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Abstract
The α4β2 nicotinic acetylcholine receptor (nAChR) is the predominant heteromeric subtype of
nAChRs in the brain, which has been implicated in numerous neurological conditions. The
structural information specifically for the α4β2 and other neuronal nAChRs is presently limited. In
this study, we determined structures of the transmembrane (TM) domains of the α4 and β2
subunits in lauryldimethylamine-oxide (LDAO) micelles using solution NMR spectroscopy. NMR
experiments and size exclusion chromatography–multi-angle light scattering (SEC-MALS)
analysis demonstrated that the TM domains of α4 and β2 interacted with each other and
spontaneously formed pentameric assemblies in the LDAO micelles. The Na+ flux assay revealed
that α4β2 formed Na+ permeable channels in lipid vesicles. Efflux of Na+ through the α4β2
channels reduced intra-vesicle Sodium Green™ fluorescence in a time-dependent manner that was
not observed in vesicles without incorporating α4β2. The study provides the structural insight into
the TM domains of the α4β2 nAChR. It offers a valuable structural framework for rationalizing
extensive biochemical data collected previously on the α4β2 nAChR and for designing new
therapeutic modulators.
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1. Introduction
The nicotinic acetylcholine receptor (nAChR) is a member of the Cys-loop superfamily that
mediates fast synaptic transmission in the central and peripheral nervous systems. The α4β2
nAChR is the most abundant heteromeric nAChR subtype in the brain [1]. It has been
implicated to play roles in Parkinson’s disease [2], Alzheimer’s disease [3], nicotine
addiction [4, 5], and general anesthesia [6–8].
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Despite the importance of the α4β2 nAChR in various neurological conditions, experimental
structural characterization of the α4β2 nAChR remains sparse [9–11]. Structural
understanding of nAChRs has relied heavily on the Cryo-electron microscopy structural
model of the muscle type nAChR found in the electric ray Torpedo marmorata [12]. The
structural model has only a resolution of 4 Å, but shows a pentameric scaffold and
extracellular (EC), transmembrane (TM), and intracellular (IC) domains for each of the five
subunits. More recently, homologous structures of the bacteria Gloebacter violaceous
(GLIC) [13, 14] and Erwinia chrysanthemi (ELIC) [15] and the Caenorhabditis elegans
glutamate-gated chloride channel alpha (GluCl) [16] have been determined at resolutions of
2.9 Å, 3.3 Å, and 3.3 Å, respectively. Unlike mammalian Cys-loop receptors, GLIC and
ELIC do not contain a large IC domain. Among the EC, TM and IC domains of Cys-loop
receptors, the EC domain containing the orthosteric agonist-binding site has the richest
structural information, mainly from crystal structures of the acetylcholine binding protein
(AChBPs) [17–19], the EC domain of the mouse α1 subunit [20], and the chimera of the α7
nAChR-AChBP [21]. In contrast, the IC domain connecting TM3 and TM4 is the least
studied domain. This domain is the least conserved among nAChR subunits and has the least
structural data at present. The IC domain is known to modulate interaction with cytoskeleton
components as well as channel desensitization [22]. However, it was demonstrated that fully
functional channels could be obtained by replacing the IC domain with a short linker found
in GLIC [23].

Although structural understanding of the TM domain is not as inadequate as that on the IC
domain, more thorough structural characterizations on the TM domain for individual Cys-
loop receptors are required in order to satisfy the demands for rational design of therapeutic
drugs and for discovery of molecular mechanisms of drug action [24, 25]. The TM domain
contains the channel gate. Hence, it is the critical region for controlling the flow of ions
across the membrane [26]. Positive and negative allosteric modulators acting at the TM
domains of nAChRs [27–29] have been implicated as useful therapeutics for neurological
diseases. The TM domain also provides binding sites for general anesthetics. The
intravenous anesthetic etomidate binds to the TM domain of the Torpedo nAChR [30]. The
inhalational anesthetic halothane shows binding to the TM domain both experimentally in
the Torpedo nAChR [31] and computationally in the α4β2 and α7 nAChRs [32–34]. High-
resolution structural information of nAChR TM domains is therefore important both for
characterizing mechanisms of action for existing drugs and indentifying plausible binding
sites for new drugs.

