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Abstract: Glutathione is abundant in the lining fluid that bathes the gas exchange surface of the lung. On the one hand 

glutathione in this extracellular pool functions in antioxidant defense to protect cells and proteins in the alveolar space 

from oxidant injury; on the other hand, it functions as a source of cysteine to maintain cellular glutathione and protein 

synthesis. These seemingly opposing functions are regulated through metabolism by gamma-glutamyl transferase (GGT, 

EC 2.3.2.2). Even under normal physiologic conditions, lung lining fluid (LLF) contains a concentrated pool of GGT 

activity exceeding that of whole lung by about 7-fold and indicating increased turnover of glutathione at the epithelial 

surface of the lung. With oxidant stress LLF GGT activity is amplified even further as glutathione turnover is accelerated 

to meet the increased demands of cells for cysteine. Mouse models of GGT deficiency confirmed this biological role of 

LLF GGT activity and revealed the robust expansiveness and antioxidant capacity of the LLF glutathione pool in the 

absence of metabolism. Acivicin, an irreversible inhibitor of GGT, can be utilized to augment LLF fluid glutathione 

content in normal mice and novel GGT inhibitors have now been defined that provide advantages over acivicin. Inhibiting 

LLF GGT activity is a novel strategy to selectively augment the extracellular LLF glutathione pool. The enhanced 

antioxidant capacity can maintain lung epithelial cell integrity and barrier function under oxidant stress.  
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LUNG LINING FLUID (LLF) 

Recent research using mouse models susceptible to 

oxidant stress supports a cause and effect relationship 

between antioxidant defense and susceptibility to lung injury 

[1]. These studies, together with others on acute 

inflammatory lung disease [2, 3] have renewed interest in 

glutathione homeostasis as an antioxidant defense 

mechanism within the lung. The lung is lined by a 

continuous, thin layer of fluid (lung lining fluid, LLF) that 

bathes the entire epithelial surface. LLF functions at the air-

liquid interface as an aqueous medium for exchange of 

molecules within the surfactant system, a supportive medium 

for the alveolar macrophage, a protective surface for the thin 

alveolar septum, and a component of the air-blood diffusion 

distance [4]. In its protective function LLF shields cells 

against oxidants, which may be inhaled from the 

environment or generated endogenously by inflammatory 

cells. Glutathione is one of the small antioxidant molecules 

within LLF. Although some argue that it is not the most 

abundant of these antioxidants, LLF glutathione has been the 

focus of much attention for at least two reasons: its 

concentration exceeds that of blood by over 100-fold, and its 

major form is the antioxidant glutathione (GSH), as opposed 

to glutathione disulfide (GSSG) [5]. Glutathione is a 

versatile antioxidant within the LLF where it also coats the 

entire lung surface [6]. It directly buffers the hypohalous 

acids, very potent and potentially injurious oxidants 

produced by inflammatory cells [7] and with inhalation of 

chlorine gas [8]. It limits the accumulation of hydrogen 

peroxides and lipid peroxides indirectly by functioning as a 
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cofactor for extracellular glutathione peroxidase [9]. 

Glutathione also maintains the bioavailability of small 

antioxidant molecules, such as nitric oxide [10], ascorbic 

acid [11], and alpha-tocopherol [12]. More recently, 

glutathione and glutathione disulfide have been shown to 

exhibit an added antioxidant activity by their ability to 

complex with metals, such as Fe
II
 and Cu

I 
[13]. Recent 

reviews have detailed the role of lung glutathione production 

in inflammation and lung disease [14, 15]. Our review will 

focus on the role of the LLF glutathione pool in antioxidant 

defense at the lung epithelial surface. Herein we will discuss 

a strategy to augment LLF glutathione content by inhibiting 

LLF glutathione metabolism.  

