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Abstract
Thymus-derived, naturally-occurring CD4+ FoxP3+ regulatory T cells (nTreg) have suppressive
activity that is important for the establishment and maintenance of immune homeostasis in the
healthy state. Abundant reports have shown that they can suppress pathogenic processes in
autoimmune diseases and inhibit transplant rejection and graft-versus-host disease. Far less is
known about induced regulatory T cells (iTreg) that are generated from naïve T cells in the
periphery or in vitro, by directing naïve T cells to acquire suppressive function under the influence
of transforming growth factor-β (TGF-β) and other factors. In this review, we describe
mechanisms by which naïve T cells are thought to be converted into iTreg. We also discuss the
suppressive potential of iTreg, particularly in comparison to their naturally-occurring counterparts,
focusing on those reports in which direct comparisons have been made. Based on current
knowledge, we consider the rationale for using iTreg versus nTreg in clinical trials.
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1. INTRODUCTION
Numerous studies have demonstrated the importance of regulatory T cells in maintaining
tolerance to auto- and allo-antigens (Ags). Naturally-occurring Treg (nTreg), that are
generated in the thymus, were first described in mice by Sakaguchi et al in 1995 [1] and
their suppressive function was later associated with expression of the winged helix
transcription factor Forkhead Box P3 (FoxP3) [2]. Additionally, human nTreg can be
identified by expression of CD4+, in combination with cell surface CD25(IL-2Rα)hi, and the
absence of CD127(IL-7Rα) [3]. Adoptive transfer of nTreg has been successful in animal
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models of autoimmune diseases and transplantation (Tx) [4, 5]. However, as the frequency
of nTreg in healthy humans is only ~5% of CD4+ T cells, it is difficult to obtain sufficient
numbers of these cells for clinical testing [6, 7]. Many groups have reported the marked
expansion of nTreg from a CD4+ CD25hi (in combination with CD127− or CD45RA+)
starting population by T cell Ag receptor (TCR) stimulation in the presence of exogenous
IL-2 [8, 9]. However, during prolonged expansion for 3–4 weeks, T effector cells (Teff)
outgrow nTreg, resulting in reduction of the suppressive capacity of the cultured cells [3, 7].
A shorter expansion period would avoid this difficulty, but the limited nTreg number that
can be generated under these conditions would constitute a problem when Treg are to be
used in a clinical setting.

To address this issue, various groups have sought to generate Treg from a naïve T cell
starting population. Beginning in 2002, the first reports were published on adaptive or
induced Treg (iTreg) that are CD4+FoxP3+ cells which are generated in the periphery, and
also that have suppressive capacity [10–12]. These iTreg are generated in vivo from naïve T
cells in peripheral lymphoid organs during immunological responses to Ag stimulation, a
phenomenon that is replicated in vitro through stimulation of mouse or human T cells under
specific conditions. Various groups have observed that iTreg can be generated easily by
conversion of much more abundant naïve CD4+ T cells in vitro, allowing much higher
numbers of Treg to be obtained [10–12]. In the in vitro setting, iTreg can be generated in
either a polyclonal or an Ag-specific fashion. The percentage of iTreg in the total population
of circulating Treg in healthy mice and humans is thought to be in the range <3 to 30% [13,
14]. Here, we review current knowledge on the generation of iTreg and discuss their
suppressive function in comparison to nTreg.

2. THE INDUCTION OF TREG FROM NAÏVE T CELLS
2.1 In vivo pathways of iTreg generation

Several pathways through which Treg can be induced in the periphery in vivo have been
described. In general, all Ag-presenting cells (APC) have the potential to induce Treg. Thus,
dendritic cells (DC) in the gut-associated lymphoid tissue (GALT) can promote iTreg
conversion [15–18]. However, B cells [19]; mesenchymal stem cells [20, 21] and myeloid-
derived suppressor cells [22] are also able to promote conversion.