While the interplay between the EC and TM domains is critical for transducing ligand-
binding signals to the channel gate, the intrinsic folding of the TM domain seems to be
independent of the existence of the EC domain. Incorporation of the TM2 helix into a lipid
environment was found to produce ion specific channels [35, 36]. Furthermore, we have
previously demonstrated faithful folding of the TM domain of the β2 subunit in membrane
mimetic microclusters formed by the hexafluoroisopropanol and water mixture (1:1) [9].
Thus, it is reasonable and practical to solve structures of the TM domains in the absence of
the EC and IC domains.

In the present study, we used lauryldimethylamine-oxide (LDAO) micelles as a membrane
mimetic and solved the NMR structures for the TM domains of the α4 and β2 nAChR
subunits. We found that the α4 and β2 TM domains form pentameric assemblies in LDAO
micelles. When reconstituted into lipid vesicles, the α4β2 assemblies are capable of
transporting Na+ ions. High-resolution structures of the individual α4 and β2 TM domains
and the assembled pentameric structural model for the α4β2 nAChR TM domain provide
valuable templates for understanding mechanisms of channel function and drug action as
well as for rational drug discoveries.
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2. Materials and Methods
2.1 Sample Preparations

The method to obtain the α4 and β2 TM domains of the human nAChR was reported
previously [9]. Proteins were expressed in E. coli Rosetta 2(DE3) pLysS (Novagen) at 15 °C
for ~3 days using the Marley protocol [37]. The EC domain at the N-terminus was replaced
with a TEV protease recognition site and a histidine tag. A short synthetic linker of five
glycines replaced the IC domain. Each α4 or β2 TM domain contains 137 residues with an
approximate molecular weight of 15 kDa. Glutamate mutations at the N- and C-termini,
designed to lower the pI, were necessary to secure protein stability for NMR measurements.
Mutation of three hydrophobic residues to serine within the TM2-TM3 linker of α4 or β2
was also instrumental to prevent protein destabilization. Direct exposure of hydrophobic
residues to the aqueous phase in the absence of the EC domain resulted in protein
precipitation in a short time period. Amino acid sequences showing mutations of the α4 and
β2 TM domains are provided in the Supplementary Material (Fig. S1). The expressed
proteins were purified by Ni-NTA (GE Healthcare) chromatography before and after
overnight cleavage of the his-tagged region at 4 ºC. The purification buffer contained 50
mM Tris, 150 mM NaCl, and 0.5% LDAO, and proteins were eluted with imidazole. Each
NMR sample had 0.25–0.3 mM protein, 1–2% (40–80 mM) LDAO, 5 mM phosphate
acetate pH 4.7, 10 mM NaCl, and 20 mM 2-mercaptoethanol to prevent disulfide bond
formation. 5% D2O was added to the NMR samples for deuterium lock in NMR
measurements. In terms of the α4 and β2 contents, we prepared four types of samples: (1)
pure α4; (2) pure β2; (3) α4:β2=2:3; and (4) α4:β2=3:2.