AUGMENTING LLF GLUTATHIONE 

While determinants of the exact size of the LLF 

glutathione pool are not fully understood, augmentation of 

LLF glutathione has been shown to protect against oxidant-

mediated injury [15]. LLF glutathione content has been 

correlated with susceptibility to and severity of several lung 

diseases. In asthmatics, where increased oxidant burden is 

present in the airways due to inflammation, higher levels of 

LLF glutathione correlate with lower levels of airway hyper-

responsiveness in humans [16] and in a mouse model of 

cytokine-driven allergic airway inflammation [3]. LLF 

glutathione is increased in smokers with COPD compared to 

non-smokers [5], but this rise is still less than that of smokers 

without COPD, suggesting that sufficient augmentation of 

this pool protects against COPD [17]. In the acute respiratory 

distress syndrome (ARDS), LLF glutathione deficiency in 

hospitalized alcoholics has been directly linked with 

increased incidence and severity of lung injury [18]. 

Replacement of this deficit can alleviate this risk [19, 20], a 

biologically relevant correlation to the recent finding that 
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oxidizing events in LLF directly link with acute lung injury 

pathogenesis [2]. LLF glutathione deficits are also present in 

idiopathic pulmonary fibrosis (IPF) [21], HIV disease [22] 

and cystic fibrosis [23]. In fact, increases in the LLF 

glutathione pool may account for some of the protective 

effects of hypertonic saline in cystic fibrosis [24]. All 

together, these observations support a role for LLF 

glutathione in protection against cell injury and lung disease. 

Hence continued assessment of LLF glutathione content and 

development of new strategies to augment this extracellular 

glutathione pool are warranted.  

Several mechanisms have been investigated to 

manipulate LLF glutathione content. Others are likely to 

follow as we learn to manipulate glutathione export and 

perhaps glutathionylation of LLF proteins [25]. One general 

strategy involves direct instillation of glutathione through the 

airway. Prousky has reviewed human trials utilizing this 

approach [26]. By and large this strategy produces modest 

increases in glutathione content. Side effects include 

increased GSSG content over GSH content and induction of 

bronchospasm [27, 28]. Bronchospasm may have resulted 

from sulfite sensitivity [26], or failure to neutralize the 

glutathione solution pH prior to instillation [29]. 

A second strategy involves modulating glutathione 

content with supplements of glutathione precursors, such as 

N-acetylcysteine, Procysteine or S-adenosylmethionine. 

These can be delivered directly through the airway or 

systemically. Oral delivery of these agents may have little 

direct impact on LLF glutathione [30, 31] but there value 

may still lie in the augmentation of cellular glutathione pools 

and increasing glutathione availability for export into LLF. 

Their effectiveness may only be evident when these 

glutathione pools are actually deficient [19, 20]. The 

membrane permeable precursor -glutamylcysteinylethyl 

ester has also been successfully used to supplement cellular 

glutathione content [32] and additional esterified precursors 

and glutathione itself are described in the literature [33]. 

A third strategy involves modulating glutathione 

metabolism by inhibiting GGT activity. This approach was 

based on our thorough characterization of GGT expression in 

normal lung, together with an animal model of GGT 

deficiency, the GGT
enu1

 mouse [34-38]. We found that LLF 

GGT activity is: 1) associated with surfactant phospholipid, 

2) dynamic in nature, 3) directly accessible for 

pharmacologic manipulation and 4) a potent target for 

augmenting LLF glutathione content [3]. Limitation in 

cysteine supply induced by eliminating glutathione 

metabolism can be readily reversed with an external cysteine 

supplement.  

A fourth strategy involves delivery of aerosolized 

secretory leukoprotease inhibitor (SLPI). This protease 

inhibitor can increase LLF glutathione up to 5-fold and the 

effect lasts even at 24 hours after application [39]. This 

finding was totally unexpected and the mechanism of action 

remains unclear. However, SLPI does not inhibit GGT 

enzyme activity (R.P. Hughey and M. Joyce-Brady, 

unpublished observation) and this protease inhibitor could be 

explored for an additive effect on LLF glutathione 

augmentation when combined with inhibition of glutathione 

metabolism.  

GLUTATHIONE METABOLISM IN LLF  

Glutathione metabolism is regulated by GGT. The 

protein is synthesized as a monomer but the active enzyme is 

a heterodimer that is anchored to the external surface of the 

plasma membrane by its signal sequence [40]. It plays an 

essential role in the metabolism of extracellular glutathione 

and its S-conjugates by cleaving the -glutamyl amide bond. 