The presentation of self- or foreign Ag is important for conversion to the Treg phenotype. In
vivo generation not only occurs as a homeostatic phenomenon, but also during allo immune
responses. iTreg reactive to foreign Ag are generated in response to microbes and food Ags
in the intestinal mucosa [17], during the induction of tolerance to chicken ovalbumin (OVA)
in the mesenteric lymph nodes [23], and by OVA-presenting DC [24]. They are also found
in response to self Ag in chronically inflamed tissues [25], in response to self Ag in a mouse
autoimmune diabetes model [26], and during homeostatic repopulation in lymphopenic hosts
reconstituted with Treg-depleted cells [27, 28]. Moreover, generation of iTreg in response to
donor tissue in transplanted organs has been studied extensively. Plasmacytoid DC play an
important role in their generation under alloAg stimulation in the transplant setting [29].
Immunosuppressive therapy is also of major influence; different studies show preferential
generation of iTreg with use of non-depleting anti-CD4 mAb [30], anti-CD154 mAb
+rapamycin [31], or rapamycin alone [32]. By contrast, cyclosporine is detrimental for iTreg
generation in vitro as well as in vivo [32].

2.2 Infectious tolerance: nTreg can generate iTreg from conventional CD4+ T cells
Although the concept of infectious tolerance has long been recognized as a phenomenon in
which the T cells of a tolerant mouse or rat can transfer their suppressive activity to
conventional CD4+ T cells in a naïve host [33–35], a possible mechanism underlying this
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phenomenon has been described much more recently. Two groups have reported the
induction of Treg from CD4+CD25− T cells by nTreg [36, 37]. Both studies showed that
human nTreg could induce anergic suppressor cells from a CD4+ CD25− population.
Conversion occurred in a population that did not contain FoxP3+ cells; during conventional
immune responses in vivo, this process is tightly regulated. Homeostatic regulation
guarantees the maintenance of an appropriate balance between Treg and conventional T
cells. Cell-cell contact between nTreg and naïve CD4+ T cells was necessary for the
generation of iTreg, but these iTreg could, in turn, suppress proliferation of Teff in a cell
contact-independent fashion. Key cytokines that have been associated with the suppressive
activity of iTreg are transforming-growth factor-β (TGF-β) [37] and IL-10 [36]. The
mechanisms of infectious tolerance have been further elucidated recently by Kendal et al
[38], who have shown that the presence of Treg is crucial for continuous suppression of Teff
cells. Peripherally-induced FoxP3+ Treg can sustain tolerance by converting naïve T cells to
the next generation of FoxP3+ cells.

3. KEY COMPONENTS OF IN VITRO GENERATION OF iTREG: IL-2, TGF-β
AND COSTIMULATION

IL-2 is required for the generation and expansion of nTreg, together with stimulation of the
TCR (CD3) and costimulation (via CD28) [5, 9]. By contrast, the requirements for iTreg
generation and expansion are still under investigation. The main factors that have been
identified as crucial for induction of FoxP3 expression in CD4+CD25− cells are IL-2 and
TGF-β [10, 12]. Zheng et al [12] first showed that CD4+ suppressor cells could be generated
in vitro from human CD4+CD25− cells with TGF-β and stimulation by irradiated superAg-
presenting B cells. The iTreg generated had a CD4+CD25hi cytotoxic T lymphocyte Ag 4
(CTLA4)+ phenotype, exhibited reduced production of interferon (IFN)-γ and IL-10, and
suppressed autologous antibody (Ab) production through cell contact as well as TGF-β
production. Chen et al [10] reported that TGF-β, together with anti-CD3 and APC
stimulation could potently convert mouse CD4+CD25− Teff into Treg
(CD4+CD25+CD45RB−) that suppressed allergic responses in a mouse asthma model.
Subsequently, several groups have demonstrated that strong costimulation provided by B7
through CD28 during iTreg generation prevents FoxP3 upregulation and renders cells with
poor suppressive function [11, 19, 39]. By contrast, upregulation of CTLA4, which is the
negative counterpart of CD28 in B7-mediated regulation [39] is required for the suppressor
function of iTreg [28, 40–43]. Fantini et al [44] observed that exogenous IL-2 is required for
in vivo generation and expansion of iTreg in a murine colitis model, and that TGF-β-induced
FoxP3 expression is associated with downregulation of the inhibitory signaling protein and
transcription factor mothers against decapentaplegic (Smad)7, which is a TGF-β type 1
receptor antagonist. This makes iTreg susceptible to TGF-β-mediated regulatory effects.
These observations were confirmed by in vitro experiments with neutralizing anti-IL-2 Abs
in which IL-2 was shown to be crucial for the TGF-β-mediated conversion of naive CD4+ T
cells [45]. A recent development is the use of IL-2/anti-IL-2 mAb complexes that deliver a
consistent IL-2 level to the cultured cells which is not dependent on the cells’ own IL-2
secretion, and is a potent method to generate iTreg with stable FoxP3 expression [46].
Altogether, these observations suggest key roles for IL-2, TGF-β, and negative
costimulation through CTLA4 in the generation of iTreg, which are summarized in Table 1.