2.2 NMR spectroscopy
NMR spectra were acquired at 45 ºC on Bruker Avance 600, 700, 800, and 900 MHz
spectrometers equipped with a triple-resonance inverse-detection cryoprobe, TCI (Bruker
Instruments, Billerica, MA). Spectral windows of 11 or 13 ppm (1024 data points) in the 1H
dimension and 22 or 24 ppm (128 data points) in 15N dimension with a relaxation delay of 1
s (or 1.5 s at 900 MHz) were used for collecting 1H-15N TROSY-HSQC spectra. 1H-13C
HSQC spectra were acquired as 1024 points in the 1H dimension and 256 increments in
the 13C dimension with spectral windows of 11 ppm (1H) and 64 ppm (13C). For chemical
shift assignment, we performed a suite of 3D experiments, including HNCA and
HN(CO)CA (1024 × 36 × 80, 600 or 700 MHz) with a spectral window of 18 ppm in
the 13C dimension, HNCO (1024 × 36 × 40, 600 or 700 MHz) with a 13C spectral width of
10 ppm, 15N-edited NOESY (1024 × 36 × 160) with a mixing time of 120 ms at 900 MHz
and 150 ms at 700 MHz, and 13C-edited NOESY (1024 × 36 × 192, 700 MHz) with a
mixing time of 150 ms. In addition, CBCA(CO)NH (1024 × 32 × 80, 700 MHz) with a 13C
spectral window of 60 ppm was acquired. In order to evaluate the temperature dependence
of individual residue chemical shifts, α4 and β2 1H-15N TROSY-HSQC spectra were
collected at 40, 43, 45, and 48 ºC. The residues with temperature coefficients < 4.5 ppb/K
were considered to have hydrogen binding [38]. The observed 1H chemical shifts were
referenced to the DSS resonance at 0 ppm and the 15N and 13C chemical shifts were
indirectly referenced [39].

2.3 Size exclusion chromatography–multi-angle light scattering (SEC-MALS) analysis
The molar masses of the protein-detergent complexes were determined using size exclusion
chromatography (Superdex 200 10/300, GE Healthcare) coupled with multi-angle light
scattering (HELEOS, Wyatt Technology), UV (Agilent 1100 Series; Agilent Technology),
and differential refractive index (Optilab rEX; Wyatt Technology) detection. The
measurements were performed on the samples that had been used for NMR in 10 mM
sodium acetate pH 4.6, 100 mM NaCl, 0.05% LDAO at a flow rate of 0.5 mL/min at room
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temperature. HELEOS calibration constants were determined in the same buffer using
chicken egg lysozyme (Affymetrix) as the standard. Light scattering data was analyzed and
the molar mass of the protein-detergent complex was determined using ASTRA software
(Wyatt Technology) [40]. The conjugate analysis module of ASTRA was used to
differentiate contributions of the protein and detergent to the molecular weight of each
complex. The specific refractive index (dn/dc) values of 0.185 and 0.148 were used for the
protein and LDAO detergent, respectively [41]. The UV extinction coefficients of α4 and β2
were calculated from their sequences. A measured UV extinction coefficient of 0.06 for a
1% solution at 280 nm was used for LDAO.

2.4 The Na+ flux assay for functional measurements
The Na+ flux assay, as measured by the reduction of Sodium Green™ dye (Invitrogen,
Carlsbad, CA) fluorescence due to Na+ leaving the vesicles through open channels, is an
effective way to macroscopically assess activity of the α4β2 TM channels. We prepared 25
mM vesicles with ~500 μM α4β2. The vesicles contained egg phosphatidylcholine (PC)/
phosphatidylglycerol (PG) in a 3:1 molar ratio and lipid biotinyl-cap-PE (1 mol %). Lipids
dissolved in chloroform were mixed with α4β2 and dried to a thin film by nitrogen gas.
Residual organic solvent was removed by vacuum overnight. The lipid-protein mixture was
hydrated overnight at 42°C with a buffer solution containing 20 mM Tris, 100 mM NaCl,
and 3 μM Sodium Green™ at pH 7.5. The vesicles were obtained by multiple subsequent
cycles of freeze/thaw and sonication. Sodium Green™ dye outside the vesicles was removed
by extensive dialysis.

The Na+ flux assay was performed using an Olympus IX81 microscope (Olympus America,
Center Valley, PA), equipped with a Sutter Lambda xenon exciter light source, various
excitation and emission filters, and an ORCA-ER digital camera. For each measurement,
vesicles containing α4β2 were added onto the streptavidin coated glass slide. The image
acquisition started before vesicles were washed with a buffer solution (50mM CaCl2 20mM
Tris at pH 7.5) to dilute the extra-vesicle Na+ concentration. The resulting Na+ concentration
gradient drove Na+ out of the vesicles when channels were formed. Consequently the
fluorescence intensity resulting from Sodium Green™ trapped inside vesicles was reduced.
Decay of the Sodium Green™ fluorescence intensity within each cluster of vesicles was
recorded using the program In-vivo and analyzed by MetaMorph (Molecular Devices,
Sunnyvale, CA).

