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Abstract

Background: Aerobic organisms are susceptible to damage by reactive oxygen species. Oxidative stress resistance is a
quantitative trait with population variation attributable to the interplay between genetic and environmental factors.
Drosophila melanogaster provides an ideal system to study the genetics of variation for resistance to oxidative stress.

Methods and Findings: We used 167 wild-derived inbred lines of the Drosophila Genetic Reference Panel for a genome-
wide association study of acute oxidative stress resistance to two oxidizing agents, paraquat and menadione sodium
bisulfite. We found significant genetic variation for both stressors. Single nucleotide polymorphisms (SNPs) associated with
variation in oxidative stress resistance were often sex-specific and agent-dependent, with a small subset common for both
sexes or treatments. Associated SNPs had moderately large effects, with an inverse relationship between effect size and
allele frequency. Linear models with up to 12 SNPs explained 67–79% and 56–66% of the phenotypic variance for resistance
to paraquat and menadione sodium bisulfite, respectively. Many genes implicated were novel with no known role in
oxidative stress resistance. Bioinformatics analyses revealed a cellular network comprising DNA metabolism and neuronal
development, consistent with targets of oxidative stress-inducing agents. We confirmed associations of seven candidate
genes associated with natural variation in oxidative stress resistance through mutational analysis.

Conclusions: We identified novel candidate genes associated with variation in resistance to oxidative stress that have
context-dependent effects. These results form the basis for future translational studies to identify oxidative stress
susceptibility/resistance genes that are evolutionary conserved and might play a role in human disease.

Citation: Weber AL, Khan GF, Magwire MM, Tabor CL, Mackay TFC, et al. (2012) Genome-Wide Association Analysis of Oxidative Stress Resistance in Drosophila
melanogaster. PLoS ONE 7(4): e34745. doi:10.1371/journal.pone.0034745

Editor: Thomas Flatt, Vetmeduni Vienna Institute of Population Genetics, Austria

Received January 18, 2012; Accepted March 8, 2012; Published April 4, 2012

Copyright: � 2012 Weber et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by National Institutes of Health (www.nih.gov) grants F32 GM089010 (to ALW) and 5RC1ES018255 and GM045146 (to RRHA
and TFCM). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: allisonwebergenetics@gmail.com

Introduction

Oxidative stress, or the overabundance of reactive oxygen

species (ROS) as an unavoidable consequence of aerobic

respiration, has been implicated in aging [1,2], neurodegenerative

and cardiovascular disease [3,4] and the disruption of cell

signaling processes that control cell growth and death [5].

Excessive accumulation of ROS can damage DNA and proteins

and disrupt critical cellular signaling pathways, which ultimately

leads to the breakdown of cellular processes and contributes to

organismal aging and disease susceptibility [6,7]. Oxidative stress

may contribute to dysfunction and death of neuronal cells that

occur in Alzheimer’s disease, Parkinson’s disease and amyotrophic

lateral sclerosis [3]. ROS may also induce cardiovascular disease

by affecting signaling pathways that lead to inflammation of

vascular tissue in atherogenesis, the process where fat deposits

form on the inner lining of blood vessels [8,9,10].

Genetic variants associated with susceptibility to oxidative stress

in human populations have largely been identified indirectly, as

many alleles associated with increased risk for common diseases

and aging are in genes in oxidative stress response pathways [4].

Model organisms offer the advantage of direct screens for variants

affecting survival following exposure to acute oxidative stress

inducing agents. Alleles of age-1, mth, and shc66 associated with

increased longevity of Caenorhabditis elegans, Drosophila melanogaster

and mice [11,12,13,14], respectively, have pleiotropic effects on

increased resistance to oxidative stress. Biochemical studies have

implicated Superoxide dismutase (Sod) [15,16] and Catalase (Cat)

[17,18] as fundamental mediators for the removal of ROS.

Overexpression of both Sod and Cat transgenes results in enhanced

oxidative stress resistance and longevity in specific Drosophila

genetic backgrounds [19,20,21]. Studies characterizing changes in

genome-wide gene expression following induction of oxidative

stress implicate a large number of genes, including genes

associated with purine biosynthesis and innate immune response

[22]. Genome-wide expression has also been assayed on lines that

have undergone multigenerational selection for increased resis-

tance to hyperoxia. This resulted in the identification of several
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candidate genes involved in survival under hyperoxia, including

Diptericin, Tropomyosin1, and Attacin [23]. Genome-wide transcrip-

tional profiling revealed that different methods of inducing

oxidative stress elicit a few common transcriptional responses,

but the majority of gene expression changes are specific to the

oxidative stress inducing agent [24]. Naturally occurring genetic

variation for oxidative stress resistance has been identified by

mapping quantitative trait loci (QTLs) in recombinant inbred lines

(RILs) of D. melanogaster [25,26]. However, the sampling of natural

genetic variation in these studies was limited, since the RILs were

generated from only two wild-caught female flies [27].

Recently, a population of inbred wild-derived lines comprising

the D. melanogaster Genetic Reference Panel (DGRP), derived from

the Raleigh, North Carolina population, has been fully sequenced

[28]. The DGRP affords the opportunity for the first time to

perform genome-wide association (GWA) analyses for quantitative

traits when all genetic variants are known. The low level of local

linkage disequilibrium (LD) in the DGRP is favorable for

identifying candidate causal polymorphisms. The DGRP lines

are inbred, which enables rearing nearly genetically identical

individuals in large numbers, thereby increasing the power to

reduce statistical noise due to environmental variation. Further-

more, inbreeding of the DGRP lines has minimized residual

heterozygosity and increased the genetic variance among lines to

at least double that of the outbred population from which it was

derived [29], which also increases power for GWA mapping. The

Drosophila model allows validation of candidate genes and

identification of causal SNPs through a variety of genetic

approaches, including analysis of mutations.