4. AUGMENTATION OF iTREG GENERATION
4.1 The role of retinoic acid in iTreg conversion

Vitamin A is an important metabolite of the body that influences immune regulation. Its
deficiency has been associated with infectious diseases in children [47]. DC in the GALT
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can produce the vitamin A derivative retinoic acid (RA), which is associated with gut-
homing of T cells, as well as enhanced FoxP3 expression of CD4+ T cells in mice [19, 48]
and humans [49]. RA functions synergistically with TGF-β in the mouse intestine to induce
FoxP3 expression in naïve T cells upon Ag activation [15, 17]. When the active derivative of
RA, all-trans retinoic acid (ATRA), is added to cultures of CD4+FoxP3− T cells, together
with IL-2, anti-CD3/28 and TGF-β, a dose-dependent significant increase in FoxP3
expression is found when compared to culture without ATRA [19]. The cells express high
levels of the CC chemokine receptor CCR9 and α4β7, which are homing receptors
associated with the intestinal lamina propria [17, 50, 51]. The mechanism by which RA
enhances FoxP3 expression and suppressive capacity in iTreg remains under investigation.
Different studies demonstrate that it functions either through a cytokine-dependent
mechanism, by blocking the secretion of pro-inflammatory cytokines by memory T cells
[52], or through cytokine-independent mechanisms, as RA retains its inhibitory effect in the
absence of cytokines [53].

The influence of ATRA on iTreg generation has been confirmed in studies showing the
generation of human iTreg with stable FoxP3 expression in vitro using ATRA+TGF-β.
Combination of ATRA+TGF-β significantly enhances FoxP3 expression of iTreg, as shown
by our own studies (Figure 1). Moreover, iTreg generated with ATRA+TGF-β have
enhanced suppressive capacity compared to either ATRA or TGF-β alone [54].

By contrast, when human nTreg are cultured with ATRA, this is not associated with
increased expansion or suppressor function, although culture of nTreg in ATRA in
combination with rapamycin enhances their suppressive capacity [55]. These findings
suggest an important role for ATRA in the induction, but not in the maintenance, of
regulatory function in nTreg.

4.2 Rapamycin functions synergistically with TGF-β
The immunosuppressive pro-drug rapamycin is known to selectively inhibit the expansion
and function of Teff by blocking the serine/threonine kinase activity of the mammalian
target of rapamycin (mTOR), but still allows nTreg to proliferate [56] (for further details see
Thomson et al [57]). Several groups have studied the effects of rapamycin in the context of
iTreg generation. Rapamycin can enhance the de novo generation of iTreg in bulk CD4+ as
well as CD4+CD25− cell populations [58]. Mechanistic studies by Haxhinasto et al [59]
have revealed that the active form of the kinase AKT (AKT*) selectively suppresses the de
novo expression of FoxP3 induced by TGF-β in murine CD4+CD25− cells, without affecting
the already established FoxP3 levels of nTreg. This effect of AKT* is reduced by
rapamycin, suggesting a protective effect of rapamycin on the induction of Treg. These
findings are supported by the study of Delgoffe et al [60], who showed that mTOR is
required for the development of effector T cells from bulk CD4+ T cells. In mTOR-deficient
mice, T cells differentiate into iTreg even under strong cytokine-induced skewing conditions
for Th1, Th2 or Th17 generation. This is associated with decreased signal transducer and
activator of transcription (STAT) activation and hyperactive Smad3 phosphorylation,
resulting in higher sensitivity of cells to TGF-β.

