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Abstract

Taxonomic assignment of sequence reads is a challenging task in metagenomic data analysis, for which the present
methods mainly use either composition- or homology-based approaches. Though the homology-based methods are more
sensitive and accurate, they suffer primarily due to the time needed to generate the Blast alignments. We developed the
MetaBin program and web server for better homology-based taxonomic assignments using an ORF-based approach. By
implementing Blat as the faster alignment method in place of Blastx, the analysis time has been reduced by severalfold. It is
benchmarked using both simulated and real metagenomic datasets, and can be used for both single and paired-end
sequence reads of varying lengths ($45 bp). To our knowledge, MetaBin is the only available program that can be used for
the taxonomic binning of short reads (,100 bp) with high accuracy and high sensitivity using a homology-based approach.
The MetaBin web server can be used to carry out the taxonomic analysis, by either submitting reads or Blastx output. It
provides several options including construction of taxonomic trees, creation of a composition chart, functional analysis
using COGs, and comparative analysis of multiple metagenomic datasets. MetaBin web server and a standalone version for
high-throughput analysis are available freely at http://metabin.riken.jp/.
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Introduction

Metagenomics has emerged as a powerful culture-independent

approach for exploring the complexity and diversity of microbial

genomes in their natural environments [1]. Globally, several

hundred metagenomic projects are either ongoing or are in the

planning stages. These projects generate huge amounts of

sequence reads of various lengths depending upon the method-

ology used. Though the primary aim of these studies is usually to

capture a snapshot of the entire microbial community that exists in

an environment, current methodologies commonly only generate a

complex mixture of short genomic sequences derived from several

different genomes found within that environment. The situation

becomes more complicated when many of the sequences come

from novel or yet uncultured species, for which the genomes are

not well represented in the reference databases. Therefore, one of

the first and most crucial tasks is to ascertain the genomic origin of

these sequences, and to make appropriate taxonomic assignments.

There are two main approaches currently used for the

taxonomic assignments of metagenomic reads. The first approach,

employed by classification algorithms such as PhyloPythia,

TETRA, NBC and TACOA, exploits sequence composition for

taxonomic classification of metagenomic sequences [2–5]. The

second approach assesses the taxonomic identity of a read from the

results of a homology-based search against the known reference

sequence database (usually NCBI non redundant (NR) database)

[6]. Of these, the most commonly used tool, MEGAN, carries out

taxonomic binning based on the NCBI BLAST [6] bit-score using

Lowest Common Ancestor (LCA) based approach [7]. It assigns a

read to the common taxonomic ancestor (higher taxonomic level)

of the hits if the read shows hits with multiple genomes. Because

the consideration of hits is only based on bit-scores, this may lead

to higher number of non-specific taxonomic assignment due to

consideration of both expected (correct) and unexpected (higher

taxonomic level) hits. Another similar algorithm, SOrt-ITEMS,

applies a sequence orthology-based approach in addition to the

LCA method [8]. It uses only the aligned regions, which in the

case of short reads containing only partial ORFs are incomplete

and are insufficient to accurately deduce sequence orthology,

available in the Blastx output. WebCARMA is another method

that looks for conserved Pfam domains and protein families in the

metagenomic reads using a homology-based search [9].

Though faster in execution, the composition-based methods

generally suffer from several limitations. For example, prior

training sequence sets are needed, the classifications are only

applicable for longer sequences (.800 bp in length) in most cases,

and the classifications are limited to higher taxonomic levels. Even

for recent methods like Phymm, which uses a hybrid approach

using interpolated Markov models (IMMs) followed by BLAST

search, taxonomic classification is limited to read lengths of

$100 bp, with few correct assignments at the genus level [10].

Likewise, the major limitation for using most homology-based

methods is that the total analysis time is exceedingly long since

they require the alignment results as input, and it takes a long time

to align query sequences by BLAST against the ever-increasing
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NCBI NR reference database. To some extent, performance is

also limited by dependence on the representation of genomes and

their respective sequences in the reference databases. However,

even when a genus is absent, but other genomes from the same

family of the same genus or a higher taxonomic level are present,

classification to the correct taxonomic lineage can still be made.

Dependence on available reference genomes is also a drawback for

composition-based methods, since they are needed for prior

training. Overall, homology-based methods are able to carry out

classification at deeper taxonomic levels (family, genus or species)

and are not limited by sequence read length, as opposed to

composition-based methods.

In this study we present the ‘MetaBin’ program and web server,

which uses a significantly improved homology-based algorithm for

taxonomic analysis. It employs a unique ORF (Open Reading

Frame)-based approach for carrying out taxonomic assignments

and it implements Blat [11] (or if the user prefers, Blastx) for

generating the alignments, together resulting in several folds faster,

accurate, specific and highly sensitive taxonomic classification. It

can be used for various read lengths ($45 bp) obtained from

commonly used sequencing technologies such as Sanger, Roche

454, Illumina Solexa, or others, including paired-end reads.

