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Abstract
Measles remains one of the most important causes of child morbidity and mortality worldwide
with the greatest burden in the youngest children. Most acute measles deaths are due to secondary
infections that result from a poorly understood measles-induced suppression of immune responses.
Young children are also vulnerable to late development of subacute sclerosing panencephalitis, a
progressive, uniformly fatal neurologic disease caused by persistent measles virus (MeV)
infection. During acute infection, the rash marks the appearance of the adaptive immune response
and CD8+ T cell-mediated clearance of infectious virus. However, after clearance of infectious
virus, MeV RNA persists and can be detected in blood, respiratory secretions, urine and lymphoid
tissue for many weeks to months. This prolonged period of virus clearance may help to explain
measles immunosuppression and the development of lifelong immunity to re-infection, as well as
occasional infection of the nervous system. Once MeV infects neurons, the virus can spread
transynaptically and the envelope proteins needed to form infectious virus are unnecessary,
accumulate mutations and can establish persistent infection. Identification of the immune
mechanisms required for clearance of MeV RNA from multiple sites will enlighten our
understanding of the development of disease due to persistent infection.
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Introduction
Measles remains one of the most important causes of child morbidity and mortality
worldwide with the greatest burden in the youngest children (Moss & Griffin, 2006; Nandy
et al., 2006; Wolfson et al., 2009). Measles is unique for childhood rash diseases in that it is
associated with substantial mortality with a case fatality rate of 5–10% in Africa (Grais et
al., 2007; Nandy et al., 2006) and up to 25% in refugee camps and virgin populations (Moss,
2007; Shanks et al., 2011). Mortality is highest in girls and most acute measles deaths are
due to secondary infections that result from a poorly understood measles-induced
suppression of immune responses (Beckford et al., 1985; Garenne, 1994; Shanks et al.,
2011; Tamashiro et al., 1987). In addition to the risks of acute infection, children,
particularly boys, under the age of 2 years are also vulnerable to development of subacute
sclerosing panencephalitis (SSPE), a progressive, uniformly fatal neurologic disease
associated with persistent measles virus (MeV) infection of the nervous system. SSPE has a
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long latent period and presents many years after the original MeV infection (Bellini et al.,
2005; Cattaneo et al., 1986; Freeman et al., 1967).

A safe and efficacious live attenuated virus vaccine is available and recent strides have been
made toward global measles control. However, logistical and financial difficulties in
sustaining the current vaccination strategies in developing countries have led the World
Health Organization to forecast an increase in the number of measles cases and deaths
(Centers for Disease Control, 2009). Furthermore, complacency and concerns about safety,
along with philosophical and religious objections to vaccination, have resulted in failure to
control measles in many industrialized nations (Muscat et al., 2009; Richard & Masserey
Spicher, 2009).

Measles virus and virus replication
Measles virus is a negative-sense RNA virus with a non-segmented genome (Fig. 1b) and a
lipid envelope that belongs to the morbillivirus genus of the family Paramyxoviridae. The
16kb genome encodes eight proteins and most likely evolved from rinderpest virus, a
recently eradicated disease of cattle (Barrett, 1999; Furuse et al., 2010; Horzinek, 2011). Six
proteins are found in the virion (Fig. 1a). The envelope has surface projections composed of
the viral hemagglutinin (H) and fusion (F) glycoproteins with the matrix (M) protein lining
the interior. The helical nucleocapsid is formed from the genomic RNA wrapped with the
nucleocapsid (N) protein and is packed within the envelope in the form of a symmetrical coil
with the phosphoprotein (P) and large polymerase (L) proteins attached. There are 2
nonstructural proteins, C and V, encoded within the P gene that regulate the cellular
response to infection and modulate interferon (IFN) signaling (Bellini et al., 1985; Cattaneo
et al., 1989). C is translated from an alternative start site by leaky scanning to produce a
basic protein of 186 amino acids. V has the same N-terminus (231 amino acids) as P, but
insertion of an additional guanine by RNA editing alters the reading frame to produce a
unique 68 amino acid cysteine-rich zinc-binding C-terminal domain that is highly conserved
amongst paramyxoviruses (Cattaneo et al., 1989; Liston & Briedis, 1994).