In a study of non-human primate (baboon) cells, rapamycin increased the induction of
FoxP3+ cells from purified CD4+ cells by ~2-fold (11.2% to 20.6%). CD4+ CD25+ cells
isolated from the expanded population potently suppressed a xenogeneic T cell proliferative
response [61]. In a recent study of human cells [55]. nTreg expanded in the presence of
rapamycin showed improved capacity to induce infectious tolerance. Thus, CD4+ FoxP3−
cells cocultured with nTreg for 3 days showed 8% FoxP3+ expression and significant IL-2
production; however, if the nTreg were expanded in the presence of rapamycin (or
rapamycin+ATRA), there was a 2-fold increase in FoxP3 induction in Teff, and IL-2
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production was abrogated. Another recent study describes the potent ability of a
combination of rapamycin and TGF-β to induce FoxP3 expression in human naïve T cells
after expansion in culture for up to 2 weeks [62]. Moreover, the iTreg that were generated
by this method suppressed GVHD in a xenogeneic model.

An important role in the conversion and function of iTreg in relation to mTOR activity has
been found for the coregulatory B7 family member programmed death-ligand1 (PD-L1, =
B7-H1), which is expressed on hematopoetic and parenchymal cells. Expression of PD-L1 is
associated with the inhibition of autoreactive CD4+ T cell responses and peripheral T cell
tolerance [63]. PD-L1 synergizes with TGF-β to inhibit the AKT-mTOR axis, thereby
promoting iTreg development and function via the same pathway as rapamycin [64].
Cobbold et al [65] have linked the effect of mTOR inhibition to infectious tolerance by
showing that enzymes produced by nTreg consume certain amino acids that are essential for
T cell proliferation, resulting in inhibition of the mTOR pathway and induction of FoxP3
expression. These studies suggest that upregulation of PD-L1 may be used as a strategy to
further optimize iTreg conversion.

Taken together, these studies show that mTOR inhibition with rapamycin can enhance
induction of FoxP3+ Treg from a naïve T cell population, and function synergistically with
ATRA (Table 1). This supports the concept that use of rapamycin as maintenance therapy
may constitute tolerogenic immunosuppression [66, 67].

5. ALTERNATIVE APPROACH: GENETIC ENGINEERING TO INDUCE FOXP3
EXPRESSION

An alternative strategy to induce suppressor function in conventional T cells is ex vivo
FoxP3 gene transfer using a viral vector. This approach was studied by Hori et al [68], who
demonstrated the conversion of 30–60% of mouse CD4+CD25− cells to the Treg phenotype
after forced expression of FoxP3 was induced by retroviral transduction. The iTreg
generated had reduced cytokine production and a potent inhibitory effect on autologous Teff
proliferation. Moreover, the FoxP3+ cells generated were capable of abrogating autoimmune
disease in a mouse inflammatory bowel disease model. Lentivirus-based transduction of the
FoxP3 transcription factor was explored by Allen et al [6], after it was found that
overexpression of FoxP3 by regular retroviral transduction did not lead consistently to
generation of suppressive Treg [69]. In contrast to conventional retroviral vectors, lentiviral
vectors have the ability to replicate in non-cycling cells, rendering them very efficient in
gene transduction. A lentiviral vector was used to induce FoxP3 in human FoxP3−cells, and
a maximum transduction efficiency of 76–97% was achieved. The FoxP3+ cells had an
nTreg phenotype and potent suppressor function. Additionally, it was shown that lentivirus-
driven FoxP3 expression could be maintained for several weeks, whereas expanded nTreg
lost FoxP3 expression upon prolonged culture.

These studies indicate that there are several ways to obtain high numbers of FoxP3+

suppressor cells from a naïve CD4+ T cell population, and promising results provide a strong
rationale for the use of viral transduction in further studies.

