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Recent HIV prevention trials have given hope that a suite of interventions which effectively
reduce individuals' risk of HIV infection will soon be widely available [1–6]. In two studies,
the RV144 and CAPRISA 004 trials, the relative risk of infection increased towards the null
value of one over time. The RV144 and CAPRISA investigators interpreted these trends as
evidence that the interventions’ effects declined over the study period and suggested that
their respective findings may be explained by waning vaccine efficacy and decreasing
adherence [2,7,8]. Here, we discuss these trends in the trials’ results and note that, in
addition to the possible mechanisms cited by the investigators, their apparent waning
efficacy may be explained in part by selection bias due to heterogeneity in infection risk, an
explanation that has not been considered previously. This bias arises when study participants
vary in their susceptibility to infection, e.g., because of differences in immune systems or
exposure to infection. This can lead to increasing differences in the composition of the study
population in each trial arm over time as those at highest risk become infected, and can
occur despite comparability between arms at baseline. This issue is termed “frailty” in
statistics and demography, where a large body of literature addresses the matter [9–14]. We
also discuss several methods that can improve understanding of the effects of infectious
disease interventions and risk factors by assessing the impact of frailty on results.

Variation in frailty among study participants likely creates trends in the incidence of
infection over the course of a study. To understand this phenomenon, consider a theoretical
placebo-controlled randomized trial in which the risk of infection varies among participants.
The highest risk individuals in such a trial are expected to become infected earlier, leaving a
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pool of lower risk individuals at later time points. If the intervention being tested is
effective, the decline in the incidence of infection over time will be larger in the placebo arm
because these individuals experience no direct protection from the intervention, and so those
at high-risk will be quickly depleted, thereby lowering the infection rate over follow-up.
However, high-risk individuals in the active arm may remain uninfected due to the
protection conferred by the intervention, so the active arm’s infection rate will be less
affected. Consequently, the time-specific rate ratio (RR) for treatment vs. placebo will
increase over time from a value of less than one initially to a value that may exceed one
later. This phenomenon has also been termed “survivor bias”, “survivor cohort effect”,
“crossing of hazards” and “depletion of susceptibles”, and is observed in both chronic and
infectious disease research [15–19].

Many randomized trials report a weighted average of the time-specific RR over the entire
follow-up, but, because of the phenomenon described above, the average RR will become
increasingly attenuated as follow-up time increases. This attenuation will occur even if all
risk factors were balanced between study arms at baseline, as expected in a large
randomized trial, and if the biological efficacy of the intervention is constant over time,
which can lead investigators to reject an efficacious intervention. Because the results of any
rate analysis can be affected by frailty, it can also cause investigators to overlook a risk
factor for infection that is in fact harmful.

To illustrate these issues we assessed whether the results of the RV144 and CAPRISA trials
are consistent with an attenuation of the average RR due to frailty [1,2]. Though we focused
on the widely discussed RR estimates, the RV144 team also presented Kaplan-Meier
estimates [7]. Tables 1–2 show average incidence rates of infection and RRs calculated from
baseline up to several time points in each trial [1,2]. Both studies show decreasing incidence
rates in the placebo arms and generally increasing RRs. The incidence rate of infection in
the intervention arm of the CAPRISA microbicide trial decreased slightly [2]. The incidence
rate of infection in the vaccine arm of the RV144 trial increased from 0–12 months to 0–24
months; it then decreased slightly but remained below that of the placebo arm.

To test for variation in the time-specific RRs, we fit a Cox model with a product
(“interaction”) term between the intervention arm and time (on the logarithmic scale) on
study [20]. A positive coefficient for this product term would indicate that the time-specific
RR increases over time, in the context of prevention trials where the average RR is less than
one, this implies that the average RR becomes attenuated over time. Figure 2C of the RV144
publication provides information on the number of infections and loss to follow-up in each
arm for various time points [1]. Using these data we reconstructed an interval-censored
dataset of the trial for analysis with a Cox model. The coefficient of the product term was
0.42, indicating that the time-specific RR increased over time, but the 95% confidence
interval was wide (−0.09, 0.93). However, as such tests have limited power, failure to reject
the null hypothesis cannot be taken as strong evidence that there was no attenuation over
time [21]. Because any possible trend in estimates may not be linear, we conducted several
other tests of the proportional hazards assumption (e.g., using quadratic forms of time), and
each produced similar results. There was insufficient information to perform a similar test
on the CAPRISA data.

The attenuation of the average RR suggested by our analysis of the RV144 trial may have
been due to frailty, waning efficacy, differential loss to follow-up, random variability, or any
combination of the above. Furthermore, we note that frailty will have a large impact on
results only when disease incidence is high in at least one subgroup. The RV144
investigators report that immune responses among the vaccinated waned during the first 6
months after vaccination; therefore vaccine efficacy may have similarly waned [7]. As
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waning efficacy and frailty are not mutually exclusive mechanisms of attenuation, both may
have contributed to the increasing trend in the RR. The CAPRISA investigators report that
some of the increase in the RR may be explained by decreasing adherence to microbicide
use [2]. While waning vaccine efficacy and trends in adherence may help to explain the
increase in RR observed over the course of both trials, neither mechanism can explain the
decreasing incidence in the placebo arms. In contrast, frailty parsimoniously explains both
observations.

Because RR estimates are less affected by frailty during early follow-up, this may partly
explain why studies that stop early because a considerable benefit is found can give larger
estimates than those that continue. This is an alternative, and non-mutually exclusive,
explanation to random variation [22] that has been insufficiently addressed in the literature
on biases involved in stopping trials early [22–25]. Similarly, frailty has not been considered
as a candidate explanation for null results in HIV prevention trials [26–30], or for variation
in estimated effects across studies in meta-analyses [31,32].

Three approaches for dealing with frailty have been suggested. First, data on known risk
factors for infection, including direct or proxy data on exposure to infection, could be
collected and used in sensitivity analyses. This approach typically adjusts for baseline risk
factors only, and uses standard methods, such as Cox models [9,10,32,33]. However, it may
not be feasible to measure all risk factors for infection, and some risk factors may not even
be known. When the goal is to estimate a biological measure of the direct effect of an
intervention or risk factor, frailty effects due to heterogeneity in exposure to infection can be
minimized by censoring individuals when they are no longer at risk of infection. Data on
exposure to sexually transmitted infections can be obtained from serodiscordant couples
studies, from partner report, or when participants report having no partners during a study
period, and so could not have been exposed to HIV via sexual routes [4,34–38]. Survival
curves, which use risks instead of rates, are not subject to the same frailty effects discussed
above and can be estimated for observational studies as well as trials [15,39]. Second, some
have suggested a type of crossover design to reduce the magnitude of attenuation in trials
that examine reversible interventions through limiting the depletion of those most
susceptible to infection by alternately giving both study arms access to the protective
intervention [30]. Third, alternative analytical methods have been proposed, such as frailty
models, which can account for heterogeneity by modeling the distribution of risk in the
population based on parametric assumptions, and which have been used to analyze several
vaccine trials [40–42]. Bayesian hierarchical models have been used to estimate the efficacy
of a previous HIV vaccine candidate, and permit the incorporation of data on contact
patterns and the prevalence of infection [43]. Frailty models have been widely used,
particularly when the assumption of proportional hazards is considered unlikely to hold due
to frailty effects [14]. In summary, accounting for frailty may improve our understanding of
study results and facilitate decision-making on the use of interventions and avoidance of risk
factors.
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