Here, we have used 167 DGRP lines to conduct GWA mapping

of acute oxidative stress susceptibility/resistance by measuring

survival time on two different oxidative stress inducing agents,

paraquat and menadione sodium bisulfite (MSB). We found

significant and sex-specific genetic variation in survival time

among the lines for both treatments. Our GWA analysis identified

several hundred candidate genes, several of which were previously

not known to be involved in oxidative stress response and many of

which have human homologs. Many of these candidate genes were

sex-specific and uniquely susceptible to one of the oxidative stress

inducing treatments, but a subset converge on a common network

that may represent a central conduit for response to various

oxidative stress inducing agents. Finally, we have validated a

subset of candidate genes using mutant analysis.

Results

Natural variation in oxidative stress susceptibility
To characterize natural genetic variation in oxidative stress

susceptibility, we measured survival time on two different oxidative

stress inducing agents, paraquat (1,19-dimethyl-4,49-bipyridinium

dichloride) and menadione sodium bisulfite (MSB), among 167

DGRP lines [28], for males and females separately (Figure 1A–B;

Table S1). The DGRP lines vary in Wolbachia infection status [28].

Wolbachia infection had a significant effect on survival time on

paraquat for both sexes and survival time on MSB in males (Table

S2). Therefore, we adjusted the phenotypic values according to

Wolbachia infection status for subsequent analysis.

We found extensive phenotypic and genetic variation for

survival time on both paraquat and MSB (Figure 1A–B;

Table 1), similar to the broad variation observed for other traits

in this population [28,30]. The broad sense heritability (H2) for

survival time was H2 = 0.48 on MSB and H2 = 0.36 on paraquat

(Table 2), when pooled across sexes. Survival on exposure to both

paraquat and MSB is sexually dimorphic: averaged over all lines,

survival of males is 90% that of females on paraquat, whereas

survival of females is 87% that of males on MSB (Table S1).

However, there was significant genetic variation in the magnitude

and direction of sexual dimorphism for survival under both

oxidative stress inducing agents, as indicated by the significant sex

by line interaction terms in the analyses of variance (Table 1).

Cross-sex genetic correlations (rMF), which quantify the extent to

which the same variants affect a trait in males and females, were

significantly different from unity (paraquat, rMF = 0.70; MSB,

rMF = 0.64), underscoring sex-specific differences in susceptibility

to oxidative stress agents.

When sexes were assessed separately, pooled across treatments

(Table S3; Table S4), the effect of treatment was significant for

both males and females, with greater survival times on MSB than

paraquat. Averaged over all lines, the survival time on paraquat

was 61% that of survival on MSB for females; while the average

survival time on paraquat was only 48% that of survival on MSB

for males (Table S1). However, there was significant genetic

variation in the magnitude and direction of the effect of treatment

in both sexes, as indicated by the significant line by treatment

interaction terms in the analyses of variance (Table S3). Genetic

correlations between resistance to oxidative stress for the two

treatments were significantly different from zero and similar for

both sexes (female rPM = 0.35; males rPM = 0.29; Figure 1C), but

not high, indicating that largely different genetic variants affect the

response to acute oxidative stress induced by paraquat and MSB.

Thus, the genetic architecture of oxidative stress susceptibility is

sex-specific and dependent on the method of induction.

SNPs associated with oxidative stress susceptibility
To identify genes that harbor alleles that confer genetic risk to

paraquat- or MSB-induced oxidative stress, we performed GWA

analyses for survival time on paraquat and MSB with 2,481,491

SNPs previously identified by sequencing the DGRP lines [28].

We performed single marker analyses pooled across sexes and for

males and females separately within each treatment. We also

performed analyses pooled across treatments for each sex. We

found 298 SNPs that were associated with phenotypic variation for

survival time on paraquat and 154 SNPs that were associated with

phenotypic variation for survival time on MSB at P,1025. A total

of 56 (23) remained significant for paraquat (MSB) when the

significance threshold was P,1026 (Figure 2; Table S5). When we

considered the sexes separately, we found 327 (92) SNPs associated

with survival time on either or both oxidative stress agents for

females (males) at P,1025. A total of 69 SNPs remained

significant for females and 9 for males at P,1026 (Figure 3;

Table S6).

The majority of SNPs associated with variation in susceptibility

to oxidative stress were not common, and at the low end of the

allele frequency spectrum amenable to association mapping (i.e.,

we required the minor allele to be present in at least four DGRP

lines). For the analyses of survival time on either paraquat and

MSB pooled across sexes we found that the SNP effects (females,

males and sexes pooled) were inversely related to minor allele

frequencies, such that the less common SNPs had greater effects

(Figure 4A; Table S5). The effect sizes were comparable for

survival on both paraquat and MSB. For both treatments, negative

effects (where flies homozygous for the minor allele live longer

under oxidative stress than do flies homozygous for the major

allele) greatly outnumbered positive effects. For the analyses of

survival time of females and males pooled across treatments we

also found that the SNP effects (survival time on paraquat, survival

time on MSB, and treatments pooled) were inversely related to

GWA for Oxidative Stress in Drosophila
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minor allele frequency (Figure 4B; Table S6). Female SNP effects

were larger than those observed in males.