Methods

Test sequences and database construction
The Non-Redundant (NR) sequence database (ftp://ftp.ncbi.

nih.gov/blast/db/FASTA/, August, 2010) and sequences of 25

completed bacterial genomes and two archaea genomes belonging

to different taxonomic lineages (Table S1) (ftp.ncbi.nih.gov/

genomes/Bacteria) were retrieved from NCBI [6]. To test the

performance of MetaBin, local versions of the NR database were

created by removing all sequences belonging to the associated

genus and the associated family (Text S2). These are referred to as

NRminusGenus and NRminusFamily, respectively, in the subse-

quent text. The NRminusGenus and NRminusFamily databases

mimic the situation where the genus or family of the considered

microbial genome is unknown. Therefore, the reads derived from

these genomes can be considered as reads of novel or yet unknown

genomes because the NRminusGenus and NRminusFamily

databases do not contain any genome of that genus or family,

respectively. This provides us with a test scenario for assigning

taxonomy to such reads for which no genome of that genus or

family is present in the NR database, and helps us to examine the

performance of MetaBin on novel genomes.

Construction of simulated read datasets
To test the performance of MetaBin, we constructed simulated

reads datasets from 27 microbial (25 bacterial and two archaeal)

genomes belonging to diverse taxonomic groups (NCBI Taxon-

omy Browser, http://www.ncbi.nlm.nih.gov/Taxonomy/). Of

these genomes, RSD17 and CFP2 are unculturable endosymbiotic

bacteria found in termite gut [12,13]. RSD17 belongs to the

phylum Elusimicrobia and, since it is the first and only sequenced

genome from this community, its genus is yet unidentified; and

other closely related genomes from this phylum are underrepre-

sented in the NR database. CFP2 belongs to a known genus

(Candidatus Azobacteroides), but it is the only known genome

from this genus; however, its phylum (Bacteroidetes) contains

several known genomes. Similarly, CAPH, DITH, and GEAU are

the only sequenced genomes available from their respective genus.

These genomes provide additional test scenarios for us to examine

the performance of MetaBin on novel genomes. We created a set

of 702,000 simulated synthetic reads of various lengths ranging

from 45–800 bp from the 27 microbial genomes. The MetaSim

program was used to generate reads to represent Sanger (read

length ,800 bp) and 454 (read lengths of ,400 and ,250 bp)

sequences [14]. For each of the 27 microbial genomes, 1,000 reads

of 800 bp, 2,000 reads of 400 bp, 3,000 reads of 250 bp, and

10,000 reads each of length 75 and 45 bp were generated. Since

there is no available option to generate Illumina-like reads in

MetaSim, we developed our own Perl script for generating

simulated reads of length ,75 bp and ,45 bp.

Retrieval of published metagenomic data
The human gut metagenomic data obtained by Illumina

sequencing from a single Spanish male individual (V1.CD-2, age

49, BMI 27.76, 20,707,369 high quality reads, library 090107) was

retrieved (ftp://public.genomics.org.cn/BGI/gutmeta/

High_quality_reads/) and is referred to as ‘V1CD2’ in the

subsequent text [15]. The metagenomic sequences (Sanger reads)

for human gut samples F1-S (Adult male, age 30 yo) and F1-T

(Adult female, age 28 yo), members of the same family, were

downloaded from the DDBJ database (ftp://ftp.ddbj.nig.ac.jp/

ddbj_database/dta/UTCOB/) [16]. A total of 5,000 paired-end

reads from each of these samples were used for comparative

analysis of MetaBin with the other programs. These datasets are

referred to as HGF1S and HGF1T in the subsequent text. The

sample data sequences (Sargasso Sea Subsample 1, Sanger reads)

for Sargasso Sea, as described and analyzed in the MEGAN

manuscript, were downloaded from http://www-ab.informatik.

uni-tuebingen.de/software/megan/old-datasets [7]. This set con-

tains the first 10,000 reads from Sample 1 of the Sargasso Sea

dataset [17] and is referred to as ‘SSea sample 1’ in the subsequent

text. The first dataset, V1CD2, was aligned using Blat against

NCBI NR. The other three datasets HGF1S, HGF1T, and ‘SSea

sample 1’ were aligned with NCBI NR by Blastx.

BLAST and BLAT analysis
BLAST (version 2.2.22, ftp://ftp.ncbi.nih.gov/blast/) was

obtained from NCBI. The parameters used to run Blastx were:

word size adjustment ‘–W 2 –f 8’, soft filtering setting ‘-F ‘‘m S’’’

and expectation value ‘-E 100’ to allow inclusion of short matches.

We recommend these parameters while running Blastx for

comprehensive taxonomic assignments using the MetaBin algo-

rithm [7]. BLAT (version 34, http://genome-test.cse.ucsc.edu/

,kent/exe/) was also obtained and used for the analysis. These

two alignment programs were both integrated with the web-based

version of MetaBin.

Functional analysis using COGs
The in-house reference dataset for COGs (Cluster of Ortholo-

gous Groups of proteins) (referred to as ‘COGs-DB’) was

constructed by using information from 1,230 microbial genomes

available at NCBI (ftp.ncbi.nih.gov/genomes/Bacteria, Dec

2010). The COGs information is inferred from COGs-DB for

the best hit for a read. If no COGs could be assigned, the gene

product is considered to be ‘uncharacterized’. The frequency of

each COG is then counted up for every dataset. For the reads

containing partial ORFs, the hit counts of COGs are corrected by

the length ratio of each ‘partial ORF’ to the reference protein to

minimize multiple counts of fragmented genes. The size of each

COG is normalized by the total number of COGs predicted in

each dataset (‘Cnormalized%’). The average size of each COG in

COGs-DB is also calculated and normalized by the total number

of COGs in COGs-DB (‘CDB %’). Finally, the magnitude of

enrichment (enrichment value) of each COG is calculated for

every microbiome by dividing the ‘Cnormalized%’ by the

Taxonomic Binning of Metagenomic Sequences
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‘CDB%’. COGs with an average enrichment value of $2.0 were

defined as enriched COGs in each microbiome [16].