6. IN VIVO PREVALENCE OF iTREG
The incidence of iTreg in vivo has been determined in different settings. When their
frequency was assessed by enumeration of FoxP3+ cells after homeostatic repopulation in a
FoxP3− mouse model, it was found to be 8% [28] and 4–7% [27] of total CD4+ cells,
respectively. However, in a study without lymphodepletion, little to no conversion was
found upon stimulation with self Ag [14]. A solution to the issue of distinguishing nTreg
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from iTreg would preferably be through a marker that is expressed specifically on one, but
not the other cell type. The development of the T lymphocyte lineage is linked to one of the
members of the Ikaros transcription factor family, Helios [70]. Expression of Helios is
upregulated in nTreg by binding to the FoxP3 promoter; upon Helios elimination, FoxP3
expression and the suppressive function of nTreg is inhibited [71]. A recent study [13] used
Helios expression to assess nTreg/iTreg proportions in healthy mice and humans. Helios was
expressed by 100% of thymic CD4+FoxP3+ nTreg, but was not expressed when mouse or
human FoxP3+ iTreg were generated in vitro. Both mouse and human CD4+FoxP3+ cells
from healthy subjects are 70% Helios+[13], suggesting that 30% of circulating FoxP3+ Treg
are peripherally-induced iTreg. Based on these studies, it can be concluded that there is a
significant percentage of circulating iTreg in healthy individuals, although the exact
proportion of iTreg within the total FoxP3+ population needs to be better defined.

7. TREG PLASTICITY: Th17 DIFFERENTIATION
Conversion of naïve T cells carries the risk that not all cells will be converted to Treg, and
that remaining CD4+ T effector cells will contaminate the cultures. However, during the
activation of murine naïve CD4+ T cells in the presence of TGF-β, there is a crucial role for
IL-6, a common pro-inflammatory cytokine produced by Teff and macrophages. When
combined with TGF-β, this acute-phase protein is associated directly with differentiation of
CD4+ T cells into pro-inflammatory Th17 cells, rather than into the FoxP3+ iTreg phenotype
in the mouse model, suggesting that an inflammatory milieu can drive naïve cells to convert
into effector rather than suppressor cells [72, 73]. Moreover, IL-6 can convert already
established FoxP3+ nTreg into Th17 cells [74, 75]. The capacity of IL-6 (or an inflammatory
milieu in general) to direct T cells to an immune effector rather than regulatory phenotype is
a problematic issue for expansion of a pure Treg population in vitro, and could also be of
crucial importance when Treg are used in a clinical setting of autoimmune disease or
transplantation, where, despite immunosuppressive therapy, some degree of inflammatory
response can be expected.

In addition to the influence of IL-6, high levels of TCR/CD28 costimulation are associated
with induction of nuclear factor-κB (NF-κB) activation, which potently inhibits iTreg
differentiation in naïve CD4+ T cells. Indeed, when naïve CD4+ T cells are stimulated with
anti-CD28 and high doses of anti-CD3, expression of the proinflammatory cytokines IL-17
and IL-9 is enhanced significantly, and the frequency of FoxP3+ cells diminished [39]. As
the main goal of iTreg induction is to generate potent suppressor cells, contamination by
outgrowth of effector cells is likely to have a detrimental effect on their potential
application. These recent observations raise concerns with regard to the preparation of Treg
for therapeutic application, and indicate that a reliable method to assess suppressive capacity
might become a necessary goal.