H interacts with the virus receptor for attachment and F interacts with H and with the same
or an additional cellular protein for fusion and entry (Fig. 1c). Three receptors have been
identified: membrane cofactor protein or CD46 (Dorig et al., 1993; Naniche et al., 1993),
signaling lymphocyte activation molecule (SLAM) or CD150 (Tatsuo et al., 2000) and
poliovirus receptor-related 4 (PVRL4) or nectin 4 (Muhlebach et al., 2011; Noyce et al.,
2011). CD46 is a widely distributed human complement regulatory protein expressed on all
nucleated cells (Riley-Vargas et al., 2004). It acts as a cofactor for the proteolytic
inactivation of C3b/C4b by factor I (Riley-Vargas et al, 2004), but also induces proliferation
and differentiation of regulatory T cells (Kemper et al., 2003). SLAM is a costimulatory
molecule expressed on activated cells of the immune system (Sidorenko & Clark, 2003).
The cytoplasmic domain has an immunoreceptor tyrosine-based switch motif that binds
small SH-2 domain adaptor proteins important for cell signaling (Ohno et al., 2003; Yanagi
et al., 2002). Nectin-4 is an adherens junction protein of the immunoglobulin superfamily
expressed on epithelial cells (Shirogane et al., 2010; Sinn et al., 2002). The receptor binding
regions on H are all found on the lateral surface of the head structure and are contiguous or
overlapping (Colf et al, 2007; Hashiguchi et al., 2007; Hashiguchi et al., 2011; Masse et al.,
2004; Santiago et al., 2002; Santiago et al., 2010; Schneider et al., 2002; Vongpunsawad et
al., 2004). Both vaccine and wild type strains of MeV can use SLAM as a receptor, but wild
type strains do not use CD46 efficiently (Erlenhofer et al., 2002; Ono et al., 2001; Yanagi et
al., 2002). Differences in receptor usage may involve interactions with F as well as H
(Kouomou & Wild, 2002; Takeuchi et al., 2002).
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MeV probably uses additional receptors. In acute infections endothelial cells, as well as
epithelial and immune system cells, are infected (Andres et al., 2003; Esolen et al., 1995;
Oldstone et al., 2002; Takeuchi et al., 2003) and in persistent infections neurons and glial
cells are important targets for infection (McQuaid & Cosby, 2002; Shingai et al., 2003). The
vaccine virus was attenuated by growth in chicken cells.

H and F cooperate to induce fusion of the viral envelope and cellular plasma membrane for
entry. Infected cells expressing the viral glycoproteins at the cell surface can also fuse with
uninfected cells to produce multinucleated giant cells followed by cell death. However, not
all types of infected cells fuse to form syncytia. In vivo, giant cells are observed in the lung,
skin and lymphatic tissue, but not the central nervous system (CNS). Cellular protein
synthesis is relatively unaffected by MeV infection, but specific cellular proteins (e.g. cell
surface receptors) and functional responses (e.g. signal transduction, expression of
transcription factors) may be altered in a cell-type-specific manner (Bazarsky et al., 1997;
Fishman et al., 1997; Indoh et al., 2007).

MeV replication is interferon (IFN)-sensitive (Leopardi et al., 1992; Naniche et al., 2000)
and some IFN-stimulated proteins (e.g. MxA, ADAR1) inhibit MeV replication in a cell
type-specific manner (Schneider-Schaulies et al., 1994; Schnorr et al.,1993; Ward et al.,
2011). However, MeV effectively inhibits both induction of IFN synthesis and IFN
signaling in infected cells and this property may play an important role in the ability of MeV
to establish persistent infection. The C-terminal domain of the V protein prevents induction
of type I IFN synthesis both through the toll-like receptor (TLR)/MyD88 and RNA helicase
pathways (He et al., 2002). V binds IKKα and inhibits TLR7/9-mediated phosphorylation of
IRF7 in plasmacytoid dendritic cells (DCs) (Pfaller & Conzelmann, 2008; Schlender et al.,
2005). V also binds MDA5, but not RIG-I, to prevent activation and induction of IFNβ
synthesis through the RNA helicase pathway (Andrejeva et al., 2004; Childs et al., 2009).
Strains of MeV differ in V sequence and transient transfection studies indicate strain-
dependent differences in function (Takaki et al., 2011).