Other publicly available taxonomic binning programs
MEGAN (version 3.8) (http://www-ab.informatik.uni-tuebingen.

de/data/software/megan/download/welcome.html), Sort-ITEMS

(http://metagenomics.atc.tcs.com/binning/SOrt-ITEMS) [8], and

TACOA (version 1.0, http://www.cebitec.uni-bielefeld.de/brf/

tacoa/tacoa.html) [4] were downloaded from their respective sites.

WebCARMA and NBC were run from their web servers (http://

webcarma.cebitec.uni-bielefeld.de/cgi-bin/webcarma.cgi) and

(http://nbc.ece.drexel.edu), respectively [5,9]. The performance of

MetaBin was compared with MEGAN and SOrt-ITEMS for

various simulated read datasets using similar parameters (bin size of

at least one read and minimum bit-score of 29). However, for the

comparative analysis of the ‘SSea sample 1’ data, all three programs

were used with a minimum bit-score of 35, as used previously [7].

Algorithm development
Our main motivations for developing MetaBin were to provide

significant improvements over currently existing homology-based

methods for better taxonomic assignments, and to dramatically

reduce the amount of time needed to generate the alignments

usually made by Blastx. The later objective was achieved by

implementing Blat as the faster alignment method in place of

Blastx (both options are available), reducing the analysis time by

up to 1000-fold. This feature makes it finally practical to use a

more accurate and sensitive homology-based approach for both

web- and console-based high-throughput analysis of large datasets.

To achieve the first objective, we used the following strategy.

Commonly, using a homology-based approach, a sequence is first

aligned against a reference database (usually NCBI NR), and then

its taxonomic identity is inferred based on the taxonomic

information of the most significant match (or hit protein) found

in the reference database. Importantly, since the alignments, by

Blat or Blastx, are local and a read may contain multiple coding

regions (complete or partial) (Figure 1), it is possible that different

parts of the query align with different proteins in the NR database.

Furthermore, the shotgun sequencing approach is likely to

generate DNA fragments from various regions, including the

intragenic and intergenic regions. Therefore, all possibilities (A–G)

represented in Figure 1 are likely to occur and must be considered

for taxonomic assignments. These are discussed in detail in Text

S1. To consider these possibilities and assign them to the correct

taxonomic bins, we have used a unique approach that considers

the taxonomic information from all complete or partial ORFs

present in a read, and then assign it to a taxonomic bin.

Case 1 is applicable for shorter reads (45–75 bp) which do not

contain multiple or complete ORFs, but contain only a single

partial ORF which may originate from one of the terminals or any

other region of the protein. In this case, MetaBin employs very

stringent criteria and considers only those partial ORFs which

either match to the N- or C- terminals of the hit protein, or almost

Figure 1. ORF-based approach for the taxonomic assignment of reads of different lengths derived from different regions of the
genomic DNA. Read derived from intergenic region (A), read containing the small 59 region of an ORF (B), read containing two partial ORFs at the
59and 39 terminals and a complete ORF in the middle (C), read containing only a single complete ORF (D), read containing a long partial ORF at one
end (E), read obtained from within an ORF (F), read with sequencing error causing a single ORF to split into two smaller ORFs (G). X, Y, Z, K, L, and M
are the genomes to which the ORFs showed matches. The taxonomic IDs of the species of these genomes are used for making the taxonomic
assignments, and for creating the taxonomic bins.
doi:10.1371/journal.pone.0034030.g001

Taxonomic Binning of Metagenomic Sequences

PLoS ONE | www.plosone.org 3 April 2012 | Volume 7 | Issue 4 | e34030



completely match with high identity to other regions of the hit

protein. All other partial ORFs are discarded, leading to more

accurate assignments for shorter reads. For case 2, if two or more

ORFs come from the same genome, the taxonomic ID (TID) of

the common genome (X) is assigned as the taxonomic bin. For

case 3, when two or more ORFs show a common match to two or

more genomes, then the LCA of the two genomes (X and Y) is

assigned. For case 4, when the different ORFs have no commonly

matching genomes, then the LCA of all the genomes is assigned as

the taxonomic bin.

Taking into account the taxonomic information of the common

hit(s) for multiple ORFs in a read leads to more correct and

specific taxonomic assignments at the genus or species level since,

in most cases, only the correct hit (genome) is expected to show a

match for all of the ORFs. This approach also minimizes the use

of LCA analysis, which leads to non-specific or higher-level

taxonomic assignment, as in the case of other programs like

MEGAN. Even for reads derived from novel genomes, where the

order of the ORFs in the reads may not be the same as the order of

the ORFs in the reference genomes, there is a strong likelihood

that the ORFs will show a match to other related genomes of the

same genus or family, and thus will result in correct prediction of

the taxonomic lineage by subsequent LCA analysis. After parsing

the alignment output file for each read, the steps shown in Figure 2

are carried out for taxonomic assignment, and in case of paired-

end read data, the steps shown in Figure S1 and as described in

Text S2 are additionally carried out for re-assignment. Since the

hits are qualified based on bit-score, the alignment results are

sorted by bit-score because, by default, they are sorted by Expect

value (E-value). In addition, we use the genome information of all

the genomes listed in the annotation line of any given protein of

the NCBI NR database to avoid any undesired genome bias that

results from using only the first genome of the annotation line.

Consideration of the above sequence features by the MetaBin

algorithm results in more accurate and more specific taxonomic

assignments for all different read lengths.