While the full physiological function of GGT is yet to be 

completely defined [41-43], as an ectoenzyme, it is believed 

to at least initiate the hydrolysis of extracellular glutathione 

to provide cells with secondary source of Cys, which is the 

rate-limiting substrate for de novo synthesis of intracellular 

glutathione [44, 45]. The enzyme is also present as a soluble 

form in extracellular biological fluids where it can function 

to distribute glutathione between cells and tissues [46].  

The GGT activity found in normal LLF is present in 

association with lung surfactant phospholipid. This soluble 

activity is derived, in part, as a secretory product of the 

alveolar type 2 (AT2) cell, and the amphipathic nature of 

GGT allows its redistribution throughout the entire surface 

of the lung along with surfactant [36]. The ontogeny of GGT 

in the AT2 cell during late fetal lung development parallels 

that of surfactant phospholipid so that LLF glutathione 

metabolism is active from the time of birth [37]. 

The GGT
enu1

 mouse model of genetic GGT deficiency 

[34, 35] provided support for this biological role of 

glutathione metabolism in the lung. With limited cysteine 

availability, lung cells exhibited impaired glutathione 

synthesis, cellular glutathione deficiency, and oxidant stress 

in normoxia [47]. This was most evident in bronchiolar Clara 

cells, alveolar macrophages and vascular endothelial cells. In 

hyperoxia, cellular glutathione deficiency in the presence of 

this intracellular oxidant stressor, prediposed to excessive 

lung injury and accelerated mortality in GGT
enu1

 mice [47, 

48]. Dietary supplements with the cysteine precursor N-

acetyl cysteine [48, 49] or L-2-oxothiazolidine-4-carboxylate 

[50] attenuated the cellular glutathione deficiency and lung 

sensitivity to hyperoxia [48]. 

However, glutathione content in the extracellular LLF 

pool of GGT
enu1

 mice with genetic GGT deficiency was 

actually augmented in a fashion similar to that described in 

plasma [34, 49]. The increase in this glutathione pool 

strongly supported the concept that LLF glutathione 

undergoes turnover in the normal lung. The biological role of 

this LLF glutathione enhancement became evident when 

GGT
enu1

 mice were exposed to an IL13-driven model of 

inflammatory airway disease [3]. Pro-inflammatory IL13 

treatment activated an extracellular burden of oxidant stress 

from the acute inflammatory response. In normal mice, there 

was little change in LLF fluid glutathione, GSH (Fig. 1). 

BAL LLF glutathione in GGT
enu1

 mice started a 2-fold over 

normal baseline and increased 5-fold more after IL13, a level 

that was about 10-fold above the baseline level in normal 

mice.  

This surplus of LLF glutathione buffered extracellular 

reactive oxygen species derived from inflammatory cells and 

protected proteins in the LLF and the lung epithelial surface 

against oxidant stress, epithelial cells from mucin gene 

induction and airways against hyperreactivity. These were all 
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induced in normal mice treated with IL13 but they could be 

partially attenuated by inhibiting their LLF GGT activity 

with the irreversible GGT inhibitor acivicin (Fig. 2). 

Interestingly, we found, as had others, that delivery of 

acivicin systemically had no effect on LLF GGT activity. To 

effectively inhibit this extracellular pool of enzyme activity 

and modulate LLF glutathione, acivicin had to be delivered 

through the airway [3].  

 

 

 

 

 

 

 

 

 

 

Fig. (1). LLF glutathione (GSH) and glutathione disulfide 

(GSSG) in normal (wild type, WT) and GGT
enu1

 mice after 

saline (S) or IL13 treatment. LLF glutathione assessed as 

bronchoalveolar lavage fluid (BAL). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Loss of GGT activity augments LLF glutathione in 

presence of IL13. IL13, a pro-inflammatory cytokine, induces 

inflammation and an extracellular load of reactive oxygen species 

(ROS). These are buffered by the surplus of LLF glutathione in 

GGT deficient GGT
enu1

 mice and injury is prevented. Normal mice 

are susceptible to injury and can be protected by inhibiting their 

LLF GGT with acivicin.  