If IFN is produced by infected cells, the common N-terminal domains of the P and V
proteins inhibit IFN-induced STAT1 activation (Caignard et al., 2009; Caignard et al., 2007;
Palosaari et al., 2003) and the C-terminal domain of V inhibits STAT2 activation
(Ramachandran & Horvath, 2010; Ramachandran et al., 2008). However, the role of type I
IFN in natural MeV infection is unclear. There is little evidence that IFNα/β is induced in
vivo and studies of IFN induction by MeV in vitro have been confounded by the frequent
presence of defective interfering (DI) RNAs in virus stocks. DI RNAs are potent inducers of
IFN and one mechanism used to establish cell lines persistently infected with MeV (Rima et
al., 1977; Yount et al., 2008).

Acute disease and tissue sites of replication
MeV is efficiently spread by the respiratory route and is highly infectious. Knowledge of
measles pathogenesis comes from study of naturally infected humans and experimentally
infected macaques, animals that develop measles very similar to that of humans. Infection is
initiated in the respiratory tract followed by rapid spread of virus to local lymphoid tissue
and then to multiple other organs (Moench et al., 1988). Wild type virus replicates
efficiently in activated cells of the immune system that express SLAM (Condack et al.,
2007; de Swart et al., 2007; Yanagi et al., 2006) and it is likely that immature pulmonary
DCs or alveolar macrophages capture and transport MeV to regional lymph nodes where the
immune response is initiated and spread of infection is facilitated (Kaiserlian & Dubois,
2001; Lemon et al., 2011; Schneider-Schaulies et al., 2002).
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There is a latent period of 10–14 days and a 2–3 day prodrome of fever, coryza, cough, and
conjunctivitis followed by the appearance of a characteristic maculopapular rash (Lessler et
al., 2009). Multiple organs (e.g. liver, lung, thymus, spleen, skin) are infected and target
cells include epithelial cells, endothelial cells, B lymphocytes, T lymphocytes, monocyte/
macrophages and DCs (de Swart et al., 2007; Moench et al., 1988; Plaza & Nuovo, 2005),
all cells that can be replaced if eliminated by the immune response during the process of
virus clearance. Neurons and glial cells are not usually targets of acute infection (McQuaid
et al., 1998; Moench et al., 1988), but infected CNS endothelial cells have been observed in
autopsy specimens (Esolen et al., 1995).

The onset of the rash coincides with the appearance of the adaptive immune response and
initiation of clearance of infectious virus (Auwaerter et al., 1999). After the rash has faded,
infectious virus can rarely be recovered and this correlates with decreased transmission of
infection (Pan et al., 2005; Permar et al., 2001; Van Binnendijk et al., 2003). However, viral
RNA persists for many weeks (Fig. 2). Mechanisms of immune-mediated clearance of
infectious virus and viral RNA from different types of cells may be distinct and occur at
different rates.

Immune response and clearance
Replication of MeV usually causes death of cells in culture, but this is not necessarily the
case in vivo. Persistent non-cytopathic infection can be established In vitro and this is most
easily accomplished in neuronal cells, but persistent infections in lymphoid, epithelial and
glial cells have also been established (Miller & Carrigan, 1982; Rima & Duprex, 2005).
Cellular factors that affect the ability of MeV to establish and maintain persistent infection
include increased expression of heat shock proteins, IFN-inducible proteins and altered
regulation of lipid metabolism (Miller & Carrigan, 1982; Rima & Duprex, 2005; Robinzon
et al., 2009; Schnorr et al., 1993; Takahashi et al., 2007). Antisense RNA can be used to
cure persistently infected cells (Koschel et al., 1995).