Results

Validation on simulated read datasets
To validate MetaBin on simulated metagenomic data, we

carried out taxonomic analysis of the simulated read datasets using

MetaBin with both Blastx and Blat output (referred to as

MetaBinX and MetaBinT, respectively), and with MEGAN and

SOrt-ITEMS using the Blastx output on various simulated read

datasets. The assignments were counted at three levels, namely

‘Genus’, ‘Family, and ‘Phylum’ as shown in Figure S2. An

assignment is counted as ‘correct’ when the assigned taxonomic

level is the same as the expected taxonomic level. For example,

when a read belonging to ‘Escherichia coli str. K-12 substr.

Figure 2. Flowchart of MetaBin algorithm. ID and POS refer to %Identity and %Positives, respectively, as provided in the Blastx or Blat output.
COV refers to the % coverage of the query with the hit (reference protein).
doi:10.1371/journal.pone.0034030.g002
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DH10B’ is assigned to the phylum ‘Proteobacteria’, the assign-

ment is considered as correct since this is the expected phylum. To

calculate sensitivity and the positive predictive value (PPV), we

considered only intragenic reads because the reference database

(NR) contains only protein sequences, and therefore, only reads

originating from protein coding regions (intragenic) are expected

to find a match. We used the following standard formulae for

calculating sensitivity and PPV.

Sensitivity %ð Þ~(TP=(TPzFN))|100

Positive predictive value PPVð Þ %ð Þ~(TP=(TPzFP))|100

True Positive TPð Þ~number of reads

assigned with correct expectedð Þ phylum,

False Positive FPð Þ~number of

reads assigned to incorrect phylum,

False Negative FNð Þ~number of unassigned

intragenic readsznumber of reads assigned

above the phylum level Higherð Þ

For all the bacterial read datasets, in most comparisons including

longer reads (800 bp, 450 bp and 250 bp) and all comparisons

including shorter reads (75 bp and 45 bp), MetaBinX assigned a

higher percentage of reads to their correct genus, family and

phylum, as compared to MEGAN and SOrt-ITEMS (Table 1 and

Table 2, details in Text S2 and Text S3). As apparent from Table 1

and Table 2, the performance of SOrt-ITEMS was much weaker

in all comparisons to MetaBinX and in most comparisons to

MEGAN. Therefore, for most comparisons discussed in the

following text, we have mainly compared MetaBin with MEGAN.

For longer read lengths, the performance of MetaBinT was mostly

comparable to that of MetaBinX, MEGAN and SOrt-ITEMS for

NR, but for NRminusGenus and NRminusFamily it was slightly

weaker. MetaBinX and MetaBinT both performed significantly

better for short reads and assigned, up to 18% for NR, and up to

7% for NRminusGenus and up to 9% for NRminusFamily, more

reads to the correct genus and phylum, respectively as compared

to MEGAN. The ability of MetaBin to make more accurate

Table 1. Summary of results using MetaBin, MEGAN and SOrt-ITEMS on simulated bacterial read datasets for different sequencing
technologies.

Read
Length
(bp) Method Complete NR Database (NR)

NR with genus deleted
(NRminusGenus)

NR with family deleted
(NRminusFamily)

Genus Family Phylum Sens PPV Family Phylum Sens PPV Phylum Sens PPV

800 MetaBinX 93.49 97.97 99.15 99.18 99.95 33.68 61.57 64.18 85.84 49.35 51.91 80.13

MetaBinT 93.46 97.92 99.1 99.19 99.96 28.68 52.89 66.04 80.91 42.07 56.47 75.19

MEGAN 92.53 97.46 98.61 98.67 99.92 33.16 60.46 63.04 85.73 49.31 51.88 79.94

SOrt-ITEMS 52.62 68.29 94.61 96.01 97.7 6.25 48.01 49.38 84.59 35.68 36.89 78.42

400 MetaBinX 88.03 92.87 94.71 94.47 99.92 24.84 45.89 47.71 83.03 33.88 35.65 75.05

MetaBinT 83.14 87.97 90.46 93.83 99.85 15.78 28.96 49.69 78.91 20.44 41.81 72.77

MEGAN 87.73 92.72 94.49 94.28 99.88 24.32 45.16 46.89 82.92 34.69 36.34 75.81

SOrt-ITEMS 34.41 67.62 91.53 91.7 98.1 8.35 42.84 45.19 78.68 32.86 35.29 68.89

250 MetaBinX 86.94 92.14 94.73 94.79 99.88 21.63 39.39 40.86 81.19 27.89 29.29 72.71

MetaBinT 85.71 90.75 93.53 93.57 99.89 14.63 26.45 58.41 78.36 18.22 50.25 71.76

MEGAN 86.33 91.73 94.28 94.43 99.77 21.24 38.84 40.48 81.17 28.05 29.29 73.11

SOrt-ITEMS 41.63 59.8 78.06 78.31 97.5 8.12 30.18 31.41 79 22.46 23.48 69.16

Read Length ,100 bp

75 MetaBinX 92.14 95.85 96.59 98.53 99.87 20.18 35.91 53.77 77.15 25.97 42.43 66.06

MetaBinT 93 96.77 97.63 99.09 99.86 16.15 29.05 51.43 67.33 22.06 43.4 55.17

MEGAN 82.44 88.55 92.36 94.3 99.74 16.85 32.17 48.60 74.50 23.86 36.77 64.21

SOrt-ITEMS 76.52 80.84 82.65 82.03 95.32 13.68 33.6 36.91 69.98 25.11 27.89 59.79

45 MetaBinX 76.51 80.48 82.37 96.89 99.98 7.91 12.48 53.44 72.53 6.96 37.91 63.58

MetaBinT 86.12 90.56 92.93 96.47 99.70 10.83 19.02 57.07 64.97 13.23 52.5 56.08

MEGAN 67.94 73.02 76.69 90.3 99.84 6.59 11.25 46.63 73.62 3.82 20.67 65.39

SOrt-ITEMS 49.44 56.51 59.53 59.24 93.81 5.94 10.82 11.24 69.65 6.04 6.2 60.64

doi:10.1371/journal.pone.0034030.t001
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assignments at the lower and more specific taxonomic levels

underscores its usefulness.