As expected from the quantitative genetic analyses indicating

significant genetic variation in sexual dimorphism for survival on

paraquat and MSB, we identified 87 (45) SNPs with significant

SNP by sex interaction terms for paraquat (MSB) at P,1025.

Many of these SNPs exhibited antagonistic pleiotropy between the

sexes. The minor allele was associated with increased survival in

Figure 1. Variation in oxidative stress resistance among 167 DGRP lines. Line means for survival time on paraquat (A) and MSB (B) for
females (red bars) and males (blue bars), and sexual dimorphism (female-male) (purple bars). (C) Genetic correlation of survival times on paraquat and
MSB (P,0.0001) for females and males separately. Mean phenotypic values for each line-sex are given in Table S1.
doi:10.1371/journal.pone.0034745.g001
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females and decreased survival in males for 51 of the SNPs with

significantly different effects on survival on paraquat in males and

females. The opposite pattern – the minor allele associated with

decreased survival of females and increased survival of males – was

observed for 38 of the SNPs with significantly different effects on

survival on MSB in males and females. Only three SNPs were

associated with decreased survival of females and increased

survival of males on paraquat; and seven SNPs were associated

with increased survival of females and decreased survival of males

on MSB. Thus, all SNPs exhibiting SNP by sex interactions for

survival on MSB had sexually antagonistic effects. The majority

(62%) of SNPs with SNP by sex interactions for survival on

paraquat had sexually antagonistic effects; the remainder had sex-

biased or sex-specific effects. The larger number of SNPs affecting

both sexes were associated with increased survival of females on

paraquat and increased survival of males on MSB; this is

consistent with the mean differences in male and female survival

on paraquat and MSB.

Our quantitative genetic analysis also indicated significant

genetic variation in the magnitude and or direction of the effects of

the two treatments. Consistent with this observation, we identified

54 (21) SNPs exhibiting significant SNP by treatment interactions

in females (males). In females, 34 of these SNPs (63%) had

opposite effects in the two treatments, while in males 13 (62%) had

opposite effects on survival under paraquat and MSB. The

remaining SNPs with significant SNP by treatment interactions

were treatment-specific or -biased.

Table 1. Analyses of variance of survival time on paraquat and MSB.

Trait Analysis
Source of
Variation df MS F P-value s2

Survival Time on Paraquat Sexes Pooled* Sex 1 4605.06 29.41 ,0.0001

Line 166 726.28 4.64 ,0.0001 12.38

Sex*Line 166 156.56 5.10 ,0.0001 5.25

Error 7682 30.72 30.72

Females* Line 166 533.61 15.49 ,0.0001 20.80

Error 3841 34.458 34.46

Males* Line 166 349.23 12.94 ,0.0001 13.43

Error 3841 26.98 26.98

Survival Time on MSB Sexes Pooled* Sex 1 26808 48.90 ,0.0001

Line 166 2315.15 4.22 ,0.0001 36.81

Sex*Line 166 548.20 8.83 ,0.0001 20.25

Error 7682 62.10 62.10

Females Line 166 1598.23 22.74 ,0.0001 63.66

Error 3841 70.28 70.28

Males* Line 166 1265.12 23.47 ,0.0001 50.47

Error 3841 53.91 53.91

df: degrees of freedom; MS: Type III Mean Squares; s2: variance component.
*Phenotypic line-sex means adjusted for Wolbachia infection status.
doi:10.1371/journal.pone.0034745.t001

Table 2. Quantitative genetic analysis of survival time on paraquat and MSB.

Parameter Symbol Survival Time on Paraquat* Survival Time on MSB*

Mean m 14.70 27.28

Genetic variance sG
2 17.63 57.06

Genetic standard deviation sG 4.20 7.55

Environmental variance sE
2 30.72 62.10

Environmental standard deviation sE 5.54 7.88

Phenotypic variance sP
2 48.35 119.16

Phenotypic standard deviation sP 6.95 10.92

Heritability H2 0.36 0.48

Coefficient of genetic variation CVG 28.57 27.68

Coefficient of environmental variation CVE 37.69 28.89

Cross-sex genetic correlation rMF 0.70 0.64

*Phenotypic line-sex means adjusted for Wolbachia infection status.
doi:10.1371/journal.pone.0034745.t002
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Figure 2. Genome-wide association analyses for survival time on paraquat and MSB (sexes pooled). All SNPs from single marker
analyses with a nominal P,1025 are shown. Associations based on females are depicted by red dots, males by blue dots, sexes pooled by black dots
and SNP by sex interactions by green dots. The lower triangle depicts the degree of LD between SNPs as measured by r2, with the five major
chromosome arms demarcated by the black lines. The heat map indicates the magnitude of LD with red corresponding to complete LD and blue to
absence of LD. The upper panels show the significance threshold (2log10P), the effect size in phenotypic standard deviation units (a/sP), and the
minor allele frequency (MAF). (A) Survival time on paraquat. (B) Survival time on MSB.
doi:10.1371/journal.pone.0034745.g002

Figure 3. Genome-wide association analyses for females and males (treatments pooled). All SNPs from single marker analyses with a
nominal P,1025 are shown. Associations based on survival on paraquat are depicted by red dots, survival on MSB by blue dots, treatments pooled
by black dots and SNP by treatment interaction by green dots. The lower triangle depicts the degree of LD between SNPs as measured by r2, with the
five major chromosome arms demarcated by the black lines. The heat map indicates the magnitude of LD with red corresponding to complete LD
and blue to absence of LD. The upper panels show the significance threshold (2log10P), the effect size in phenotypic standard deviation units (a/sP),
and the minor allele frequency (MAF). (A) Females. (B) Males.
doi:10.1371/journal.pone.0034745.g003