If the cell survives infection, virus clearance will require immune-mediated elimination of
the cell or of intracellular virus. For many virus infections, factors produced by the innate
immune response directly in response to virus infection (e.g. IFN-α/β, TNF, IL-1, IL-6,
IL-8) inhibit virus spread and set the stage for the adaptive immune response. However, the
innate response to natural measles has not been well characterized. In vitro studies have
shown that innate responses triggered by interaction of MeV RNA or proteins with pathogen
recognition receptors at the cell surface or in the cytoplasm to activate signaling pathways
involving transcription factors NFκB and IRF 3 differ with the strain of virus, are cell type-
specific and are highly regulated by the viral P, C and V proteins (Bieback et al., 2002;
Duhen et al., 2010; Helin et al., 2001; Katayama et al., 2000; Sato et al., 2008; Schuhmann
et al., 2011; Tenoever et al., 2002). MeV replication in vitro is sensitive to the inhibitory
effects of IFNα/β. There is little evidence that type I IFN is produced in vivo during the
acute phase of disease (Griffin et al., 1990; Leopardi et al., 1992; Schnorr et al., 1993;
Tanabe et al., 2003; Yu et al., 2008) and this may be important for virulence as mutation of
the V gene leads to virus attenuation (Devaux et al, 2011). IL-1 and IL-8 can be detected in
plasma (Zilliox et al., 2007), but roles for these factors in control of MeV infection have not
been identified.

Adaptive cellular immune responses are generally regarded as most important for clearance
of MeV. Children with agammaglobulinemia recover from infection while those with
defects in cellular immunity (e.g. HIV infection, congenital immune deficiency, transplant
immune suppression, chemotherapy, etc) are prone to develop progressive infections of the
lung (giant cell pneumonia) or CNS (inclusion body encephalitis) (Albertyn et al., 2011;
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Enders et al., 1959; Good & Zak, 1956; McQuaid et al., 1998). MeV-specific antibody and T
cell responses appear coincident with the onset of the rash and rash biopsies show
infiltration of CD4+ and CD8+ T lymphocytes in regions of epithelial cell infection (Fig. 3).

Several lines of evidence suggest that CD8+ T lymphocytes are particularly important for
control and clearance of infectious virus. MeV-specific cytotoxic T lymphocytes are found
in the blood during the rash and CD4+ and CD8+ T cells infiltrate sites of virus replication
(Jaye et al., 1998; Mongkolsapaya et al., 1999; Myou et al., 1993; Polack et al., 1999) (Fig.
3). In monkeys, depletion of CD8+ T cells, but not B cells, at the time of infection results in
a higher and more prolonged viremia (Permar et al., 2004; Permar et al., 2003). In vitro,
addition of CD8+, but not CD4+, T cells to MeV-infected B cells prevents spread to
uninfected B cells (de Vries et al., 2010) and depletion of CD4+ T cells does not affect virus
titers in the lungs of infected cotton rats (Pueschel et al., 2007). Both cytotoxicity and IFN-γ
production have been implicated as effector mechanisms important for CD8+ T cell-
mediated MeV clearance. The relative importance of each is likely to differ depending on
the target cell and tissue (Finke et al., 1995; Patterson et al., 2002; Stubblefield, Sr. et al.,
2011; Tishon et al., 2006). For instance, IFN-γ-induced indoleamine 2,3-dioxygenase is
important for control of MeV replication in epithelial, endothelial and astroglial cells, but
not in lymphoid or neuronal cells (Obojes et al., 2005).