The average sensitivity and PPV of MetaBinX for all simulated

read datasets was also similar or higher as compared to MEGAN

and SOrt-ITEMS, especially for short reads. MetaBinT showed

comparable sensitivity and PPV for NR, but its PPV was lower for

NRminusGenus and NRminusFamily, though the sensitivity was

considerably higher. This could be attributed to the differences in

the accuracy and sensitivity of the Blastx and Blat algorithms. In

the case of simulated reads derived from the bacterial genomes, for

,75 bp reads, both MetaBinT and MetaBinX showed 2.8–6.6%

higher average sensitivity for NR, NRminusGenus and NRmi-

nusFamily as compared to MEGAN, and showed 14.5–16.8%

higher average sensitivity for NR, NRminusGenus and NRmi-

nusFamily as compared to SOrt-ITEMS. In the case of ,45 bp

reads, for NR both MetaBinT and MetaBinX showed .6%

higher average sensitivity, for NRminusGenus, MetaBinT showed

10.4% and MetaBinX showed ,7% higher sensitivity, and for

NRminusFamily, MetaBinT showed ,32% and MetaBinX

showed 17% higher sensitivity as compared to MEGAN. For the

same read length (,45 bp), both MetaBinT and MetaBinX

showed 31–46% higher average sensitivity, for NR, NRminus-

Genus, and NRminusFamily, as compared to SOrt-ITEMS.

In the case of simulated reads derived from the archaeal

genomes, for longer reads, in the case of NR, all tools showed

comparable sensitivity for all comparisons. However, for NRmi-

nusGenus and NRminusFamily, the performance of MetaBinX,

MetaBinT and MEGAN was comparable, whereas SOrt-ITEMS

showed a much lower sensitivity. Similarly, for ,75 bp reads, the

sensitivity of MetaBinX, MetaBinT and MEGAN was mostly

comparable. For ,45 bp reads, MetaBinT showed much greater

sensitivity and assigned a greater number of reads to their correct

genus, family or phylum. Overall, among the tools used, the

performance of SOrt-ITEMS was considerably weaker as

compared to MetaBin and MEGAN.

Validation on real metagenomic dataset (short reads):
Gut metagenomic data from a European individual

To validate MetaBin on real metagenomic data, we used recent

human gut data obtained by Illumina sequencing from a Spanish

male individual (V1CD2) [15], and analyzed it using MetaBin

with Blat as the alignment program. The ‘prepareinput’ program

was used to translate the reads into six reading frames and align

them against NR using Blat which generated a large size output

file of 149 GB. MetaBin (the ‘metabin’ program) was then run to

carry out the taxonomic assignments, and only those bins

containing at least 10,000 reads were considered, while the rest

of the parameters used the default values. In total, it took about

370 CPU hours, which is really reasonable considering the input

size of more than 20.72 million reads. A large number of reads,

12,840,080 (62%), had no match in the NR database. One reason

Table 2. Summary of results using MetaBin, MEGAN and SOrt-ITEMS on simulated archaeal read datasets for different sequencing
technologies.

Read
Length
(bp) Method Complete NR Database (NR)

NR with genus deleted
(NRminusGenus)

NR with family deleted
(NRminusFamily)

Genus Family Phylum Sens PPV Family Phylum Sens PPV Phylum Sens PPV

800 MetaBinX 97.81 98.44 99.69 99.69 100 28.35 77.96 80.33 95.95 56.85 59.8 81.18

MetaBinT 97.86 98.65 99.58 99.63 99.95 21.63 64.72 80.49 93.99 48.15 63.58 79.14

MEGAN 97.86 98.54 99.64 99.63 100 28.09 77.75 80.61 95.16 56.54 59.97 78.75

SOrt-ITEMS 60.24 75.09 99.11 99.11 100 2.24 60.03 61.23 96.65 42.78 44 85.21

400 MetaBinX 92.09 93.19 94.95 95.07 99.87 19.23 58.66 59.85 95.92 42.05 42.98 79.26

MetaBinT 87.19 88.39 90.94 94.9 99.92 9.69 33.17 65.59 93.13 24.64 51.51 77.27

MEGAN 92.34 93.65 95.48 95.75 99.81 19.85 59.38 61.38 95.37 42.25 43.91 78.81

SOrt-ITEMS 38.86 73.82 95.23 95.79 99.39 5.76 53.22 55.67 91.84 37.14 39.21 73.57