2.5 Data processing, analysis and structure calculations
NMR data were processed using NMRPipe 4.1 and NMRDraw 1.8 [42], and analyzed using
Sparky 3.10 [43]. 1H, 15N, and 13C chemical shift assignments for the TM domains of the
AChR α4 and β2 subunits were performed manually using the acquired NMR spectra. Initial
NOE cross-peak assignment was carried out manually and then more cross-peaks were
assigned using CYANA 2.1 [44]. For both the α4 and β2 subunits, a total of 100 monomer
structures were calculated using CYANA 3.0 based on NOE and hydrogen-bonding
restraints, as well as Talos dihedral angle restraints derived from the chemical shifts [45].
Restraints for α4 and β2 are shown in Tables S1 and S2, respectively. Of these 100
structures, 30 with the lowest target function underwent further refinement using Cyana 3.0.
A final bundle of 20 structures with the lowest target function was analyzed using VMD
[46] and Molmol [47]. Contact maps were used for evaluating tertiary structures of
individual subunits and comparing tertiary structures of different proteins. Contact areas
between residues were analyzed using the CMA component of the SPACE suite [48].
Contact surface area was defined as the area between two atoms into which a solvent
molecule cannot fit.
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The α4 and β2 structures with the smallest RMSDs from their respective average structures
were used for building pentameric models. The MATLAB® programming environment was
used to input structure coordinates, perform coordinate transformations, and save a pentamer
model in PDB format. Individual structures of α4 and β2 were first oriented such that each
helical axis of TM2 was parallel to the Z-axis. The helical axis of TM2 was determined
using only the backbone atoms of residues from 245 to 266 for α4 or 239 to 260 for β2. The
structures were then duplicated to form (α4)2(β2)3 and (α4)3(β2)2 pentamers, where the
center of the backbone atoms for each of the five TM2 helices was located on the vertices of
a five-fold symmetric pentagon. Orientations of the α4 and β2 subunits were adjusted to
satisfy the NMR chemical shift perturbation data, in which interacting residues between α4
and β2 were indicated. The pore lining residues (T248, S252, and V259) for the α4 subunit
were also set to be consistent with experimental results from the substituted cysteine
accessibility method [49]. We constructed two pentameric models of α4β2 with 2:3 and 3:2
ratios for α4 to β2. It is plausible that α4β2 in our sample preparation was in both
stoichiometries [50, 51]. The pentameric structural models were subjected to 2000 steps of
steepest descent minimization in NAMD 2.6 [52] with a 100 kcal/mol restraint on backbone
atoms. The pore radius profiles were obtained using the HOLE program [53] with a step size
of 0.2 Å along the pore axis.

3. Results and Discussion
3.1 Structures of the TM domains of the α4 and β2 nAChR subtypes

Fig. 1 shows representative NMR spectra of the α4 and β2 TM domains in the LDAO
micelles. Well-resolved peaks in the spectra for individual residues and sustained protein
stability were achieved only after intensively tweaking sample conditions. In addition to
mutating a few residues in the terminal and loop regions and choosing a proper detergent,
setting a proper molar ratio of detergent to protein (D:P) is also critical for the quality of
NMR spectra. We found that the D:P affected the oligomeric state of α4 or β2. When the
D:P was lower than 100, the number of resonance peaks in the α4 or β2 NMR spectra
decreased substantially (Fig. S2), indicating the formation of large size aggregates. When
the D:P was greater than 300, quality of the NMR spectra worsened after a short time
period, presumably due to an unfavorable oligomeric state for α4 or β2. An optimal
condition for protein stability and NMR spectral quality is to have the D:P in the range of
200 – 250. This condition has been used for acquiring data reported here. The oligomeric
state of α4 or β2 under this condition was determined using size exclusion chromatography
coupled with multi-angle light scattering (SEC-MALS). The average molar mass of the α4
or β2 assemblies was obtained by differentiating the contributions of protein and detergent
to the molar mass of each complex using the differential dn/dc and UV extinction
coefficients for the protein and detergent (Fig. S3). The SEC-MALS data showed that the
TM domains of α4 or β2 formed homo-pentamers with an average molar mass of 74.5 kDa
and 75.2 kDa, respectively.