In immunologically normal individuals, infectious virus cannot be recovered shortly after
the rash fades (Fig. 2). Clearance of infectious virus and resolution of the accompanying
rash are associated with clinical recovery in most children. However, clearance of infectious
virus is only part of the story. Our studies of Zambian children with natural measles and of
rhesus macaques experimentally infected with a wild type strain of MeV have shown that
viral RNA persists in multiple locations long after infectious virus is no longer detectable
(Fig. 2) (Pan et al., 2005; Permar et al., 2001; Riddell et al., 2007). In prospective studies of
children hospitalized with measles, MeV RNA was detected in 62% of children from at least
one site (peripheral blood mononuclear cells [PBMCs], urine or nasopharyngeal aspirates) at
1–2 months after discharge from the hospital and in 37% at 3–4 months after discharge
(Permar et al., 2001; Riddell et al., 2007). These data indicate that clearance of MeV RNA
after infection is a prolonged process.

Rhesus macaques infected with wild type MeV have provided additional information on
clearance because they can be followed closely from the time of infection. Infectious virus
appears in the blood 4–7 days after infection and is cleared by 14–18 days. However, MeV
RNA can be detected in PBMCs for 4–6 months (Pan et al., 2005). Clearance of virus and
viral RNA from PBMCs occurs in phases. After an initial peak of RNA coinciding with
recovery of infectious virus, there is a period of rapid decline in viral RNA, followed by a
rebound and then a slow decline to undetectable levels. In animals studied for longer periods
of time, viral RNA may reappear in PBMCs after apparent elimination suggesting
persistence in other tissues (Pan et al., 2005). The length of time required for clearance from
lymphoid and other tissues is not known.

Sequencing of RNA from late samples has identified no mutations in the variable regions of
either the N or H genes (Riddell et al., 2007). These data suggest slow clearance as an
explanation for the prolonged presence of MeV RNA after apparent recovery rather than
mutation and escape from the immune response. A switch in the type of T cell response
from type 1 to type 2 with production of regulatory T cells and cytokines may play a role in
slowing clearance of viral RNA (Moss et al., 2002; Ward et al., 1991; Yu et al., 2008).
Prolonged presence of viral RNA is highly relevant to the development of persistent
infection and could explain the immunologic abnormalities that persist after the rash fades as
well as the development of life-long immunity that characterizes the recovery from measles.
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Persistent infection
The frequency of failure of virus clearance from various tissues is not known, but clinically
significant disease in immunologically normal individuals has only been convincingly
linked to persistent infection of the CNS. Approximately 1 in 10,000 children (boys > girls)
will develop SSPE as a late complication of measles (Bellini et al., 2005; Takasu et al.,
2003). Both host and virus factors are likely to play a role in establishing persistence. SSPE
is most likely to develop if the primary MeV infection occurs before the age of 2 years when
the immune system is immature and residual maternal antibody may still be present (Bellini
et al., 2005; Detels et al., 1973; Halsey et al., 1980; Jabbour et al., 1972; Miller et al., 1992;
Modlin et al., 1977). In developing countries with high birth rates, measles often occurs in
young infants (Grais et al., 2007; Halsey et al., 1980; Moss et al., 2008; Moss et al., 2002)
and these countries appear to have a higher burden of SSPE (Saha et al., 1990; Takasu et al.,
2003). This high burden is likely further exacerbated when there is a high prevalence of HIV
infection because children of HIV-infected mothers are at increased risk to acquire measles
at an early age (Embree et al., 1992; Moss et al., 2002) and animal models suggest that prior
infection with an immunosuppressive virus increases the likelihood of persistent CNS
infection (Oldstone et al., 2005).

Antibody to MeV may play a role in establishing persistent CNS infection either through
alteration of the induction of the primary immune response at the time of initial infection or
through modulation of infection once virus is in the nervous system (Endo et al., 2001;
Fujinami & Oldstone, 1979; Rammohan et al., 1982). Passage of infected cells in the
presence of antiviral antibody has been used to establish persistent infection in vitro
(Rustigian, 1966). In small animals, treatment with antibody after intracerebral infection
with MeV decreases acute disease, but increases the likelihood of persistent virus infection
and subacute or chronic encephalitis (Liebert et al., 1990; Rammohan et al., 1981; Wear &
Rapp, 1971). Cases of SSPE have been associated with passive transfer of immune globulin
(Rammohan et al., 1982).