250 MetaBinX 91.54 92.75 95.16 95.19 99.96 15.65 47.87 49.12 94.32 34.32 35.33 78.19

MetaBinT 90.74 91.97 94.48 98.39 99.94 8.1 26.78 73.57 92.15 19.69 57.81 75.69

MEGAN 91.86 93.31 95.71 95.9 99.85 16.47 49.96 51.91 93.1 35.43 36.88 75.49

SOrt-ITEMS 52.54 73.85 95.3 95.47 99.81 5.09 34.84 36.34 88.95 23.8 24.81 72.19

Read Length ,100 bp

75 MetaBinX 96.7 96.95 97.29 99.2 99.96 12.51 41.77 67.24 90.91 30.47 50.54 72.95

MetaBinT 96.85 97.14 97.51 99.59 99.93 7.98 27.25 57.43 75.56 20.28 43.48 59.37

MEGAN 89.3 91.39 96.26 98.23 99.89 11.95 40.83 66.61 89.7 29.62 49.47 70.3

SOrt-ITEMS 94.07 95.21 96.4 96.54 99.85 8.15 34.11 36.49 83.73 23.73 25.6 66.07

45 MetaBinX 82.4 83.07 84.77 98.95 99.99 2.53 8.96 62.02 86.48 6.56 47.04 70.17

MetaBinT 92.99 93.9 95.84 98.73 99.92 3.97 14.29 75.23 75.23 10.68 51.23 58.61

MEGAN 74.19 76.35 81.96 95.71 99.96 2.57 9.59 64.46 90.73 7.03 49.07 73.72

SOrt-ITEMS 56.07 60.79 64.03 64.33 99.25 2.27 7.6 7.71 85.39 5.33 5.44 70.65

The above tables show the percentage of total reads correctly assigned at different taxonomic levels such as Genus, Family or Phylum. ‘Sens’ refers to %average
sensitivity and ‘PPV’ refers to %average positive predictive value.
doi:10.1371/journal.pone.0034030.t002
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for this could be that some of these reads (,12%) are derived from

the intergenic regions, as in case of simulated reads of a similar

length (,75 bp) (Figure S3 and Figure S4). Other possible reasons

could be short read length, the strict classification criteria used by

MetaBin, and the fact that a large number of genomes present in

the human gut are novel and not well represented in the NR

database [16].

A total of 7,019,398 (33.9%) reads could be assigned to

taxonomic bins, and the remaining 865,736 (4.18%) reads could

not be assigned to any taxonomic bin (Table S2). Bacteroidetes

was the most abundant phylum (77.4%) followed by Firmicutes

(16.8%), Proteobacteria (3.5%), Actinobacteria (1.7%), Cyanobac-

teria (0.27%), and Euryarchaeota (0.24%). These results corrob-

orate previous observations [15,16]. Since this data was available

as paired-end reads, we analyzed the same dataset using the

paired-end option of MetaBin. Out of 10,348,691 read pairs, for

3,714,756 (35.9%) read pairs (both reads) remained either

unassigned or had no Blat hits, and for 6,249,660 (60.4%), only

one of the reads could be assigned to a taxonomic bin, while the

other read remained unassigned or had no Blat hit, as might be

expected for reads derived from the intergenic regions (Figure 1

and Figure S3). For the latter read pairs, the taxonomic bin of the

assigned read was directly allocated as the taxonomic bin of the

unassigned read. Of the remaining 384,274 read pairs where both

the reads were taxonomically assigned, 355,015 (92.4%) read pairs

were assigned to the same lineage and 29,259 (7.6%) read pairs

were assigned to different lineages. Of the latter, 10,121 read pairs

were reassigned to the same lineage, while the remaining 19,138

read pairs could not be reassigned since there was no apparent

taxonomic similarity between the reads.

Validation on real metagenomic dataset (long reads):
Sargasso sea dataset

To test the performance on longer reads, we compared the

results of MetaBin, MEGAN and SOrt-ITEMS using the same

sample data obtained from Sargasso Sea dataset which was used in

previous studies [7,8]. MetaBin and MEGAN both predicted a

similar number of bins at the phylum, family and genus levels

which corroborate with the previous study on the entire Sargasso

sea dataset [17]. Furthermore, MetaBin assigned comparatively

more reads (nearly twice the number of reads at the species level)

to each of these common bins (Table S3), which shows its ability to

assign more reads (higher sensitivity) (details are provided in Text

S2). Overall, the performance of SOrt-ITEMS was comparatively

limited compared to both MetaBin and MEGAN. Though the

focus of this study is on homology-based approaches, to provide a

brief comparison of MetaBin with two publicly available

composition-based methods (TACOA and NBC), as well as with

another method based on homology to protein families (Web-

CARMA), we compared the performance of these programs on

the same dataset. As apparent from the results, the composition-

based (TACOA) and protein family based (WebCARMA) method

have limitations for making comprehensive taxonomic assign-

ments as compared to homology-based methods. However,

another composition-based method, NBC, showed unusually high

assignments as it assigned almost all the reads to the phylum or

even to the genus level, which is surprising since these sample

reads are derived from a metagenomic environment (Sargasso sea)

where a large number of genomes are novel (yet uncultured and

not yet sequenced). Therefore, an almost absolute taxonomic

assignment at the genus, or even at the phylum level, is certainly

not expected with the current knowledge.

Comparative analysis using human gut datasets
To demonstrate the comparative analysis feature of MetaBin,

we used two human gut datasets, HGF1S and HGF1T, and

analyzed the Blastx results for both using MetaBin. In the

taxonomic tree dendrogram shown in Figure S5, the HGF1S and

HGF1T datasets are represented in red and blue, respectively.