Structures of the TM domains for subunits α4 and β2 (Fig. 2) were determined based on
constraints generated from NMR experiments. Details of constraints for distances, dihedral
angles, hydrogen bonding and statistics of the structural calculations are provided in the
supplemental materials (Fig. S4, Table S1, and Table S2). For each subunit type, there are
obvious structural characteristics of four helices. Sufficient long-range NOE restraints
between different TM helices were identified for generating tertiary folding (Fig. S5). The
backbone RMSD of the helical regions among the 20 lowest energy structures for α4 or β2 is
less than 1 A. Because of their high sequence homology (~88%), the α4 and β2 TM domains
share considerable structure similarity (Fig. 2C), and the backbone RMSD of their helical
regions is ~1.5 A. Variations of helical arrangement between α4 and β2 are small, as
reflected in similar patterns of residue contact maps of the two subunits (Fig. S6).
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To evaluate how a membrane mimetic environment affects folding of the TM domains, we
compared the β2 structure solved in LDAO micelles (Fig. 2) with our β2 structure (PDB ID:
2KSR) determined previously in the HFIP-water mixture [9]. Interestingly, the two β2
structures resembled each other, as shown in the superimposed structures and the overlapped
contact maps in Fig. S7. The result suggests that helix-helix packing forces dominate
assembly of the β2 TM domain. A notable difference between two ensembles of the β2
structures is the bending of the TM2 helix near the TM2-TM3 linker, which was observed in
the HFIP/water mixtures but not in LDAO. Such a conformational difference may reflect
differences in mimicking the water/membrane interface between the HFIP-water mixtures
and the LDAO micelles.

We also compared the α4 and β2 NMR structures with the structures of GLIC, GluCl, and
the α1 and β1 Torpedo nAChR (Fig. S6, Fig. S7). The helical length of the pore-lining TM2
in α4 and β2 resembles that in the GLIC and GluCl structures [13, 14, 16], but is shorter
than that in the Torpedo nAChR structural model [12]. The c-terminus of the TM2 helix in
α4, β2, GLIC and GluCl ends a few residues before the conserved proline in the TM2-TM3
linker. The same helical termination at the c-terminus of TM2 was also found previously in
different membrane mimetic environments [9, 54]. However, in the Torpedo nAChR
structural mode, the TM2 helix ends three residues after this conserved proline. Another
interesting observation is on the TM3-TM4 linkers of these proteins. Only two or six
residues link TM3 and TM4 in GLIC or GluCl, respectively. On the other hand, the TM3-
TM4 linker in the Torpedo or the α4β2 nAChR is a large intracellular domain that often
involves over a hundred residues. The TM3-TM4 linker in the Torpedo nAChR shows a
helical segment [12]. To have the protein size manageable for NMR, we removed the
majority of the intracellular domain and kept only 18 residues (13 original loop residues and
an additional five consecutive glycine residues) for the TM3-TM4 linker in α4 and β2. The
drastic variations in the number of the TM3-TM4 linker residues among these proteins do
not profoundly alter the four helical bundle motifs of the TM domains, as shown in Fig. S6
and Fig. S7. The structural resilience to modification of the intracellular region is in accord
with observations that the GABAA and 5HT3 receptors were functional after the deletion of
their intracellular domains [23].

3.2 Pentameric structure model of the α4β2 TM domain
To determine whether the TM domains of α4 and β2 interact with each other and their
oligomerization state in LDAO micelles, we performed NMR and SEC-MALS
measurements on mixtures of α4 and β2.