The average time to onset of SSPE after measles is 6–10 years, but ranges from 1 to 24 years
(Campbell et al., 2007; Modlin et al., 1977). At the time that neurologic symptoms occur,
neurons and glial cells contain nuclear and cytoplasmic MeV inclusion bodies and there is
an extensive mononuclear inflammatory reaction in the CNS that includes CD4+ and CD8+

T cells, as well as monocytes and antibody-secreting B cells (Anlar et al., 2001; Brody et al.,
1972; Dawson, 1934; Esiri et al., 1982; Herndon & Rubinstein, 1968). The antibody
response to MeV is accentuated with significant production of MeV-specific antibody by
plasma cells residing in the CNS (Burgoon et al., 2005). Thus, there is no evidence for a
global defect in immune responses, but these immune responses are ineffective in clearing
virus from the CNS.

Strains of MeV differ in ability to establish persistent infection in the same host cell in vitro
(Fernandez-Munoz & Celma, 1992), but there is no clustering of SSPE cases to suggest that
the wild type virus causing the initial infection is different from the virus causing
uncomplicated disease. Sequence analysis of viral RNA from various parts of the brain
shows that the virus is clonal (Baczko et al., 1993), implying that virus may have entered the
brain during the original acute infection, perhaps by infecting endothelial cells (Dittmar et
al., 2008; Esolen et al., 1995; Kirk et al., 1991; Ludlow et al., 2009), was not cleared and
gradually spread throughout the nervous system. Once within neurons, virus can spread
from neuron-to-neuron without the release of infectious particles (Ehrengruber et al., 2002)
and it has been suggested that the MeV F protein interacts at the synapse with the substance
P receptor neurokinin-1 to mediate trans-synaptic spread (Makhortova et al., 2007).
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However, the virus that is present in cell lines persistently infected with MeV and in the
CNS at the time of onset of clinically apparent SSPE differs substantially from the original
wild type virus. Although viral antigen and RNA are abundant in both inclusion body
encephalitis of immune compromised individuals and in SSPE, the virus is difficult, if not
impossible, to culture from CNS tissue. In fact, some viruses thought to be SSPE viruses
have been discovered to be laboratory contaminants (Rima et al., 1995). Variants associated
with persistent infection in vitro often display properties indicative of impaired replication
such as temperature-sensitivity (Rager-Zisman et al., 1984; Takahashi et al., 2007),
accumulation of intranuclear and intracytoplasmic nucleocapsids and decreased release of
infectious virus (Robinzon et al., 2009). Some cell lines produce no infectious virus and
persistent infection is maintained by passage of encapsidated viral RNA to daughter cells
during cell division (Burnstein et al., 1974).

In SSPE, no virus is seen budding from the surface of infected cells. Nuclear inclusions are
filled with “smooth” nucleocapsids that lack associated RNA and P protein (Dubois-Dalcq
et al., 1974; Herndon & Rubinstein, 1968). The cytoplasm contains “fuzzy” nucleocapsids
of N-encapsidated RNA decorated with P that extend into neuronal processes. Thus, virus
can spread within the CNS by synaptic transmission of the ribonucleoprotein from cell to
cell, a process that has been observed both in vivo and in vitro (Duprex et al., 2000;
Ehrengruber et al., 2002; Lawrence et al., 2000; Sawaishi et al., 1999). Limited expression
of viral proteins on the surface of persistently infected cells has led to the suggestion that
defects in synthesis of viral envelope proteins or processing of F may be an important
determinant of persistent infection (Menna et al., 1975; Young et al., 1985). Defects in
glycoprotein expression may be due in part to limited production of mRNAs for these
proteins associated with steep transcriptional gradients and an increase in bicistronic
messages (Cattaneo et al., 1987). However, mutations in these genes are frequent and often
lead to synthesis of proteins with altered expression or function.