When a taxonomic bin is commonly present in both datasets, its

respective normalized proportions are shown as a pie chart with

the above assigned colors. Since HGF1S and HGF1T are from

individuals belonging to the same family, it is apparent that their

guts contain similar flora, but have surprisingly different amounts

of the constituent microbes (Figure S5 and Table S4). All phyla

were common to both datasets, but ‘Bacteroidetes’ was the most

abundant phylum for HGF1S, whereas ‘Firmicutes’ was the most

abundant phylum for HGF1T which corroborate with the

previous study on the entire human gut dataset [16]. We could

also analyze this data for taxonomic reassignment using the

paired-end option, and the results are described in Text S2.

Features of the web server
The web server provides several options (described below) for

taxonomic analysis, visualization of results, and comparative

analysis.

Application - Taxonomic analysis of metagenomic data
Using this page, the user can submit and carry out taxonomic

analysis of either sequence reads or Blastx output. Since MetaBin

uses a homology-based approach, alignments with a reference

database (NCBI NR) are required. Therefore, the ‘Application’

page presents two options, BLAT and BLAST, to generate the

alignments. The first option, BLAT, uses Blat as the alignment

method and is much faster (up to 1000 times) as compared to

Blastx, and thus can dramatically reduce the amount of time taken

to generate the alignments with comparable results (Table 1 and 2,

Figure S6). When submitting sequence reads as input, we

recommend the Blat option to obtain faster results and the

complete process, including alignment and taxonomic classifica-

tion, can be carried out at the server. The input sequences

submitted in FASTA format is first checked for the correct input

format (refer to Tutorial available on the website for details). After

validation, reading frames (RFs) are predicted in the reads by

translating them into six reading frames, and the qualified RFs

($10 amino acids) are aligned against the NCBI NR database

using Blat. The alignment results are then analyzed to classify the

sequences into their appropriate taxonomic bins. The second

option, BLAST, uses Blastx for generating the alignments. Here

we recommend users to run the Blastx job (full alignment format)

on their own machine, preferably using multiple node/processors,

and then upload the Blastx alignment output to our server for

carrying out the taxonomic assignments. An option to upload

sequence reads is also provided, but it will take a much longer time

to generate the alignments as Blastx is very slow in comparison to

Blat.

Various options are available to change the input parameters

such as minimum bit-score (Blat or Blastx output), bit-score range

to select hits, and bin size (minimum number of reads needed to

form a taxonomic bin), otherwise the default parameters will be

used. Additionally, the user can select either the complete NR

database or the ‘NR minus Eukaryotes’ version from which all the

proteins belonging exclusively to eukaryotes are deleted. Since the

focus of metagenomic studies is often to determine the prokaryotic

composition, the latter option is useful and decreases the total

analysis time by about 30%. An option to specify if the reads

should be analyzed as paired-ends is also available. The ‘Results’

Taxonomic Binning of Metagenomic Sequences
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page provides the output files in tab-delimited format which can

be downloaded from the server. It displays thumbnail images of

the taxonomic tree (*.png file) and functional annotation of the

reads using COGs functional classes which can be clicked on to

view the full-sized images. A summary table of the reads assigned

to each of the taxonomic bins (*.sum file) is also shown.

Visualization of results and comparative analysis
The Results page provides a link to the ‘Visualization’ page,

where several options for displaying the results and carrying out

comparative analysis can be found. If the MetaBin standalone

version was used, the resultant *.json file can be uploaded on this

page for additional web-based analyses. The first option ‘Create

Taxonomic Tree’ is used to visualize the taxonomic tree and

prepare a ‘Composition chart’ for a single dataset. On the

taxonomic tree, each taxonomic bin is shown as a node whose size

is determined by the proportion of the number of reads assigned to

that bin to the total number of reads in that dataset. The

composition chart provides an overview of the microbial

distribution in the dataset and shows the ‘abundance of the

microbes’, which is computed as a proportion of the total number

of reads assigned to any taxonomic bin of a certain taxonomic

level by the total number of reads assigned to that taxonomic level.

The second option ‘Compare Metagenome Profiles’ can be used

to compare the taxonomic profiles of up to five metagenomic

datasets using the *.json output files from the MetaBin analysis.

The taxonomic tree generated after comparing the metagenomic

profiles of multiple datasets shows each dataset as distinct colors;

and, when a taxonomic bin is present in two or more datasets, its

respective normalized proportions are shown as a pie chart using

the same color scheme. The composition chart compares the

microbial distribution in the datasets and shows the ‘abundance of

microbes’ classified at various taxonomic levels in the different

datasets represented in different colors.

Stand-alone version of MetaBin
To analyze large metagenomic datasets, a free stand-alone

executable program is available for download for several operating

systems including Linux, Mac, and Windows. Various options are

available to change the input parameters such as bin size (‘-b’,

minimum number of reads needed to form a taxonomic bin),

minimum bit-score (‘-s’, Blastx or Blat output) and bit-score range

(‘-r’), to select hits. An option (-d) is provided for comparative

analysis which generates a taxonomic tree after comparing the

proportions of each taxonomic group in the selected metagen-

omes, and displays the respective proportions as a pie chart. Using

the ‘-p’ option, the program can also be used for the taxonomic

assignments of paired-end sequence read data, accepted in the

specified formats (refer to the website Tutorial for details). To use

Blat as the alignment method, the user should run the

‘prepareinput’ program to translate the reads into six reading

frames and run Blat. The output of this program is used as the

input for the ‘metabin’ program. For Blastx, users should carry out

the alignments separately by generating an output in full

alignment format and then use the Blastx output as input for the

‘metabin’ program.