GWA for Oxidative Stress in Drosophila

PLoS ONE | www.plosone.org 5 April 2012 | Volume 7 | Issue 4 | e34745



In our analyses pooled across sexes for each treatment

separately (Table S5), we found no overlap at the level of SNPs

associated with survival time on paraquat and MSB. However,

different SNPs in five genes (CG11873, CG32541, enabled (ena),

Glutamate receptor binding protein (Grip), and rugose (rg)) were associated

with survival time on both paraquat and MSB (Figure 5A). Three

of these genes (CG11873, Grip and rg) have human homologs

(Table S7). In our analysis pooled across treatments for males and

females separately we found four SNPs associated with variation in

oxidative stress susceptibility in both sexes: 2L_17233438 in the

intron of beat-IIIC; 3R_11695487, a missense mutation in

CG31183; and X_22240772 and X_22240773, both in the intron

of folded gastrulation (fog). Three additional genes, CG13492, nicotine

Acetylcholine Receptor a 30D (nAcRalpha-30D) and tonalli (tna)

contained different SNPs that were associated with variation in

oxidative stress susceptibility in both sexes (Figure 5B). Two of

these genes, CG31183 and tna, have human homologs (Table S7).

Gene-centered prediction models
Single marker association analysis leads to biased estimates of

allelic effects when multiple SNPs affect the trait, and SNPs are

correlated. We therefore computed gene-centered forward selec-

tion multiple regression models to estimate effect sizes when

multiple SNPs are simultaneously evaluated in the model, and to

estimate the fraction of the total variation accounted for by the

SNPs. We computed the multiple regression models separately for

paraquat and MSB, and for females and males as well as averaged

Figure 4. Minor allele frequency versus effect size. All main SNP effects and corresponding minor allele frequencies are shown. (A) Main SNP
effects across sexes (females, males and sexes pooled) for each treatment. Survival on paraquat is depicted by red dots, survival on MSB by blue dots.
(B) Main SNP across treatments (paraquat, MSB, and treatments pooled) effects for each sex. Females are depicted by red dots, males by blue dots.
doi:10.1371/journal.pone.0034745.g004
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across sexes within each treatment. We allowed a maximum of 12

SNPs in each model.

The proportion of phenotypic variation explained by the

multiple regression models is given by the model r2. The models

explain a relatively large amount of phenotypic variation for

survival under both paraquat (67–79%; Table 3) and MSB (56–

66%; Table 4). We also estimated the fraction of the total genetic

variance explained by the models as the fraction of the total

variance among line means due to variance among haplotypes

formed by the SNPs in the models. In all cases the genetic variance

explained was high: 82% and 78% for females and males,

respectively, for survival on paraquat; and 73% and 64% for

females and males, respectively, for survival on MSB.

For paraquat, only two SNPs were included in both the female

and male prediction models (3L_17705194, an intronic SNP in

Ccn, and X_16161887 an intronic SNP in katanin 80 (kat80)). For

MSB, three SNPs were shared between the female and male

prediction models (X_20477383, an intronic SNP in RunxA,

3R_11695487, a missense mutation in CG31183, and 3L_3138481

an intronic SNP in CG11537). These results show that alleles with

large effects on oxidative stress resistance are generally not shared

between the sexes. We found no overlap between the genes in the

multiple regression models for survival on paraquat and on MSB,

which highlights the low correlation in survival in response to the

different agents.

Validation of candidate genes
We selected seven candidate genes (CG9650, Ecodysone-induced

protein 75 B (Eip75B), ena, fog, homeobrain (hbn), nACRa-30D, and rg)

associated with oxidative stress susceptibility/resistance for mutant

validation. These genes were chosen based on the significance

level of their association with phenotypic variation and on the

availability of co-isogenic P-element or Minos-element mutant

alleles. All seven genes and corresponding controls were tested for

both sexes with both treatments. All seven genes showed a

significant difference in survival time on an oxidizing agent

between mutant and control for at least one sex (Figure 6). In total,

14 tests were significant (Table S8), greater than the number

expected by chance (1.4, Fisher’s exact test, P = 0.0001).

A cellular network controlling oxidative stress
susceptibility

In order to assess to what extent genes associated with oxidative

stress susceptibility encode products that interact in common

cellular pathways, we performed a bioinformatics analysis using

the RSpider algorithm [31]. Rspider incorporates knowledge from

both the Reactome signaling network and KEGG metabolic

network to determine if interactions are overrepresented com-

pared to that expected by chance. Using a model that allowed for

two missing genes (i.e., genes that connect our candidate genes in

Reactome signaling or KEGG metabolic networks) and/or

compounds between our candidate genes, we identified a network

significantly enriched (P = 0.005) for 42 genes that includes 17

candidate genes from the genome wide association analysis

(Figure 7). Thirty-one of the 42 genes in this network have human

homologs. These genes were associated with gene ontology

categories of purine metabolism, axon guidance, apoptosis, DNA

endoreduplication, asymmetric cell division, regulation of small

GTPase mediated signal transduction, synapse organization,

learning or memory and regulation of Rho protein signal

transduction. These gene ontology categories reflect oxidative

stress susceptibility of DNA metabolism and neuronal function.

Discussion

Our study represents the largest effort to date in utilizing

genome wide natural genetic variation in a model system to

uncover the genetic basis of susceptibility/resistance to oxidative

stress. By conducting genome wide association analyses using the

DGRP we were able to gain insight into the genetic architecture of

oxidative stress susceptibility and identify novel genes associated

with variation in this complex trait as well as a network that

highlights the impact of oxidative stress susceptibility on DNA

metabolism and neuronal development.

