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Abstract
The T-cell development program is specifically triggered by Notch-Delta signaling, but most
transcription factors needed to establish T-cell lineage identity also have crossover roles in other
hematopoietic lineages. This factor sharing complicates full definition of the core gene regulatory
circuits required for T-cell specification. But new advances illuminate the roles of three of the
most T-cell specific transcription factors. Commitment to the T-cell lineage is now shown to
depend on Bcl11b, while initiation of the T-cell differentiation program begins earlier with the
induction of TCF-1 (Tcf7 gene product) and GATA-3. Several reports now reveal how TCF-1 and
GATA-3 are mobilized in early T cells and the pathways for their T-lineage specific effects.

Introduction
Multipotent or lymphoid-biased precursors enter the T-cell developmental pathway in
response to thymic microenvironmental signals [1]. The most important trigger is Notch
pathway signaling, activated in the precursors by contact with Delta-family Notch ligands
expressed by thymic epithelial cells. Pro-T cells then proliferate under continued influence
of Notch signaling and remain Notch-dependent through T-lineage commitment, until after
successful gene rearrangement enables them to express TCRβ or TCRγδ. However,
something more durable and portable than a direct response to Notch pathway signaling
must sustain the T-cell gene expression program later, during cell migration through
multiple environments and more or less proliferation. The cells establish expression
combinations of transcription factors that not only drive T-cell “identity” genes – those
encoding TCR/CD3 components, signaling kinases, phosphatases, and adaptors – but also
cross-regulate each other to stabilize the T-cell regulatory state.

T cell specification has multiple regulatory requirements, but most of the factors needed by
T cells are also needed in other hematopoietic differentiation programs (e.g. Ikaros, Gfi1,
Myb, Runx1/CBFβ, E2A and its relatives)[2]. Presumably these regulate T-cell specific
genes mainly as components of lineage-specific combinations. Three transcription factors
are much more T-cell specific in their expression: Bcl11b, GATA-3, and TCF-1 (encoded by
Tcf7). These three factors are steeply upregulated in precursors in response to Notch
signaling and sustained in T-cell development at varying levels thereafter (Fig. 1). Their
sharp profiles of induction during T-cell development offer clear opportunities to reveal how
their activities change multipotent progenitors into true pro-T cells.
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The T-cell specification process is actually a succession of three distinct regulatory states
(Fig. 1A,B,C). Activation of GATA-3 and TCF-1 marks the transition from the first to the
second, and activation of Bcl11b marks the transition from the second to the third. By
considering how the advent of each factor affects the appropriate transition, the nature of the
process is emerging in sharper focus.

Punctuating the T-lineage commitment process: role of Bcl11b
Bcl11b, a bifunctional C2H2 zinc finger factor, was discovered as a potential suppressor of
radiation-induced T-cell lymphomas, and independently as a corepressor collaborating with
the nuclear receptor COUP-TF (rev. in [3]). Its relative Bcl11a is a proto-oncogene in B
lineage cells, essential for B-cell development, and a repressor of fetal-type hemoglobins;
but Bcl11b is restricted to T-lineage cells (and at a lower level, NK cells) within
hematopoiesis. Bcl11b is crucial for αβ T cell development but dispensable for some γδ T
cells, and for some time its main role appeared to be exerted during β-selection [4-6]. It
regulates αβ-lineage cell survival, developmental fidelity, and mature T-cell function from
the CD4+ CD8+ stage onward [*6,7], restraining the latent NK-like differentiation potential
in mature CD8 cells [**8], and supporting both CD8-cell expansion and regulatory T cell
differentiation [9,*10]. However, its expression is initially induced in a dramatic upsurge
much earlier, within the DN2 stage of T cell development [11]. This event closely coincides
with the time frame when most T-lineage precursors become committed to a T cell fate
[**12,13].

The linkage is more than a coincidence, as three recent reports have established that unless
Bcl11b can be turned on, most T-cell precursors cannot become committed at all
[**8,**14,**15]. These studies tracked precursors developing in response to continuous
Notch-Delta signaling in vitro, where the lineage commitment impact of Bcl11b was readily
observed. Bcl11b was perfectly dispensable for pro-T cell survival and proliferation under
these conditions. However, deletion of Bcl11b could extensively prolong the time window
in which T-cell precursors retain myeloid potential [**14,**15], and it enabled the
developing cells to build up a formidable potential as natural killer (NK) cell precursors
[**8,**15].