A promising and straightforward solution to overcome the detrimental outgrowth of Th17
cells in the Treg population is the addition of ATRA or rapamycin during the expansion of
naïve T cells. ATRA potently suppresses Th17 differentiation of naïve T cells and drives
them to iTreg conversion with stable FoxP3+ expression, despite an IL-6-induced
inflammatory environment [23, 76]. Recently, it has been shown that ATRA has similar
effects on nTreg stability as on iTreg, since it prevents their conversion to Th17 cells [77].
Similar to the inhibitory effect of ATRA on TGF-β-mediated iTreg/Th17 differentiation,
rapamycin inhibits the development of Th17 cells from bulk CD4+ cells, as well as
CD4+CD25− populations under Th17-skewing conditions [58]. Therefore, it is likely that
iTreg generated in vitro under the influence of ATRA or rapamycin will have a stable
phenotype and function. It is not clear if this same effect can be obtained by in vivo
administration of ATRA or rapamycin.
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Importantly, in experiments involving human cells, it has been found that naïve T cells do
not differentiate into Th17 cells when stimulated with TGF-β and IL-6 alone, but that this
requires additional stimulation by IL-1β ([78], IL-23 [79], or DC [80]. Unfortunately,
reports on human iTreg have not determined the Treg-skewing effects of ATRA or
rapamycin on iTreg/Th17 differentiation. Although this knowledge is perhaps not essential
for in vitro generation of these cells (since human naïve T cells need additional stimulation
to differentiate into Th17 cells, and cells and cytokine levels can be strictly controlled during
laboratory experiments), it will certainly be an important issue for future clinical application
of iTreg.

8. iTREG VS nTREG: DIRECT COMPARISON
Induced Treg have significant suppressive function when compared to baseline levels of T
cell proliferation (baseline = responder cells + stimulation only; no Treg or control T cells
added), but a wide range of suppressive efficacy has been reported depending on methods of
induction [10, 12, 54, 58]. To adequately compare the function of iTreg with that of nTreg, it
is necessary to test both cell types in the same system and under identical conditions.
Interestingly, only a few groups that have generated iTreg have undertaken this direct
comparison of the function of iTreg versus nTreg. The few studies on iTreg in the mouse
model that have done so all show the level of suppression of fresh nTreg compared to
expanded iTreg.

Conversion of CD4+CD25− T cells by 5 days stimulation with anti-CD3, irradiated APC and
IL-2 +/− TGF-β showed, when compared to fresh CD4+CD25− T cells, a significant
increase in normalized FoxP3 mRNA levels which was about 50% of the nTreg level. These
5-day expanded iTreg potently suppressed baseline CD4+CD25− Teff proliferation to levels
comparable to those when nTreg were assessed [11]. In another study using a similar
method of induction, murine CD4+CD25− T cells were cultured for 5 days with plate-bound
anti-CD3 and soluble anti-CD28 +/− IL-2 +/− TGF-β. The frequency of CD25+FoxP3+

iTreg increased significantly from 3% (no TGF-β) to 53% when IL-2+TGF-β was added to
the cultures. In a suppression assay, the addition of TGF-β-expanded iTreg or fresh nTreg
(1:1 to responders) resulted in similar suppression of Teff proliferation to 5–10% of baseline
under both conditions. These findings were then translated to an in vivo colitis model, where
iTreg infusion resulted in a marked decrease in colonic inflammation, although these results
were not compared to nTreg [81].

Very promising results have also been reported by Benson et al [19], who showed almost
100% conversion to CD4+FoxP3+ iTreg by 4 days expansion of CD4+FoxP3− Tcells with
anti-CD3, anti-CD28, IL-2, TGF-β and ATRA. Expanded iTreg exhibited similar
suppressive activity as fresh nTreg when added to responder CD4+ cells in a 1:1 ratio. At a
ratio of 1:8 (Treg:responder), iTreg retained some suppressive effect, whereas fresh nTreg
had lost their suppressive capacity. These studies in the mouse model provide evidence that
iTreg can exhibit suppressive function at a similar strength as nTreg.

In a study in which baboon bulk CD4+ T cells were expanded in the presence of anti-
CD3/28 beads, IL-2 and rapamycin for 4 weeks, increased expression of FoxP3+ of 20%
(11% when cultured without rapamycin) was found. The CD25hi cells were purified after
expansion, and added to an MLR of autologous baboon CD4+CD25− responders stimulated
with xenogeneic (porcine) irradiated PBMC. Compared to freshly-isolated nTreg, iTreg
cultured with rapamycin showed similar, potent inhibition of the xenogeneic T cell response
[61].