GWA for susceptibility to oxidative stress
Our single SNP association analyses identified many novel

candidate genes and genetic variants associated with acute

oxidative stress susceptibility/resistance in D. melanogaster. Few of

the genes identified using naturally occurring variation have been

previously implicated in oxidative stress response, and many of the

genes known from other studies to affect oxidative stress

susceptibility were not identified in this study. For example,

neither Sod nor Cat, which are major players in the removal of

ROS [15,16,17,18] harbor SNPs associated with variation in

Figure 5. Overlap of genes with significant SNPs between
treatments and sexes. The diagram shows genes with at least one
significant SNP detected in genome-wide association analysis. (A)
Survival time on paraquat and MSB (sexes pooled). (B) Females and
males (treatments pooled). Genes with human homologs are indicated
with an asterisk.
doi:10.1371/journal.pone.0034745.g005
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oxidative stress susceptibility, possibly because these loci are under

strong purifying selection or because SNPs in these loci were too

rare to be included in the association analysis. Thus, association

mapping using variants that have survived the sieve of natural

selection complements biochemical and mutant analyses to

understand the genetic architecture of quantitative traits.

In contrast to results from human association studies [32],

multiple regression models incorporating up to 12 genic SNPs

explain a large proportion of the phenotypic and genetic variance

in oxidative stress resistance. Further, we find an inverse

relationship between minor allele frequency and effect size, such

that less common alleles have the largest effects. If low frequency

alleles similarly have the largest effects on complex diseases and

traits in human populations, they will be poorly tagged by LD with

the common SNPs used in association studies. This could at least

partially account for the ‘missing heritability’ [32] in human GWA

analyses.

We note that much variation for fitness traits in natural

populations is thought to be attributable to mutation-selection

balance [29], and that oxidative stress susceptibility is a fitness

related trait interconnected with other fitness traits such as

fecundity and lifespan [33]. Under the mutation-selection balance

model we expect an inverse relationship between the magnitude of

the effect on fitness and allele frequency, as observed. The

interconnectedness between oxidative stress susceptibility and

fitness related traits could also explain why the majority of our

significantly associated SNPs have negative effects (homozygotes

for the minor allele live longer under oxidative stress than do

homozygotes for the major allele). Since we postulate that

increased resistance to oxidative stress should be positively

correlated with reproductive fitness, we hypothesize that these

alleles have not reached higher frequencies in the population

because they have negative correlations with other fitness related

traits.

Oxidative stress susceptibility is sexually dimorphic
Oxidative stress susceptibility within the DGRP is sexually

dimorphic (Table 1; Figure 1), consistent with previous work in D.

melanogaster showing that rescue of SOD-deficient flies by

exogenous antioxidants was sex-specific [34]. Similarly, differences

in oxidative stress susceptibility between males and females have

been documented in humans [35,36,37] and it has been

hypothesized that this could account for differences in suscepti-

bility to cardiovascular disease in men and women [38]. The

nature of the sexual dimorphism we observed was dependent on

the oxidative stress inducing agent, with females surviving longer

than males on paraquat, and males surviving longer than females

on MSB (Figure 1).

Table 3. Gene-centered predictive models of survival time on paraquat.

Analysis Variable SNP Location Estimate F P-Value

Females
r2 = 0.7878

Intercept 12.989 1379.51 ,0.0001

2R_16842959 hbn (cds) 2.283 45.56 ,0.0001

3L_17705194 Ccn (in) 0.886 14.08 0.0003

2L_10188836 Sur (cds)# 1.202 17.77 ,0.0001

X_9979448 CG34104 (in) 20.887 18.38 ,0.0001

3L_9610795 LanB2 (in) 3.366 44.45 ,0.0001

2L_10499146 Myo31DF (in) 0.877 15.09 0.0002

3L_15871676 pHCl (in) 2.515 28.74 ,0.0001

3L_17361008 Cad74A (u3) 1.126 12.61 0.0005

3R_5549461 hyd (cds)# 1.687 14.61 0.0002

X_16161887 kat80 (in) 0.881 15.94 0.0001

3L_292059 RhoGEF3 (in) 1.582 9.22 0.0029

Males
r2 = 0.6748

Intercept 13.611 1409.36 ,0.0001

2R_11302152 CG34356 (in) 21.986 23.54 ,0.0001

2L_549825 Ets21C (in) 2.164 17.69 ,0.0001

2L_2659687 Prosbeta4R2 (in) 21.079 8.26 0.0047

2R_11364415 CG8180 (in) 2.460 28.45 ,0.0001

X_16161887 kat80 (in) 0.843 14.02 0.0003

3R_21907532 Dys (in) 21.626 10.68 0.0014

X_16287121 mei-41 (cds) 20.730 13.98 0.0003

3L_17705194 Ccn (in) 0.749 10.46 0.0015

3R_20053152 CG13609 (cds)# 0.788 11.89 0.0008

3L_602217 CG13893 (in) 1.493 16.13 ,0.0001

3L_17173704 Rbp6 (in) 21.240 11.36 0.0010

2L_925438 CG4341 (in) 20.780 6.81 0.0101

Markers are listed in the order in which they entered the model. Estimates of effects are for (Minor allele – Major allele). In: intronic; cds: coding sequence;
#: Missense; u3/5: 3959 UTR.
doi:10.1371/journal.pone.0034745.t003
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In addition to sexual dimorphism in susceptibility to oxidative

stress averaged over all DGRP lines, there is also genetic variation

in the magnitude and direction of the difference in oxidative stress

susceptibility between males and females. Many SNPs with

significant differences between males and females had sexually

antagonistic effects. This is interesting from an evolutionary

perspective, since antagonistic pleiotropic effects in males and

females can lead to maintenance of variation for fitness [29].