The role and mode of action of Bcl11b are now under investigation by many groups. It may
be a timing factor for T-lineage commitment, since in fetal thymocytes, where
differentiation is accelerated as compared to adult thymocytes, Bcl11b RNA begins to be
detectable even at the DN1 stage (D.D. Scripture-Adams, M.M. Del Real, K.J. Elihu, and
E.V.R., unpublished results). One aspect of the Bcl11b knockout phenotype is interesting
from another perspective, however: namely, how much of the T-cell program can be
activated without Bcl11b. Multiple gene expression changes normally occur in the DN2 to
DN3 transition, since most genes involved in T-cell identity are upregulated immediately
after Bcl11b [2], some but not all as direct Notch target genes [16-18]. Concomitantly,
multiple “stem/progenitor-associated” genes are profoundly downregulated [19]. The DN2-
like Bcl11b deletion phenotype dissects the T-cell specification process into separable
modules. Stem/progenitor-associated genes fail to be shut off in the mutant cells, but T-cell
transcription factors including GATA-3, and TCF-1 are fully induced to DN3-like levels,
GATA-3 perhaps even higher than in normal DN2 cells [**15]. The T-lineage identity genes
show split responses, with initial phases of Cd3g and Cd3e upregulation and Rag1 induction
occurring, but Zap70 and Ptcra expression remaining weak [**15]. These responses dissect
commitment, which depends on Bcl11b, from activation of the T-cell program, which
GATA-3, TCF-1, and Notch can initiate even in cells that cannot become committed.
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The difficulty with T-cell factors: asymmetric gain and loss of function
phenotypes

TCF-1 and GATA-3 have long been recognized as essential for T-cell development [20,21].
Pioneering work using antisense oligonucleotides in fetal thymic organ culture systems
showed that these factors were rate-limiting for early T-cell development, and implied
additive roles [22]. However, dissecting what they do for T-cell specification has been held
back by the peculiarities of their effects when ectopically activated.

GATA-3 plays at least three roles in T cell development: during initial specification, during
TCRαβ-dependent positive selection, and in mature T cells where it establishes the Th2
effector program. In the Th2 context the addition of GATA-3 clearly promotes Th2 fate just
as loss of GATA-3 inhibits it [23,24]. In TCRαβ-mediated positive selection of CD4+

lineage thymocytes its effects can be more complicated, but again the gain of function of
GATA-3 promotes the CD4+ fate relative to other options [25-27]. However, its role has
been murkier in the earliest stages. Loss of GATA-3 is profoundly inhibitory to T-cell
precursors from the earliest ETP stage (see Fig. 1)[28,29]. GATA-3 binds to genes encoding
TCR complex components [30,31], and in acute loss of function at certain stages some of
these targets, e.g. the CD3 genes, are downregulated [**32](S. Damle, E.V.R., unpublished).
But ectopic expression of GATA-3 in prethymic cells does not turn these genes on without
Notch [33]. In early pro-T cells, added GATA-3 does not accelerate T-cell development, but
can actually block it, whether or not Notch signaling is provided [34]. Forced GATA-3
expression can activate various inappropriate, non-T programs, depending on the cells into
which it is introduced: a nonlymphoid, mast cell program in bone marrow cells or thymocyte
progenitors [34], a nonlymphoid, megakaryocyte program in fetal liver precursors [35], and
a myeloid program in Pax5-knockout pro-B cells [36]. GATA-3 dose-dependence may
account for its problematic behavior in early T cells.

TCF-1 is best known as a signal-dependent transducer of environmental signals from the
Wnt pathway via β-catenin [37-39]. In this pathway, without β-catenin, TCF family
members act as repressors via recruitment of Groucho/TLE factors, but when Wnt signaling
mobilizes β-catenin, β-catenin binding to TCF factors makes them work as activators. By
this model the balance of positive and negative regulation of gene targets by TCF-1 should
depend on the level of β-catenin. Indeed, ectopic expression of the Wnt antagonist,
Dickkopf, could block T-cell development from a very early stage [40]. However, when
hematopoietic progenitors have been forced to activate β-catenin, which should optimally
activate TCF-1, the cells did not appear to upregulate lineage-specific T-cell genes. Instead,
if they were already in the T-cell pathway they upregulated general survival genes [41], and
if not, they reverted to a deregulated, multilineage gene expression state [42-44].
Furthermore, in loss of function experiments, mutation of the β-catenin cofactor alone or
together with its relatives has had shockingly little effect on T-cell development [45,46],
much less than the effect of mutating Tcf7 alone or together with its relative Lef1. Then is
TCF-1 mostly important as a repressor? In general, evidence for direct positive regulation of
T-cell specification genes by GATA-3 or TCF-1 has been lacking, leaving a major
roadblock to understanding the early events in T-cell development.