Discussion

The correct assignment of metagenomic sequences to their

respective source genomes, or taxonomic lineage, is a critical step

for estimating the complexity of any metagenome and for further

functional analysis of the metagenomic data [18]. Though the

homology-based approaches are more common, specific, and

useful for diverse length of reads as compared to the composition-

based approaches, their implementation on large metagenomic

datasets is dramatically limited by the long analysis time needed to

generate the Blastx alignments. MetaBin provides a significant

improvement over the currently existing homology-based methods

for better and faster taxonomic assignments by using a more

specific ORF-based approach. Taking into account the taxonomic

information from common hit(s) for multiple ORFs in a read leads

to more correct and specific taxonomic assignments at the genus

and species level, and minimizes the use of LCA analysis, which

leads to non-specific or higher level taxonomic assignment, as in

the case of other programs.

The implementation of Blat in MetaBin makes it practical to use

a more accurate and sensitive homology-based approach for the

high-throughput analysis of large datasets and for the development

of a web-based community server. It allows the user to directly

submit their reads on our server and run the complete analysis

pipeline, including both homology-based alignment and taxonom-

ic assignment. The web server also provides several useful options

for visualization of results and comparative analysis of multiple

metagenomic datasets. In addition, the functional analysis of reads

using COGs provides insights on the functional composition of the

data. The availability of a standalone command line version of the

program allows users to carry out large-scale analysis on their own

machines, and also makes it suitable for integration in other

pipelines for automated analysis of metagenomic data.

The results obtained from the analysis of simulated reads and a

variety of real metagenomic datasets attests to the usability,

accuracy, and sensitivity of MetaBin. Further, its ability to perform

a complete analysis, including alignment with NR and taxonomic

assignment, for such large datasets like the EU individual human

gut metagenomic data [15], consisting of short ,75 bp Illumina

reads, in relatively short time, clearly demonstrates the practical

usability of MetaBin on real metagenomic data. MetaBin can be

used for the comprehensive taxonomic assignment of sequence

reads of diverse lengths ($45 bp) derived from any existing

sequencing technology. To our knowledge, it is the only method

which can be applied for the taxonomic binning of reads of lengths

as short as 45–75 bp with higher accuracy and sensitivity than

competing methods, as demonstrated in this work.

In conclusion, the MetaBin program and web server can be

considered a significant improvement over currently existing

programs for carrying out the taxonomic binning of metagenomic

sequences with high accuracy, sensitivity and speed. In the future,

we plan to further improve its performance, to keep it updated as

per the advancements in next-generation sequencing technologies,

and to continue the development of more options for comparative

analysis and visualization of the results.

Supporting Information

Figure S1 Calculation of weight and criteria for reassigning

taxonomic bin to paired-end reads on the basis of weight. The

abbreviations ID and POS refer to %Identity and %Positives,

respectively, as provided in Blastx output. COV refers to the %

coverage of the query with the hit (reference protein).

(TIF)

Figure S2 Schematic view of taxonomic classification for

calculation of sensitivity and PPV.

(DOC)

Figure S3 Number of simulated reads originating from interge-

nic regions for various sequencing methodologies. As expected the

chances for a read to have originated from an intergenic region
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increases as the read length decreases or as the intergenic distance

increases (Figure S4).

(DOC)

Figure S4 Summary of average gene length (blue) and average

intergenic distance (red) for the 25 bacterial and two archaeal

genomes. The average intergenic regions are small (,182 bp on

average) in the selected microbial genomes. In the case of CFP2 and

RSD17, the average intergenic distances are longer as compared to

the other genomes. A plausible explanation could be that because

both of these bacteria are endosymbionts, many of their functional

genes have become pseudogenes, thus converting genes into

intergenic regions. The average gene length was ,956 bp.

(DOC)

Figure S5 Comparison of the gut microflora of HGF1S and

HGF1T datasets. The HGF1S and HGF1T datasets are

represented in red and blue, respectively. When a taxonomic bin

is commonly present in both datasets, its respective normalized

proportions are shown as a pie chart with the above assigned

colors.

(TIF)

Figure S6 Comparison of time taken for processing the

BLASTX results for different numbers of reads by MetaBin and

MEGAN. Simulated and real metagenomic reads of length

,800 bp (Sanger) were used. The approximate size of the datasets

containing 1,000, 5,000, 10,000, 15,000, and 20,000 reads were

0.34, 1.9, 4.8, 6.4, and 8.3 GB, respectively. MetaBin is

comparatively much faster than MEGAN in processing the Blastx

output and carrying out the taxonomic analysis.

(DOC)

Table S1 Complete taxonomic lineage of 27 microbial (bacteria

and archaea) genomes used in this analysis.

(DOC)

Table S2 Summary of taxonomic assignment of reads by

MetaBin using Blat (MetaBinT) for the gut metagenomic data

from a European individual (V1CD2).

(DOC)

Table S3 Comparative analysis of taxonomic assignment of

reads by homology- and composition-based methods for the

Sargasso dataset (SSea Sample 1).

(DOC)

Table S4 Comparative analysis of human gut datasets HGF1T

and HGF1S.

(DOC)

Text S1 Description of possible cases (A–G as shown in Figure 1).

(DOC)

Text S2 Supplementary information.

(DOC)

Text S3 Genome wise summary of analysis by MetaBinX and

MetaBinT on 25 simulated read datasets.

(DOC)
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