INHIBITION OF GGT ENZYME ACTIVITY 

While several compounds are known to inhibit GGT 

enzyme activity, designing novel, potent and more selective 

inhibitors required a rational and mechanistic understanding 

of enzyme function. GGT-mediated glutathione hydrolysis 

occurs by a ping-pong mechanism [51-54] and utilizes a -

glutamyl ester intermediate (an acylenzyme) with an N-

terminal Thr residue in the small subunit (Thr391 [55] and 

Thr381 [56] of E. coli and human GGTs, respectively) as the 

catalytic nucleophile. The -glutamyl group is then 

transferred to water (hydrolysis) or to various amino acids 

and peptides (transpeptidation) if these acceptor molecules 

are present in high concentrations. Under physiological 

conditions, however, GGT is mainly regarded as the 

hydrolytic enzyme that initiates the release of Cys and other 

constituent amino acids from extracellular glutathione [44, 

45]. For in vitro and in vivo studies to probe the mechanisms 

and physiological functions of GGT, a number of inhibitors 

have been reported to date; the classical inhibitors of GGT 

include a serine-borate complex [57], a -boronate analog of 

glutamate ( -boroGlu) [58, 59], anthglutin [60, 61] (Fig. 3) 

and several naturally occurring glutamine antagonists (Fig. 

4) [62-67].  
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Fig. (3). Classical inhibitors of GGT. These include: serine-borate 

complex, -boronate analog of glutamate and anthglutin.  

A serine-borate complex is a transition-state like adduct 

formed tentatively in the enzyme active site (Ki = 0.02 mM) 

and is readily dissociated when the enzyme is dialyzed [57]. 

Its boronate analog ( -boroGlu) serves as a slow- and tight-

binding inhibitor with a substantial potency (Ki = 35 nM), 

but the inhibition is still reversible, and the inactivated 

enzyme regains activity rapidly [59]. Its development seems 

to have been terminated, and no further information is 

available regarding the properties of this compound such as 

the specificity and toxicity. Anthglutin was screened for 

GGT inhibitory activity from the culture medium of 

Penicillium oxalicum. Anthglutin is a naturally occurring 
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glutathione analog and serves as a competitive inhibitor for 

various GGTs with Ki values of 5-27 μM [60]. No acute 

toxicity was reported for mice (100 mg/kg of body weight). 

These classical inhibitors, however, are of limited use for in 
vivo inhibition of GGT in lung lining fluid, because they are 

rather weak or reversible so they do not suppress GGT 

activity for an appropriate period of time to exert therapeutic 

effects. 

In contrast, the naturally occurring glutamine antagonists 

such as acivicin [L-( S,5S)- -amino-3-chloro-4,5-dihydro-

5-isoxazoleacetic acid, AT-125], L-DON (6-diazo-5-oxo-L-

norleucine) and azaserine (O-diazoacetyl-L-serine) are all 

chemically reactive and inhibit GGT irreversibly [62-67]. 

Among these glutamine antagonists, acivicin is by far the 

most popular inhibitor of GGT and has been used 

extensively not only for in vitro experiments [62-64], but 

also for in vivo studies to see the effect of chemical 

knockdown of GGT on tumor cells [68-71], bacterial 

pathogenicity [72], signal transduction in myocardial 

infarction [73], oxidative stress in pulmonary vascular 

endothelial cells [74] and xenobiotic metabolism in plants 

[75]. The main reason for the frequent use of acivicin is that 

this compound is commercially available (ex. Santa Cruz 

Biotechnology, Inc., USA; Haihang Industry Co., Ltd., 

China) and reacts readily with the catalytic Thr residue of 

GGT to form a covalent bond [76, 77]. No regain of enzyme 

activity was reported. Similarly, other glutamine antagonists 

such as L-DON and azaserine inhibit GGT in an irreversible 

manner, although the inactivation potency varies depending 

on the compound. From a pharmaceutical point of view, 

however, there is a critical problem associated with toxicity 

in using these compounds for the inactivation of GGT in 
vivo. Acivicin and the related glutamine antagonists are 

highly cytotoxic and inhibit a number of glutamine-

dependent biosynthetic enzymes [78, 79] such as glutamine 

PRPP amidotransferase, FGAR amidotransferase, IGP 

synthase, GMP synthetase and carbomoylphosphate 

synthetase involved in de novo purine and pyrimidine 

biosynthesis. Glucosamine 6-phosphate synthase, 

asparagines synthetase, NAD synthetase and anthranilate 

synthase are also inactivated by these compounds [80]. 