Three levels of regulation for GATA-3 activity
The essential but complex roles of GATA-3 in T cell development can be explained in part
because it does not always regulate the same target genes. Genome-wide maps of GATA-3
binding at different stages now confirm that this factor occupies different genomic sites
depending on its developmental context [**32](J.A. Zhang, A. Mortazavi, B. Williams, B.J.
Wold, and E.V.R., submitted). Site affinity and factor concentration probably contribute:
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e.g., the particularly high levels of GATA-3 in Th2 cells enable binding to many more sites
than in other T-lineage cells [**32]. However, even in cells with similar levels of GATA-3,
occupancy patterns are distinct according to developmental stage. When it is first
upregulated in DN1 cells, we find that GATA-3 occupies sites in many stem/progenitor
genes, then vacates them during commitment, shifting to bind more “T-cell identity” gene
sites in the postcommitment CD4+ CD8+ stage (J.A. Zhang et al., op. cit.). It follows that
GATA-3 normally collaborates with other developmentally-restricted factors to help define
its targets. Because even the earlier-stage specific sites are genuine GATA-3 sites, however,
it is easy to see how experimental overexpression could cause some GATA-3 binding to be
inappropriately deployed. The control of GATA-3 levels itself must be extremely precise.

For years, the mechanisms responsible for inducing Gata3 expression at the beginning of T
cell development were inaccessible. Two promoters were defined: a proximal one driving
most T-cell expression, and a distal Th2-specific one where direct input from Notch was
demonstrated in Th2 cells [47,48]. An intronic enhancer and an upstream lineage-specific
silencer were also reported [49,50]. However, even a 650 kb Gata3 YAC transgene
containing all these elements could not work in vivo to promote expression in T lineage cells
[51]. Furthermore, in mature peripheral T cells and DN thymocytes alike, the proposed site
of Notch input is buried under repressive H3K27me3 marking in all except Th2 cells, and is
probably inaccessible in early stages [52,53](J.A. Zhang et al., op. cit.).

In a tour de force, Engel and coworkers have now found a T-lineage specific enhancer for
Gata3 which can mediate activation from the earliest T-cell stages [**54]. The new
enhancer is in a gene desert 280 kb downstream (3′) of the Gata3 gene, and it is necessary
and sufficient to enable Gata3 transgene expression in T lineage cells. Activity of this
enhancer may still need to be modulated by interaction with other cis-regulatory elements.
However, this is now the region where to seek the mechanism that Notch signaling first uses
to turn on Gata3 expression.

Importantly, GATA-3 is not only regulated through transcriptional control. In thymocyte
development there are some mismatches between protein and RNA levels, e.g. during β-
selection after successful TCRβ gene rearrangement, when RNA decreases but protein
increases [25,55]. The key factor increasing GATA-3 protein seems to be activation via
TCR. One reported mechanism is MAP kinase-controlled protein stabilization [56], but this
could be more effective to preserve a pool in nondividing cells than to supply new protein
during rapid cell division. Cook & Miller have now found another mechanism that enables
signaled T cells to produce more GATA-3 protein de novo even from a declining pool of
RNA [*57]. Through a PI3K-Akt-mTOR dependent pathway, translational efficiency of
GATA-3 is specifically enhanced, possibly by unwinding secondary structure from the
Gata3 translational start site. Interestingly, the PI3K-Akt-mTOR pathway can also be
activated by IL-7R in DN2 cells and Notch signaling in DN3 cells [58,59]. Thus, GATA-3
protein levels could possibly “measure” integrated transcriptional and survival signals in the
cells.