Indeed, 40% (26%) of the SNPs with opposite effects in males and

females for survival on MSB (paraquat) had minor allele

frequencies greater than 0.15, consistent with this hypothesis.

These sexually dimorphic genes may drive the greater suscepti-

bility of males to paraquat and the greater susceptibility of females

to MSB.

Oxidative stress susceptibility is dependent on the
method of oxidative stress induction

Oxidative stress candidate genes identified by our study were

generally specific to either paraquat or MSB treatment (Figure 5A).

Similarly, previous studies in Drosophila [24] and yeast [39,40]

found distinct transcriptional responses to different oxidizing

treatments. These observations are consistent with the different

modes of actions through which these compounds do damage to

the cell. Experimental evidence suggests that the toxicity of

paraquat is primarily due to redox-cycling, as opposed to

menadione sodium bisulfite (a water soluble derivative of

menadione), whose toxicity has been found to be predominantly

due to mechanisms other than superoxide production, such as

electrophilic attack [41]. Other factors that could account for the

lack of overlap between the two treatments include feeding

propensity and metabolism. However, we also identified 34 (13)

SNPs with significant SNP by treatment effects that had effects of

opposite sign in females (males). These SNPs exhibit antagonistic

pleiotropy for genotype by environment interaction, another

mechanism for maintaining genetic variance for fitness in a natural

population. Consistent with this hypothesis, 63% (62%) of the

SNPs with opposite effects on survival on paraquat and MSB had

minor allele frequencies greater than 0.15 in females (males).

Functional tests
We focused our efforts to validate the effects of candidate genes

identified by GWA using mutations in genes that were in common

between males and females and both treatments, as well as in

genes with low P-values. We tested two genes (fog, nACRa-30D) that

were significantly associated with oxidative stress susceptibility in

both sexes; two genes (ena, rg) that were significantly associated

with oxidative stress susceptibility in both treatments; and three

genes (CG9650, Eip75B, hbn) with low P-values. Mutations in all

seven genes were significant in at least one sex or treatment

(Figure 6). fog is involved in the torso signaling pathway and

regulates cell shape [42]. Eip75B is a nuclear receptor that is

involved in the signaling action of nitric oxide [43], a free radical

that has neuroprotective properties at moderate to low concen-

trations and neurotoxic properties at high concentrations [44].

Table 4. Gene-centered predictive models of survival time on MSB.

Analysis Variable SNP Location Estimate F P-Value

Females
r2 = 0.6606

Intercept 24.746 859.33 ,0.0001

3L_7755124 Hn (cds) 2.145 9.21 0.0029

X_20477383 RunxA (in) 4.875 20.46 ,0.0001

3L_10866866 Tna (cds)# 5.035 17.17 ,0.0001

2L_8431541 grk (u3) 4.413 12.14 0.0007

3R_11695487 CG31183 (cds)# 21.171 6.69 0.0108

2L_4748714 CG15630 (in) 1.183 6.64 0.0111

2R_9461631 CG42808 (cds) 21.736 14.20 0.0002

2R_11256183 Pms2 (cds) 3.589 13.32 0.0004

X_7115312 CG9650 (in) 2.973 5.28 0.0232

2L_6734157 TTLL3B (cds) 2.910 5.15 0.0248

3L_3138481 CG11537 (in) 22.074 4.91 0.0284

Males
r2 = 0.5557

Intercept 28.741 1896.07 ,0.0001

3R_11695487 CG31183(cds)# 21.887 19.82 ,0.0001

X_20477383 RunxA (in) 5.446 21.79 ,0.0001

2L_4897343 CG3036(in) 2.549 14.15 0.0002

2L_6734157 TTLL3B (cds) 3.359 8.71 0.0037

3L_3138481 CG11537 (in) 23.369 16.59 ,0.0001

3L_7755124 Hn (cds) 1.885 8.23 0.0047

3L_1960704 CG42863 (cds) 3.029 4.68 0.0323

2L_25648943 neo (cds) 4.246 7.47 0.0071

X_4539167 HLH4C (UTR) 1.985 4.93 0.0280

Markers are listed in the order in which they entered the model. Estimates of effects are for (Minor allele – Major allele). In: intronic; cds: coding sequence;
#: Missense; u3/5: 3959 UTR.
doi:10.1371/journal.pone.0034745.t004

GWA for Oxidative Stress in Drosophila

PLoS ONE | www.plosone.org 9 April 2012 | Volume 7 | Issue 4 | e34745



nAcRa-30D has neurotransmitter receptor activity [45] and has

been implicated in insecticide resistance [46]. ena has been

implicated in many biological processes, including dendritic

morphogenesis [47,48]. rg encodes an A-kinase anchoring protein

[49] involved in signal integration in neurons and memory

processing [50]. The human homolog of rg, NBEA, has been

implicated in myeloma [51] and autism [52,53]. CG9650 is a zinc-

finger-containing putative transcription factor that is a modifier of

Notch signaling [54] and is involved in axon guidance [55]. hbn is a

homeobox transcription factor that is expressed in the brain [56].

Since Eip75B, nAcRa-30D, ena, rg, CG9650, and hbn have

neurological function or are expressed in the brain, they are of

particular interest given the relationship between oxidative stress

susceptibility and neurodegenerative disease in humans [57].