To obtain a better resolution, only one subunit type in the α4β2 mixture was 15N - or 13C-
labeled for each NMR spectrum. In other words, only one set of residues, either from α4 or
β2 in the mixture, was observed in a NMR spectrum. If there were no interactions between
α4 and β2, the NMR spectrum of the mixture would be the same as the spectrum of α4 or β2
alone. On the other hand, differences between the NMR spectra of a single subunit type and
the α4β2 mixture are indicative of interactions between two different subunits. As shown in
the spectral overlay of α4 and the α4β2 mixture in Fig. 3A, several residues of the α4
subunit were perturbed by the addition of the unlabeled β2. Similarly, β2 was perturbed in
the NMR spectra when it was mixed with the unlabeled α4. Fully annotated spectra for α4 in
the presence of β2 or β2 in the presence of α4 are provided in the supplementary materials
(Figs. S8 and S9). These NMR data suggested that the α4 and β2 TM domains interacted
with each other and formed oligomers in LDAO micelles. The oligomeric state of the α4 and
β2 TM domains in the NMR samples was determined using size exclusion chromatography
coupled with SEC-MALS. As shown in Fig. 3B, the average molar mass of the α4β2
oligomers across the elution peak is 74.6 kD, which is virtually the same as the expected
molar mass of 75 kD for a pentamer of the α4 and β2 TM domains. The TM domain of α4 or
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β2 alone also formed homo-pentamers (Fig. S3), though the intact α4 or β2 subunits have
not been found to form homo-pentamers. These results suggest that without the extracellular
domain the TM domain is sufficient for spontaneous pentameric assemblies in a membrane
mimetic environment.

Changes in the α4 and β2 NMR spectra due to a perturbation from their interacting partners
are relatively small and limited to only a few residues (Fig. 3A, Figs. S8 and S9). This is
understandable for at least two reasons. First, the pure or mixed subunits are in the same
oligomeric state. Second, the α4 and β2 TM domains contain a high percentage of identical
residues. Because of these reasons, when the adjacent subunit was changed from the same
type to a different type in the pentameric assemblies, the structure of the α4 or β2 subunit
did not change considerably. Thus, we built the α4β2 pentameric models using the NMR
subunit structures (Fig. 2). The NMR chemical shift perturbation data (Figs. S8 and S9)
were used to guide spatial arrangement of interacting residues between α4 and β2 for
building the model. For example, α4-L239 in the TM1 helix and β2-L294 in the TM3 helix
were both affected by the presence of the complementary subunit in the chemical shift
perturbation experiments. They are likely close to each other in space. Similar inter-subunit
pairs were identified at different locations along the membrane normal (Fig. S10). They
were used for assembling pentameric models.

The α4β2 nAChR was originally found to exist in the (α4)2(β2)3 stoichiometry [55, 56], but
later was also found to form (α4)3(β2)2 [50, 51]. Thus, we constructed two models for both
stoichiometries (Fig. 4). The pore lining residues, T2’, S6’, L9’, V13’, L17’, and α4-E20’ or
β2-K20’, agree with those determined previously using the substituted cysteine accessibility
method (SCAM) [49, 57]. The pore radius profiles in Fig. 5 show funnel shaped channels
for (α4)2(β2)3 and (α4)3(β2)2, opening widely at the extracellular end and narrowing
gradually toward the intracellular end. The funnel shaped pore profile with a widely opened
extracellular end was also observed in the GLIC and GluCl structures, where both channels
were concluded as open channels [13, 14, 16]. The (α4)2(β2)3 model is in an apparent open-
channel conformation and its minimal pore radius at T2’ (2.9 A ) is greater than that in
GLIC (~2.5 A). Although pore profiles resulting from backbones are nearly the same for
both models, the pore radius at L9’ is smaller in the (α4)3(β2)2 model. The sidechain of L9’
in α4 was protruded to the pore lumen slightly more than that in β2.

