Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1994 Oct 11;22(20):4187–4194. doi: 10.1093/nar/22.20.4187

An approach to the structure determination of nucleic acid analogues hybridized to RNA. NMR studies of a duplex between 2'-OMe RNA and an oligonucleotide containing a single amide backbone modification.

M J Blommers 1, U Pieles 1, A De Mesmaeker 1
PMCID: PMC331917  PMID: 7524037

Abstract

The backbone modification amide-3, in which -CH2-NH-CO-CH2- replaces -C5'H2-O5'-PO2-O3'-, is studied in the duplex d(G1-C2-G3-T4.T5-G6-C7-G8)*mr(C9-G10-C11-A12-A13-C14-G15+ ++-C16) where . indicates the backbone modification and mr indicates the 2'-OMe RNA strand. The majority of the exchangeable and non-exchangeable resonances have been assigned. The assignment procedure differs from standard methods. The methyl substituent of the 2'-OMe position of the RNA strand can be used as a tool in the interpretation. The duplex structure is a right-handed double helix. The sugar conformations of the 2'-OMe RNA strand are predominantly N-type and the 2'-OMe is positioned at the surface of the minor groove. In the complementary strand, only the sugar of residue T4 is found exclusively in N-type conformation. The incorporation of the amide modification does not effect very strongly the duplex structure. All bases are involved in Watson-Crick base pairs.

Full text

PDF
4194

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Gao X., Brown F. K., Jeffs P., Bischofberger N., Lin K. Y., Pipe A. J., Noble S. A. Probing structural factors stabilizing antisense oligonucleotide duplexes: NMR studies of a DNA.DNA duplex containing a formacetal linkage. Biochemistry. 1992 Jul 14;31(27):6228–6236. doi: 10.1021/bi00142a009. [DOI] [PubMed] [Google Scholar]
  2. Gao X., Jeffs P. W. Unusual conformation of a 3'-thioformacetal linkage in a DNA duplex. J Biomol NMR. 1994 Jan;4(1):17–34. doi: 10.1007/BF00178333. [DOI] [PubMed] [Google Scholar]
  3. Haasnoot C. A., Hilbers C. W. Effective water resonance suppression in 1D- and 2D-FT-1H-NMR spectroscopy of biopolymers in aqueous solution. Biopolymers. 1983 May;22(5):1259–1266. doi: 10.1002/bip.360220502. [DOI] [PubMed] [Google Scholar]
  4. Haasnoot C. A., Westerink H. P., van der Marel G. A., van Boom J. H. Conformational analysis of a hybrid DNA-RNA double helical oligonucleotide in aqueous solution: d(CG)r(CG)d(CG) studied by 1D- and 2D-1H NMR spectroscopy. J Biomol Struct Dyn. 1983 Oct;1(1):131–149. doi: 10.1080/07391102.1983.10507430. [DOI] [PubMed] [Google Scholar]
  5. Hare D. R., Wemmer D. E., Chou S. H., Drobny G., Reid B. R. Assignment of the non-exchangeable proton resonances of d(C-G-C-G-A-A-T-T-C-G-C-G) using two-dimensional nuclear magnetic resonance methods. J Mol Biol. 1983 Dec 15;171(3):319–336. doi: 10.1016/0022-2836(83)90096-7. [DOI] [PubMed] [Google Scholar]
  6. Havel T. F. An evaluation of computational strategies for use in the determination of protein structure from distance constraints obtained by nuclear magnetic resonance. Prog Biophys Mol Biol. 1991;56(1):43–78. doi: 10.1016/0079-6107(91)90007-f. [DOI] [PubMed] [Google Scholar]
  7. Pieles U., Zürcher W., Schär M., Moser H. E. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a powerful tool for the mass and sequence analysis of natural and modified oligonucleotides. Nucleic Acids Res. 1993 Jul 11;21(14):3191–3196. doi: 10.1093/nar/21.14.3191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Wang A. C., Kim S. G., Flynn P. F., Chou S. H., Orban J., Reid B. R. Errors in RNA NOESY distance measurements in chimeric and hybrid duplexes: differences in RNA and DNA proton relaxation. Biochemistry. 1992 Apr 28;31(16):3940–3946. doi: 10.1021/bi00131a008. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES