARm
could arise from neglect of the bulge and fraying motions at terminal base-pairs which are
likely to have a bigger effect on the small TARm compared to the other elongated constructs.
Indeed, better agreement is observed for TARm when excluding the two terminal base-pairs
in helix I (Figure 3b).

Independent RDC data sets are often used to overcome the 4n-1 fold orientational
degeneracy arising from superposition of the order tensors of n domains [11,22]. One of the
consequences of having differential motional averaging effects due to inter-domain motions
is that two sets of RDCs may not be reconcilable with a single inter-domain orientation [42].
This is the case for the RDC datasets measured in TARm, EI(3)-TARm, and EI(22)-TARm.
As shown in Figure 4a, none of the four inter-helix structures assembled using the RDCs
measured in TARm satisfy the orientational solutions obtained using the EI(3)-TARm RDCs.
Similarly, a common solution does not exist when using RDCs from EI(22)-TARm (Figure
4b). Thus, the inability to reconcile RDCs measured in differentially elongated RNAs in this
manner may be an indication that inter-helix motions are present. However, other sources of
experimental uncertainty should also be ruled out.

3. Conclusion
In conclusion, we show that modest degrees of helix-elongation can be used to modulate
both overall alignment of RNA and the degree of motional couplings in a semi-predictable
manner. Our results underscore the importance of exercising caution in interpreting similar
levels of order for two domains (ϑint ∼1) in terms of inter-domain rigidity. In general,
motional couplings obscure inter-domain motion and will often result in underestimated
dynamics. Our data suggest that even moderate degrees of helix elongation may be used to
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push an RNA system outside the motionally coupled regime, though the degree of
elongation needed will obviously vary from RNA to RNA.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
TARm constructs. (a) Secondary structures of TARm, EI(3)-TARm, and EI(22)-TARm.
Differences between constructs are shown in bold. (b) 2D 1H-13C HSQC spectrum of EI(3)-
TARm (black) overlaid on the corresponding spectrum of TARm (red). TARm resonances
are labeled in black, while peaks that belong only to EI(3)-TARm are shown in bold. All
EI(3)-TARm experiments were conducted in NMR buffer (15 mM sodium phosphate, 25
mM sodium chloride, 0.1 mM EDTA and pH 6.4) at 298 K on an Avance Bruker 600 MHz
NMR spectrometer equipped with a triple-resonance 5 mm cryogenic probe. 1H, 13C,
and 15N resonances were assigned by spectra overlay [29,43] and using standard
homonuclear and heteronuclear 2D experiments, including an exchangeable NOESY and a
2D HCN experiment that correlates intranucleotide H8/H6 to N1/N9 to H1′.
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Figure 2.
Measurement of RDCs in EI(3)-TARm. One bond RDCs (1DCH and 1DNH) measured in (a)
TARm and (b) EI(3)-TARm as a function of residue/secondary structure. Filled and open
circles represent RDCs measured on the 5′and 3′ strand, respectively. RDCs have been
normalized to those of EI(3)-TARm by the ratio of the ϑII values of EI(3)-TARm and TARm.
See inset in Figure 2a for key. (c-d) Correlation plots between (c) TARm and EI(3)-TARm
and (d) TARm and EI(22)-TARm RDCs. (e) Comparison of EI(3)-TARm RDCs measured in
helix I (red) and helix II (blue) with values back-predicted using the best-fit order tensor and
an idealized A-form helix and X-ray structure of the loop.
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Figure 3.
Measured and predicted alignment of variable elongated TAR. (a) Sauson-Flamsteed maps
showing the best-fit measured (filled symbols) and PALES-predicted (open symbols) order
tensor frames (Sxx, Syy, and Szz) for helices I and II. Solutions are depicted relative to a
molecular frame in which the helix axis is oriented along the z direction. (b) Measured (in
color) and PALES-predicted (in gray) ϑint values (ϑint = ϑII/ϑI) as a function of helix I
length. Note that the value for EI(22)-TARm corresponds to ϑint = ϑI/ϑII. The open circle
corresponds to the predicted ϑint value of TARm when the two terminal base-pairs are
excluded.
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Figure 4.
Difficulty in resolving degeneracies in determining the average orientation of TAR helices
using multiple RDC data sets. Shown are the experimental order tensor frames (Sxx, Syy, and
Szz, in green, blue, and purple, respectively) determined for helix I (open circles) and II
(filled circles) using (a) EI(3)-TARm and (b) EI(22)-TARm RDCs shown relative to the PAS
of the order tensor determined using the TARm RDCs. The different orientational solutions
were generated by rotating helix II in the TARm PAS 180° degrees about the x, y, and z
axis.

Dethoff et al. Page 11

J Magn Reson. Author manuscript; available in PMC 2012 April 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