Acivicin is reported to have central nervous system (CNS) 

toxicity [81]. The toxic nature of acivicin and the related 

glutamine antagonists is based on a common mechanism: 

alkylation of the conserved and catalytically essential Cys 

residue of the glutaminase domain of the amidotransferases 

by the chemically reactive imino chloride (acivicin) [82-84] 

and diazoacyl groups (L-DON and azaserine) [79]. In this 

sense, these glutamine antagonists can be regarded as 

naturally occurring inhibitors of glutamine amidotransferases 

that liberate ammonia from glutamine for use as a nitrogen 

source of nucleotides, amino acids and amino sugars, but not 

per se as inhibitors of GGT. Therefore, the inactivation of 

GGT by acivicin, L-DON and azaserine is a fortuitous event 

that derives from the fact that GGT has a nucleophilic and 

catalytically essential Thr residue at the binding site near the 

-carboxy group of glutamine derivatives such as 

glutathione.  

In our effort to identify the catalytic residue of GGT, a -

monofluorophosphonate derivative of glutamate (Fig. 5: 

compound 1) was synthesized. This compound served as a 

potent inactivator of E. coli GGT as a transition-state analog 

for successful affinity labeling the N-terminal Thr-391 in the 

small subunit as the catalytic nucleophile [55]. The 

fluorophosphonate (1), however, is chemically too reactive 

to be used as a general inhibitor of GGT. To attenuate the 

reactivity, a series of -(monophenyl)phosphono glutamate 

analogs were synthesized [85]. These compounds 

irreversibly inhibited E. coli and human GGTs with a 

reasonable rate and the inactivation rates toward the human 

enzyme surpassed that of acivicin when an electron-

withdrawing group was introduced (X = Ac, CN). In fact, 

compound 2 (X = CN in Fig. 5) was used successfully to 

identify the catalytic nucleophile of human GGT (the N-

terminal Thr-381 in the small subunit) [56]. In line with this 

study targeting the GGT catalytic nucleophile and the 

glutamate binding site, a series of -phosphono diester 

analogs of glutamate (3) were synthesized as second-

generation inhibitors [86]. Due to the increased 

electrophilicity of the phosphorus, these phosphonate 

diesters are 20 to 40-fold more active than the corresponding 

monoesters (2). To our surprise, the umbelliferone derivative 

(4) exhibited an extraordinarily high activity toward the 

human enzyme with the inactivation rate reaching 6000 

times that of acivicin. This finding has led to design the 

third-generation inhibitors (5 and 6) which mimic the 

structure of glutathione and its C-terminal carboxy group to 

interact with the active site of the human enzyme. In 

particular, compound 6 with a simplified Cys-Gly moiety (a 

phenyl ring) and a carboxymethyl group at the meta position 

is highly promising in that it compromises chemical stability 

and high activity toward the human enzyme. In fact, 

compound 6 is reasonably stable (3% hydrolysis in neutral 

water for 1 month at 25°C) and inhibited human GGT with 

an inactivation rate more than 120 times higher than that of 

acivicin. No regain of enzyme activity was observed. 

Interestingly, the para-substituted analog (7) was 155-times 

less active than compound 6, indicating that the human 

enzyme strictly recognizes the meta-carboxy group that is 

equivalent to the C-terminal carboxy group of 

glutathione[86]. Furthermore compound 6 does not inhibit 

glutamine-dependent asparagines synthetase, has no toxicity 

toward human fibroblasts up to 10 mM and has passed the 

GLP safety guidelines (unpublished results). Therefore, 
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Fig. (4). Naturally occurring glutamine antagonists that inhibit GGT activity. L-DON: 6-diazo-5-oxo-L-nor-leucine. 
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compound 6 is so far the most promising candidate for 

pharmaceuticals to chemically inactivate GGT activity in 
vivo. This compound does inhibit lung GGT activity, but like 

acivicin, our preliminary data shows that it must be delivered 

through the airway (Joyce-Brady and Hiratake, unpublished 

observation). Hence the advantages of compound 6 include: 

specificity, potency, and lack of toxicity. Compound 6 is 

now commercially available under the name of GGsTop 

from Wako Pure Chemical Industries, Ltd., Japan. 