TCF-1: essential driver of T-cell specification downstream of Notch
As a widely used developmental signaling trigger, Notch activation does not embody
enough specificity to be the origin of the whole T-cell program. One set of factors that may
help to select T-cell specific target genes comprises basic helix-loop-helix E protein genes,
including E2A [17]. However only a subset of T-cell genes is turned on by Notch and E2A
together, conspicuously omitting Bcl11b, and none of these are sustained by E2A when
Notch signals are withdrawn. Something else downstream of Notch must help activate and
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then sustain the T cell program, something that can act epistatically to Notch signaling in a
gain of function assay. Neither GATA-3 nor Bcl11b can do this.

In the past year several groups have returned to TCF-1 as a candidate for initiating T-cell
development downstream of Notch. These studies show that Tcf7 is directly activated by
Notch through an enhancer 31.5 kb upstream of the promoter [*60,**61], and that TCF-1
becomes essential in adult T-lineage progenitors as soon as it is turned on at the ETP stage.
An important role for TCF-1 seems to be antiapoptotic even in ETPs [*60]. However,
Weber et al. have also demonstrated that forced expression of TCF-1 can activate most of
the T-cell identity program in prethymic precursors, in the absence of Notch signaling
[**61]. It is the first T-cell transcription factor shown to do so. TCF-1 need not do
everything alone: among the first genes it turns on are Gata3 and Bcl11b, but its effect is
impervious to high levels of γ-secretase inhibitors that block Notch signaling [**61]. It fails
to turn on the sensitive Notch target gene Ptcra, yet activates many other “DN3-stage” genes
that would normally accompany Ptcra expression [16]. Thus, many parts of the T-cell
program are dependent on Notch only indirectly, through Notch-activated TCF-1 and its
own targets (Fig. 2).

How TCF-1 works here is a crucial question. Results shown by Weber et al. notably imply
that β-catenin and relatives are dispensable for forced expression of TCF-1 to turn on T-cell
genes [**61], in harmony with the negative evidence in vivo [45,46]. However, they also
show TCF-1 binding directly to genes like Gata3 and Bcl11b that it positively regulates, so
it is not acting as a repressor [**61]. This could imply a novel coactivator to replace β-
catenin, or even a new mode of TCF-1 action that might have broader developmental
significance. Yet there remain questions about the nature of the β-catenin mutation that has
been tested in this context [38]. Clarifying the relationship of this new, early positive
regulatory role with classic β-catenin mediated signaling pathways will be important.

Initiating the T-cell program: an emerging circuit
These results excitingly open new opportunities and new questions. TCF-1 only appears to
be able to bypass Notch when it is introduced at high levels, typical of DN3 rather than DN1
stage cells. Thus at earlier stages, a classic feed-forward network circuit probably operates,
in which lower levels of TCF-1 initially induced synergize with Notch signals on first-tier
targets (Fig. 2)[*62]. Then with continued Notch signals, TCF-1 autoregulation, and/or
cross-regulation by other factors, TCF-1 levels could rise to the point of being able to
sustain the T-cell program without Notch. Most interestingly, the interaction between TCF-1
and GATA-3 may be mutual: not only Notch/RBP-Jκ (CSL) but also GATA-3 binds to the
Tcf7 upstream enhancer (J.A. Zhang et al., op. cit.). There is much yet to be learned about
how dosage regulation is effected in this network circuit, and how these factors intersect
with E proteins, Bcl11b, and other regulators. But the outlines of the T-cell specification
process are coming into clearer focus.
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HIGHLIGHTS

• Notch, TCF-1, GATA-3, and Bcl11b are linked in a T-cell gene network

• Bcl11b is needed for commitment but not to initiate the T-cell program

• GATA-3 action is regulated via transcription, translation, and binding site
selection

• TCF-1 (Tcf7) is a direct Notch target required from the Early T-cell Precursor
stage

• TCF-1 can bypass the requirement for Notch itself to activate Gata3 and Bcl11b
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Figure 1.
Stages in progression through T-lineage commitment and β–selection. Phenotypes and key
developmental events are indicated. γδ cells can emerge at several branchpoints. Notch
interactions are sustained as shown. RNA expression patterns are approximate.
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Figure 2.
Gene network relationship among Notch, TCF-1 (Tcf7), GATA-3, Bcl11b, and selected
target genes. Solid arrows: support from perturbation and binding evidence. Dashed: binding
evidence. Dotted: perturbation evidence. Data from [60-*62]. Bcl11b targets are still being
defined.
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