The α4β2 nAChR structural model analyses indicate that hydrophobic contact is the driving
force to assemble the TM domains into a pentamer (Fig. S11). Leucine-isoleucine contacts
(39%) and leucine-leucine contacts (31%) are the major residue contacts between two
subunits. Other hydrophobic residues, including valine and methionine, contribute 22% to
the inter-subunit residue contacts. There is only one pair of aromatic contacts (F298 -Y232)
between α4 and β2 subunits. The importance of hydrophobic residues in the pentameric
assembly was also demonstrated in a recent NMR study on phospholamban [58]. The
interlocking of alternating leucine and isoleucine residues forms a leucine/isoleucine zipper
to hold the phospholamban protomers [58].

The α4β2 nAChR structural models allow us to visualize findings implicated in previous
experiments. Changing the stoichiometry of α4 and β2 altered Ca2+ permeability in α4β2
nAChR. Increasing the proportion of negative charges in (α4)3(β2)2 was found to associate
with increasing permeability to Ca2+ [59]. Indeed, as shown in Fig. 4, positively charged β2-
K20’ and negatively charged α4-E20’ are located at the extracelluar pore entrance. A larger
proportion of α4-E20’ in (α4)3(β2)2 provides a benefit by attracting Ca2+ to the pore
entrance. Electrostatic interaction between β2-K20’ and α4-E20’ may also help to stabilize
pentameric assemblies [60]. Results from previous photoaffinity labeling experiments on the
α4β2 nAChR are well presented in, and explained by, our structural models. [125I]TID, a
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hydrophobic probe [61], was photolabeled onto the α4β2 nAChR for mapping the protein/
lipid interface [62]. We highlighted the residues labeled by [125I]TID in our α4β2 models
(Fig. S12), including homologous residues α4-C582 and β2-C445 in TM4, α4-C226 and α4-
C231 in TM1, and β2-C220 that is homologous to α4-C226 [62]. Clearly, our structures
show exposure of α4-C582 and β2-C445 in TM4 and α4-C231 in TM1 to lipids. More
interestingly, our structures show that α4-C582 and β2-C445 of TM4 face to α4-C226 and
β2-C220 of TM1, respectively. They form a [125I]TID binding pocket along with
surrounding lipids. Although α4-C226 and β2-C220 are less exposed to lipids, their labeling
by [125I]TID could be facilitated by α4-C582 and β2-C445 in the same pockets. However, if
the Torpedo nAChR model [12] is used for explaining the photolabeling data, α4-C582 and
β2-C445 seem to have no association with α4-C226 and β2-C220, respectively (Fig. S12).

3.3 Functional Measurements of the α4β2 Assembly
NMR chemical shift perturbation experiments in combination with the SEC-MALS analysis
provided evidence for the formation of the α4β2 pentameric assembly. In order to assess
whether the α4β2 TM domains formed channels, we reconstituted α4 and β2 into lipid
vesicles and performed the Na+ flux assay. Significant reduction of Sodium Green™ dye
fluorescence was observed in vesicles immediately after dilution of the extra-vesicle salt
concentration only if the vesicles contained the α4β2 assembly (Fig. 6A). During the same
measurement time, however, fluorescence remained almost the same in vesicles lacking
α4β2 (Fig. 6B), confirming that the observed fluorescence reduction in Fig. 6A was not due
to fluorescence bleaching. Efflux of Na+ from the α4β2 containing vesicles is a compelling
indication that the α4β2 TM domains are capable of forming channels transporting Na+

across a membrane. The data in Fig. 6 suggest that the open conformation of the α4β2
assembly is thermodynamically accessible at room temperature, though it cannot tell how
rapidly the closed and open conformations exchange spontaneously.