Thus, genes that are associated with oxidative stress induced by

multiple agents may represent common oxidative stress targets

associated with function of the nervous system.

Figure 6. Validation of candidate oxidative stress susceptibility genes using mutants. Seven mutants CG9650BG01024, Eip75BBG02737,
enaBG02189, fogBG01196, hbnMB04955, nAcRa-30DMB06675, and rugoseMB01845 were tested for each sex and treatment along with their corresponding control.
The averages are color coded: red, female mutant; pink female control; blue, male mutant; light blue, male control. All mutants were homozygous. (A)
Survival time on paraquat. (B) Survival time on MSB. *: 0.01#P#0.05; **: 0.001#P#0.01; ***: P,0.001; ns: P.0.05.
doi:10.1371/journal.pone.0034745.g006

GWA for Oxidative Stress in Drosophila

PLoS ONE | www.plosone.org 10 April 2012 | Volume 7 | Issue 4 | e34745



GWA for Oxidative Stress in Drosophila

PLoS ONE | www.plosone.org 11 April 2012 | Volume 7 | Issue 4 | e34745



Candidate oxidative stress target genes converge on a
cellular network

We identified a cellular network comprising 42 genes, including

17 of our candidate genes, centered on DNA metabolism and

neural development (Figure 7). Twelve of the candidate genes have

human homologs, ten of which have been implicated in human

diseases. Two genes, CG31183 and Grip, are associated with

susceptibility to oxidative stress induced by both paraquat and

MSB. CG31183 is predicted to be involved in protein phosphor-

ylation and intracellular signal transduction [58] and its human

homolog, NPR1, has been implicated in hypertension and

cardiovascular disease [59,60]. Grip encodes a glutamate receptor

binding protein involved in synapse organization [61] and its

human homolog, GRIP2, has been implicated in Alzheimer’s

disease [62]. LanB2 and Roughened (R) also have human homologs

implicated in Alzheimer’s disease [63,64]. Another gene with

neuronal function, lat, has a human homolog that has been

associated with schizophrenia [65]. Rapgap1 and numb have human

homologs with tumor suppressor activity [66,67,68] and two DNA

repair genes, mei-41 and mus201 [69,70], have human homologs

associated with Seckel syndrome [71] and xeroderma pigmento-

sum VII [72]. Lastly, the human homolog of Btk29A has been

implicated in gout [73].

Conclusions and future directions
We have shown that the genetic architecture of oxidative stress

susceptibility in Drosophila is complex, sexually dimorphic and

dependent on the oxidative stress inducing agent. Candidate genes

associated with oxidative stress susceptibility/resistance fall largely

in gene ontology categories associated with DNA metabolism and

nervous system development and function. While we were

successful in identifying many SNPs associated with oxidative

stress resistance, some of the completely recessive alleles detected

in our study presumably do not contribute to variation in outbred

populations. Future work using progeny from crosses and outbred

populations will be necessary in order to detect dominance effects

that contribute to oxidative stress susceptibility, resulting in a more

complete understanding of the genetic architecture underlying this

trait. This study and future work regarding oxidative stress

susceptibility/resistance in D. melanogaster allow the identification of

evolutionarily conserved target genes and gene networks that can

serve as a blueprint for future translational studies on oxidative

stress in people.

Materials and Methods

Drosophila stocks
We used 167 inbred lines of the Drosophila melanogaster Genetic

Reference Panel (DGRP) [28]. This panel was derived from the

Raleigh, USA population by 20 generations of full-sib inbreeding

from isofemale lines derived from single inseminated wild-caught

females. Flies were reared at a controlled density on cornmeal-

molasses-agar medium at 25uC, 60–75% relative humidity and a

12-h light-dark cycle.

Survival time on oxidative stress inducing agents
We measured 24 three-six day-old individual flies per sex per

DGRP line per oxidative stress inducing agent for 88 hours using

the Drosophila Activity Monitoring System (Trikinetics). Time of

death was defined as the last activity count followed by six hours of

inactivity. Survival times were expressed as the deviation from a

contemporaneous w1118; Canton-S isogenic control line mean. Two

oxidative stress inducing agents were administered through diet,

paraquat (1,19-dimethyl-4,49-bipyridinium dichloride) and mena-

dione sodium bisulfite (MSB). To assay survival time on paraquat,

individual flies were exposed to filter paper soaked with 50 mL of a

1% sucrose solution containing 20 mM paraquat. Previous studies

showed that a 20 mM paraquat 1% sucrose solution is sufficient to

induce oxidative stress related death in Drosophila within 88 hours

[25,74]. To assay survival time on MSB, individual flies were

exposed to cornmeal-molasses-agar medium containing 75 mM

MSB. Pilot experiments using a subset of the DGRP lines

established that cornmeal-molasses-agar medium containing

75 mM MSB had a similar severity to that of the paraquat

treatment, that is, this treatment also resulted in oxidative stress-

induced death within 88 hours. For both treatments flies were

placed in individual tubes with cornmeal-molasses-agar medium

for 24 h prior to the assay, food deprived on 1.5% agar for two

hours, and subsequently exposed to 20 mM paraquat or 75 mM

MSB in individual tubes. All treatments were initiated between

9:00 am and 12:00 pm at 25uC and 70% humidity.

Quantitative genetic analyses
We assessed the effect of Wolbachia infection status, previously

measured on the DGRP lines [28], on survival time on paraquat

and MSB using factorial, mixed model ANOVAs. The model used

was Y = m+S+I+S6I+L(I)+S6L(I)+e, where I denotes the fixed

effect of infection status, S is the fixed effect of sex, L is the random

effect of the DGRP line, and e is the error variance. We also

performed reduced analyses for each sex separately. In cases

where the effect of Wolbachia was significant, data were corrected,

separately by sex.