Other synthetic GGT inhibitors reported to date include a 

series of L-homocysteine analogs (sulfides, sulfoxides, 

sulfones and sulfoximines) [87, 88]. A sulfoxide analog with 

a Cys-Gly moiety exhibited the highest activity (Ki = 53 μM, 

competitive with respect to -glutamyl 4-nitroanilide) toward 

rat kidney GGT, highlighting the importance of the binding 

of the Cys-Gly moiety of glutathione with mammalian GGT. 
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Fig. (6). Chemical structure OU749. 

Recently, Hanigan et al. reported a high-throughput 

screening approach to find a drug-like, non-glutamate analog 

OU749 and its derivatives as inhibitors of human GGT [89]. 

From kinetic studies, this compound was found to occupy 

the acceptor site of the -glutamyl substrate complex with a 

Ki of 17.6 μM. The inhibition is species-specific and is 

reported to inhibit human kidney GGT with 7- to 10-times 

potency than those from rat or mouse kidney. Despite the 

fact that these compounds target the acceptor-site of GGT, 

toxicity is still reported. Optimal activity also requires a high 

level of GGT enzyme activity which is not the case in the 

lung [36]. 

CONCLUSIONS 

LLF is composed of a highly concentrated pool of 

glutathione that serves a biological role in antioxidant 

defense and cysteine supply over the entire lung surface. 

This extracellular glutathione pool is dynamic and reduced 

glutathione predominates. That LLF glutathione content is 

related to the level of oxidant burden at the lung epithelial 

surface has been recapitulated in studies over time. Ongoing 

efforts to assess and manipulate this pool to protect against 

extracellular oxidant stress are warranted and novel 

mechanisms to accomplish this goal are available. Studies 

suggest that early identification and correction of LLF 

glutathione deficiency can prevent lung injury and disease. 

Glutathione metabolism plays a role in determining the size 

of the LLF glutathione pool. Induction of GGT activity with 

the onset of acute lung injury and inflammation contributes 

to a relative deficiency of LLF glutathione, even in children 

with cystic fibrosis [90]. Inhibiting this metabolism by 

targeting active GGT enzyme can bolster LLF glutathione 

content and augment antioxidant defense at the lung surface. 

It is remarkable that targeting of a single antioxidant enzyme 

in LLF can be protective even in the presence of a high 

inflammatory load [3]. Nonetheless, oxidizing events 

originating within the LLF have recently been proposed as 

the unifying mechanism that initiates syndromes of acute 

H3N

COOH

P

+

O

F

O-

H3N

COOH

P

+

O O-

O

X

H3N

COOH

P

+

O O

O

X
Me

H3N

COOH

P

+

O O

O

Me

O O

1 2 3

X = H, CF3, Ac, CN X = OMe, Me, H, Cl,

       CF3, CN, NO2

4

H3N

COOH

P

+

O O

O
N
H

Me

O

O-

5

O

H3N

COOH

P

+

O O

O

Me

O

O-

6 (GGsTop)

H3N

COOH

P

+

O O

O

Me

7

O

O-
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lung injury [2] and cytokine-driven asthma [3]. Since LLF 

proteins are directly accessible to pharmacologic 

interventions, focused assessment and specific manipulation 

of LLF glutathione to enhance extracellular antioxidant 

defense may yet prove to be a viable strategy to prevent and 

alleviate oxidant-mediated lung injury.  
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ABBREVIATIONS 

GGT = -glutamyl transferase 

GSH = Glutathione 

GSSG = Glutathione disulfide 

SLPI = Secretory leukoprotease inhibitor 

GGT
enu1

 = -glutamyl transferase deficient mouse 

mutated with ethylnitrosourea 

BAL = Bronchoalveolar lavage 

Thr = Threonine 

DON = 6-diazo-5-oxo-L-norleucine 

PRPP = Phosphoribosylpyrophosphate 

FGAR = 5-phosphoribosyl-N-formylglycinamide 

IGP = Imidazole glycerol phosphate 

GMP = Guanine monophosphate 

NAD = Nicotinamide adenine dinucleotide 
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