Interestingly, a recent study describes the induction of human Treg by bacterial superAgs,
which provide potent polyclonal activation [82]. Stimulation of human CD4+CD25− T cells
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with Streptococcal pyrogenic exotoxin and autologous APC alone (without the addition of
IL-2 or TGF-β) resulted in the induction of 20% CD25+FoxP3+ T cells after 3 days
stimulation (5% without bacterial Ag stimulation). Subsequent addition of Treg in an
autologous CD4+CD25− proliferation assay showed that, at 1:1 ratio, fresh nTreg could
reduce proliferation to 20% of baseline, compared to 40% for iTreg; however, at 1:10, nTreg
were still suppressive (55%), whereas iTreg had lost their suppressive effect (80%).

Overall, these studies provide promising evidence that, similar to the findings in the mouse
model, in humans and primates iTreg generated from naïve T cells can acquire suppressive
function of similar strength as their nTreg counterparts.

9. FUTURE PROSPECTS
Many questions remain unresolved regarding pathways and optimal conditions for the
induction of Treg from a naïve T cell population and how the resulting population compares
to nTreg. Although recent reports are promising, there are very few studies that provide a
direct comparison of nTreg and iTreg. This will be of great importance when such studies
are translated to clinical trials in the near future, especially in regard to the quantity of cells
needed. Notably, a recent study shows that human nTreg can be expanded on a much greater
scale than had been reported previously and used for the first time in clinical trials [83, 84],
thus making the cell number that can be obtained of less importance when proposing the use
of iTreg. To make iTreg true competitors of their naturally-occurring counterpart, the
suppressive function of iTreg should be at least equal to that of nTreg.

One concern that may arise when translating studies on iTreg to clinical trials, is that not all
cells from the starting population would be converted, thus leaving a remainder of
contaminating Teff. However, this concern could be overcome by sorting the iTreg after
expansion (e.g., based on expression of CD25hi, CD45RA+, or CCR9, depending on the
method of iTreg generation).

Another critical point is the potential to drive a subset of naïve T cells to the Th17 or other
effector phenotype, rather than to iTreg during stimulation - a risk that cannot be
underestimated. Although it is well-demonstrated that this can be abrogated by the use of
ATRA or rapamycin in in vitro culture, the potential of Th17 differentiation in vivo may
remain. Interestingly, RA has also been associated recently with promotion of Teff
responses, suggesting a dual function for proinflammatory as well as suppressive T cell
responses [85]. A possible solution to overcome the release of pro-inflammatory under RA
stimulation would be by blocking IL-15 during iTreg stimulation [86]. Moreover, most
studies on iTreg have been carried out in mice, but Treg in humans have already proven
different from those in the mouse. These differences can be found, for example, in the
conversion of naïve T cells to Th17 effector cells (in humans this does not occur when
stimulation is with TGF-β and IL-6 alone) or in the expression of FoxP3. In mice, FoxP3
expression is strictly related to suppressor function, while human activated T cells can
transiently express intermediate levels of FoxP3. This however, is at a lower level than that
of human nTreg, and is not associated with suppressor function [87, 88]. Moreover,
activated human conventional CD4+ T cells can acquire suppressive capacity while not
expressing FoxP3.

Another point of interest is that in certain diseases, e.g., in autoimmune disorders, patients
may have defective nTreg, which may be the immunologic basis of their disease. Although
studies have shown that e.g., in type-1 diabetes, nTreg can be expanded and exert
suppressive function that is equal to that of healthy controls [89], this may not be the case in
other diseases. In diseases where the nTreg of the patient are less functional, e.g., the
immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome,
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generation of iTreg may be beneficial and more effective than expansion of autologous
nTreg. Moreover, these iTreg can be generated in an Ag-specific fashion, thereby making
the cells a disease- (or donor-organ) specific treatment.