We partitioned phenotypic variance using the Wolbachia-

corrected data using ANOVAs of two forms. For Model 1, both

treatments were analyzed separately using an ANOVA of the form

Y = m+S+L+S6L+e, where terms are defined as above. Reduced

ANOVAs were also performed for each sex separately. For Model

2, treatments were pooled and sexes were analyzed separately

using an ANOVA of the form Y = m+T+L+T6L+e, where T is the

fixed effect of treatment. For Model 1, we estimated broad-sense

heritabilities (H2) as H2 = (s2
L+s2

SL)/(s2
L+s2

SL+s2
E), where s2

L,

s2
SL, and s2

E are the among-line, sex by line and within-line

variance components, respectively. Similarly, broad-sense herita-

bilities were estimated for Model 2 as H2 = (s2
L+s2

TL)/

(s2
L+s2

TL+s2
E), where s2

TL is the line by treatment interaction.

Coefficients of genetic (CVG = 100sG/mean) and environmental

(CVE = 100sE/mean) variance were also computed. For the

analyses of each sex separately, H2 = sL
2/(sL

2+sW
2), where sL

2

is the among line variance component for males or females. We

estimated cross-trait (cross-sex) genetic correlations as rG = covij/

sisj, where covij is the covariance of line means between traits i and

Figure 7. A cellular network among candidate genes. This diagram depicts an enriched network (P = 0.005) among candidate genes with at
least one significant SNP detected in GWA analysis. Candidate genes are indicated by grey filled squares, missing genes (i.e., genes without significant
associations) by white filled triangles and metabolites by white filled circles. Gene ontology categories are represented by boarders other than black
(magenta, purine metabolism; peach, axon guidance; aqua, apoptosis; yellow, DNA endoreduplication; purple, asymmetric cell division; navy blue,
regulation of small GTPase mediated signal transduction; dark green, synapse organization; orange, learning or memory; light green, regulation of
Rho protein signal transduction).
doi:10.1371/journal.pone.0034745.g007
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j (males and females), and si and sj are the square roots of the

among line variance components for the two traits (males and

females).

Genome-wide association analyses
We tested survival times on paraquat and MSB for association

with 2,481,491 SNPs previously identified by whole-genome

sequencing of the DGRP lines [28]. All analyses were performed

on line means, adjusted for the effect of Wolbachia infection status.

All segregating sites within lines were treated as missing data. SNPs

were filtered based on several criteria: (1) the minor allele had to

be represented in at least four DGRP lines; (2) SNPs were

excluded if coverage from whole-genome sequencing was less than

2 or greater than 30 [28]; (3) SNPs with more than two segregating

alleles within the 167 DGRP lines were excluded from analysis

and; (4) SNPs had to be genotyped in at least sixty of the 167

DGRP lines.

Each SNP was tested for association with survival time on

paraquat and MSB using an ANOVA of the form

Y = m+M+S+M6S+L(M)+e, where M is the effect of the SNP,

and S and L are as defined above. Reduced analyses of the form

Y = m+M+e were also performed for males and females separately.

Analyses where paraquat and MSB treatments (T) were pooled

separately for each sex using the ANOVA model

Y = m+M+T+M6T+L(T)+e, were also performed. The main effect

(a) of each SNP was estimated as one-half the difference in trait

mean between marker classes (polarized by allele frequency, such

that the effect is the difference between the major and minor

alleles) [29]. For analyses pooled across sexes, the interaction effect

between SNP and sex was calculated as the difference between the

female and male effects. Similarly, for analyses pooled across

treatments, the interaction between SNP and treatment was

calculated as the difference between the paraquat and MSB effect.

Gene-centric forward selection models
Gene-centered forward selection was used to generate multiple

regression models in order to identify SNPs that were predictive

for survival on paraquat and MSB. Only significant SNPs

(P,1025) that were within a gene were incorporated into the

model. Only one SNP was included in the model for pairs of SNPs

in high LD. The most significant gene-centered SNP was fitted in

the model first, and markers were sequentially added until the

maximum r2 for variance explained was reached, up to a

maximum of 12 markers. Models were fitted for each treatment

and performed separately using line mean data from females,

males and the average of the two sexes. Once a final model was

selected, an ANOVA of the form Y = m+H+L(H)+e was performed,

where H denotes haplotype and L line. The fraction of the total

genetic variance accounted for by the model was estimated as

sH
2/(sH

2+sL
2), where sH

2 is the among-haplotype variance

component and sL
2 is the among-line variance component.

Mutant validation
For seven of the candidate oxidative stress response genes

identified in the GWA study, we tested P-element and Minos-

element mutations and co-isogenic control lines for effects on

oxidative stress resistance. P-element and Minos-element insert

lines and their co-isogenic controls were obtained from the

Berkeley Drosophila Gene Disruption Project [75] and the Drosophila

Gene Disruption Project [76]. Specific alleles tested were

CG9650BG01024, Eip75BBG02737, enaBG02189, fogBG01196, hbnMB04955,

nAcRa-30DMB06675, and rugoseMB01845. For each mutant and

corresponding control, between 29 and 32 flies were measured

for each sex and treatment, using the assays described above.

Bioinformatics
Statistical analyses were performed using SAS software (SAS,

Cary, NC, USA). Functional annotations of genes are based on

Flybase [77].
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