4. Conclusions
The study has delivered several novel findings. First, the atomic structures of the whole TM
domains of the α4 and β2 nAChR subunits are solved for the first time in micelles by using
NMR. These structures are valuable for understanding the biological and pharmacological
properties of the α4β2 nAChR, particularly for characterizing mechanisms of action for
existing drugs and indentifying plausible binding sites for new drugs. The methodology
reported here for achieving high quality NMR spectra of transmembrane proteins is also
useful for structural studies of other membrane proteins. Second, our SEC-MALS data
provided compelling evidence for a pentameric oligomerization state of the TM domains of
α4 and β2 as well as their mixtures under the NMR sample condition. The NMR results
showed that hydrophobic interaction was the primary driving force for oligomerization of
individual subunits. Third, the TM domains of α4 and β2 formed not merely pentameric
assemblies. They are ion channels permeable to Na+. Collectively, the study provides
structural insight into the TM domains of the α4β2 nAChR. It offers a valuable structural
framework for rationalizing extensive biochemical data collected previously on the α4β2
nAChR and for designing new therapeutic modulators.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The structures of the α4β2 TM domains are solved for the first time in micelles.

• The α4β2 TM domains alone can form pentameric channels permeable to Na+.

• The reported methods are useful for structural studies of other membrane
proteins.

• The study offers a framework for rationalizing previous data collected on α4β2.

• The structures are valuable for designing new therapeutic modulators of
nAChRs.
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Fig. 1.
1H-15N TROSY-HSQC spectra of the transmembrane domain of the human n-acetylcholine
receptor (A) α4 and (B) β2 subunits. The spectra were acquired with 0.25 mM α4 or β2 in 10
mM sodium acetate, 10 mM NaCl, and 60 mM LDAO at pH 4.7 and 45ºC. For clarity, the
chemical shift assignment for each peak is omitted here but provided in the Supplementary
Material.
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Fig. 2.
A bundle of the 20 lowest-energy NMR structures for (A) α4 and (B) β2. The color scheme
varies gradually from red in (A) or blue in (B) for TM1 to green for TM4. (C) Overlay of
the representative structures of α4 (red) with β2 (blue). Details of the NMR structural
restraints and statistics for the refined structures are provided in Supplementary Materials.
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Fig. 3.
(A) Overlay of 1H-15N TROSY-HSQC spectra of α4 in the absence (black) and presence
(green) of β2. Peaks circled in red showed changes in α4 chemical shift after the addition of
β2, signifying interactions between α4 and β2. A limited number of residues experiencing
changes in chemical shift suggested that the presence of β2 did not significantly alter the α4
structure. (B) Size exclusion chromatography–multi-angle light scattering analysis indicated
the formation of the α4β2 pentameric assembly. The molar mass (red) of the α4β2 assembly
in the nAChR α4β2-detergent complex was obtained using conjugate analysis and is shown
across the elution peak (black) from size exclusion chromatography. The average molar
mass of the α4β2 assembly is 74.6 kD. The dotted line indicates the expected molar mass of
75 kD.
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Fig. 4.
Top views of the α4β2 pentamer models: (A) (α4)2(β2)3 and (B) (α4)3(β2)2. Cartoon
presentations for α4 and β2 subunits are colored orange and gray, respectively. Residues of
TM2 are shown in surface and colored according to residue types, acidic in red, basic in
blue, polar in green, and non-polar in white.
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Fig. 5.
Pore-radius profiles for the (α4)2(β2)3 (black) and (α4)3(β2)2 (gray) models determined by
the backbone atoms (solid line) or including the side chains (dashed line). Positions of the
pore lining residues are highlighted. Pore profiles were generated using the HOLE program
[53].
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Fig. 6.
Fluorescence images of the Na+ flux assay on vesicles in the (A) presence and (B) absence
of the α4β2 nAChR channels at different time points. Membrane-impermeable Sodium
Green fluorescent dyes were enclosed and trapped inside the vesicles to probe intra-vesicle
Na+ concentrations. The fluorescence intensity of the vesicles with α4β2 channels in (A)
decreased significantly within a short period of time after washing away extra-vesicle
sodium, indicating Na+ efflux through the channels. However, fluorescence intensity of the
control vesicles without α4β2 in (B) remained nearly constant before and after washing
away extra-vesicle Na+ during the same tine period.
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