Remaining concerns that need to be addressed before clinical trials are initiated, include the
stability of the iTreg (and nTreg) phenotype, particularly considering their interaction with
inflammatory cells and immunosuppressive therapy. As described by Feuerer et al [90],
various subtypes of Treg have different gene expression profiles, suggesting a different
function for each type. Furthermore, the importance of appropriate migration of the cells
(reviewed by Zhang et al [91]), which determines their fate after in vivo injection, and a
detailed comparison of the efficacy of nTreg versus iTreg in vivo need to be studied. Many
factors are likely to affect homeostasis of transferred Treg, including IL-2, TGF-β levels and
those of other regulators such as mTOR inhibitors or Vitamin A. Non-human primate
models can provide valuable information on the in vivo function of Treg (reviewed by Dons
et al [92]); in this regard, comparison of iTreg to nTreg might provide further information on
the function of both cell types, before use of these cells is translated to clinical trials.

10. CONCLUDING REMARKS
Regulatory T cells have been the subject of intense investigation for the last decade, and as
the first clinical trials to ascertain the safety of ex-vivo expanded nTreg infusion in humans
are being initiated [83, 84], determination of the necessary numbers of Treg has become
increasingly pressing. The induction of a regulatory phenotype from naïve CD4+CD25− Teff
has become a well-established approach to convert large numbers of T cells into functional
Treg. Although various methods for the generation of iTreg have been published, a
consensus exists in regard to the basic procedure of induction, using IL-2, TGF-β and low
costimulation to generate potently suppressive FoxP3+ iTreg. Rapamycin and ATRA are
proven to be valuable, as these reagents not only enhance FoxP3 induction, but also actively
prevent the differentiation of naïve T cells into Th17 cells, thus providing a more stable
phenotype. iTreg have proven to be stable and potent suppressor cells that seem of similar
suppressive strength to nTreg. Perhaps optimal results will be achieved when both cell types
are being used in concert, a concept that still needs to be explored.

Altogether, the induction of a regulatory phenotype provides a promising means to generate
potently suppressive Treg with stable FoxP3 expression in significantly higher numbers than
can be obtained by expansion of nTreg, thereby having the potential for use in large-scale
clinical trials.
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Figure 1. Human iTreg generation with TGF-β and ATRA
Human CD4+ T cells were obtained by magnetic bead sorting (CD4+ kit, Miltenyi) of
PBMC (purity >90%; 5% FoxP3+) and stimulated with high-dose IL-2 +/− TGF-β (20 ng/
ml) +/− ATRA (10 ng/ml). After 6 days, live CD4+ cells were assessed for FoxP3
expression by flow cytometry. Cells cultured in the presence of TGF-β + ATRA showed
50% FoxP3+ expression while cells cultured with only IL-2 were only 25% FoxP3+; the
remaining 75% of the cells showed an intermediate level of FoxP3.
(A) Gating for FoxP3+ cells (horizontal bar). Red: isotype; green: no TGF-β, no ATRA;
blue: TGF-β only; brown: TGF-β + ATRA.
(B) Quantification of FoxP3+ cells: 50% of cells cultured with TGF-β + ATRA acquired
FoxP3+ phenotype.
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Table 1

Properties of nTreg and iTreg

nTreg (references) iTreg (references)

Generation Tissue Thymus (1, 2) Secondary lymphoid organs, inflamed tissue,
site of transplant (13, 17, 25, 30)

Cytokines required IL-2 or IL-15 (6, 9) IL-2 +TGF-β (10, 12, 45)

Costimulation required CD28 (6, 9) CTLA4 (28, 39, 42, 43)

Improvement of suppressive
function by reagent

ATRA No (54) Yes (15, 17, 19, 53)

Rapamycin Yes (54)/No (58) Yes (57, 59, 63)

Specificity Self or alloAg (1, 2) AlloAgs, food allergens, gut microbes,
transplanted tissue, self (inflammation) (15,
17, 25, 26, 30)

Th17 differentiation IL-6-mediated Yes (73, 74) Yes (39, 71, 72)

Antagonized by ATRA Yes (76) Yes (23, 75)

Antagonized by rapamycin Has not yet been addressed Yes (57)

Intracellular marker FoxP3 Yes (1, 2) Yes (10, 11)

Helios Yes (70) No (13)
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