Frequent U to C changes suggest that mutation of viral RNA by adenosine deaminase
(biased or A/I hypermutation) is occurring in persistently infected cells (Cattaneo et al.,
1988; Kuhne et al., 2006; Wong et al., 1991). Failure to recover infectious virus is likely due
to the mutations that accumulate in the genes for the M, F, and H envelope proteins that
interfere with assembly and budding of infectious virus (Baczko et al., 1986; Cattaneo et al.,
1988; Cattaneo et al., 1989; Jin et al., 2002; Roos et al., 1981). In general, expression of M
protein is low (Liebert et al., 1986) due either to lack of synthesis of M or instability of the
synthesized protein (Sheppard et al., 1986; Stephenson et al., 1981) and this is accompanied
by low levels of antibody to M (Hall et al., 1979). In addition, defects in the M protein
hinder association of N with the viral glycoproteins and facilitate persistence (Patterson et
al., 2001). Studies in transgenic mice have shown that a functional M protein is not needed
for virus replication and spread in the CNS (Cathomen et al., 1998; Patterson et al., 2001).
Truncations, mutations, and deletions in the cytoplasmic domain of F that interfere with
virus budding are almost universal (Cattaneo & Rose, 1993; Schmid et al., 1992). H proteins
are often defective in intracellular transport and protein-protein interactions important for
cell-cell fusion (Cattaneo & Rose, 1993). It is not known whether these mutations facilitate
spread within the CNS and are necessary to establish or perpetuate CNS infection or
accumulate due to lack of selective pressure to maintain envelope functions during
replication in the CNS because virus spread can occur transynaptically without production
of infectious virus.

Concluding remarks
The frequency of MeV RNA persistence in the absence of disease is unknown. MeV has
been identified by RT-PCR or morphologic analysis in tissues from normal individuals
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(Haase et al., 1984; Katayama et al., 1995; Katayama et al., 1998; Schneider-Schaulies et al.,
1991). In addition to SSPE, MeV antigen or RNA has been described as present and
postulated to be playing an etiologic role in a large number of chronic diseases of unknown
etiology (e.g. multiple sclerosis, Paget’s disease, otosclerosis, chronic active hepatitis,
achalasia and Crohn’s disease) (Friedrichs et al., 2002; Haase et al., 1981; Kawashima et al.,
1996; Niedermeyer et al., 2007; Wakefield et al., 1993). None of these diseases has been
convincingly linked to persistent MeV infection, but a better understanding of the immune
mechanisms and their regulation necessary for clearance of virus and viral RNA and of how
and where the virus or viral RNA persists could help to determine if a causative role is
plausible.
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Figure 1.
Schematic diagrams of the measles virion (a), genome (b) and intracellular replication cycle
(c). (a) The enveloped virion has 6 proteins: 2 surface glycoproteins, hemagglutinin (H) and
fusion (F); a matrix (M) protein; a nucleocapsid (N) protein that surrounds the negative
sense RNA and 2 replicase proteins, the phosphoprotein (P) and large (L) polymerase
protein. (b) The P gene also encodes 2 host cell response regulatory proteins, V and C. (c)
The H protein interacts with one of several MeV receptors resulting in F-mediated fusion
with the plasma membrane. Replication occurs in the cytoplasm and assembled virions bud
from the plasma membrane. (Moss & Griffin, 2006)
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Figure 2.
Schematic diagram showing the time course of the clearance of infectious measles virus
(blue) and viral RNA (dashed black line) from blood in relationship to the appearance and
clearance of the rash (red box).
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Figure 3.
The measles virus rash (a) is indicative of the immune response and results from the
infiltration of leukocytes (b), including CD4+ (c) and CD8+ (d) T lymphocytes into sites of
virus replication in the skin. Histological examination of a biopsy of a measles skin rash
lesion shows (a) an accumulation of mononuclear cells (arrow) that have infiltrated an area
of infected epithelial cells (hematoxylin and eosin stain). Immunoperoxidase staining
(brown) of the biopsy for CD4+ (c) and CD8+ (d) T cells shows that many of the infiltrating
mononuclear cells are T lymphocytes (Polack et al, 1999).
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