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Abstract

Activity regulated neurotransmission shapes the computational properties of a neuron and involves the concerted action of
many proteins. Classical, intuitive working models often assign specific proteins to specific steps in such complex cellular
processes, whereas modern systems theories emphasize more integrated functions of proteins. To test how often synaptic
proteins participate in multiple steps in neurotransmission we present a novel probabilistic method to analyze complex
functional data from genetic perturbation studies on neuronal secretion. Our method uses a mixture of probabilistic
principal component analyzers to cluster genetic perturbations on two distinct steps in synaptic secretion, vesicle priming
and fusion, and accounts for the poor standardization between different studies. Clustering data from 121 perturbations
revealed that different perturbations of a given protein are often assigned to different steps in the release process.
Furthermore, vesicle priming and fusion are inversely correlated for most of those perturbations where a specific protein
domain was mutated to create a gain-of-function variant. Finally, two different modes of vesicle release, spontaneous and
action potential evoked release, were affected similarly by most perturbations. This data suggests that the presynaptic
protein network has evolved as a highly integrated supramolecular machine, which is responsible for both spontaneous and
activity induced release, with a group of core proteins using different domains to act on multiple steps in the release
process.
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Introduction

Synapses are complex biological structures, which evolved into

highly specialized computational units that play an important role

in learning, memory formation and information processing in the

brain [1,2,3]. A key process in the synapse is the remarkably fast

and precisely timed secretion of neurotransmitters from small

synaptic vesicles in the nerve terminal upon arrival of an action

potential (AP) [4]. In general, such complex cellular processes exist

by virtue of the concerted action of many proteins, which are often

found to sequester into multi-protein complexes, also referred to as

molecular machines. It is common practice to assign specific

proteins or sub-complexes to specific steps in a cascade of events.

However, this intuitive idea has not been tested sufficiently. Gene

knockout technology in mice and gene overexpression by viral

constructs have been used in many studies for detailed functional

analysis of individual mammalian proteins. However, systematic

comparative analysis based on these studies is hampered by the

fact that functional data from different studies are poorly

standardized and therefore do not allow direct comparison of

the observed perturbation effects as in less complex model

organisms [5,6,7,8,9].

Over the past 15 years, the proteins that make up the synaptic

release machinery have been largely identified [4,10,11]. Many of

these were functionally studied in genetic perturbation studies

using high-end but low-throughput assays. Here we present a

novel probabilistic method to compare functional data from

different studies and cluster perturbations of presynaptic genes

according to their effect on different synaptic release parameters.

The method addresses some fundamental problems in meta-

analysis of poorly standardized functional data, such as large

variation between different studies, incomplete reporting of

strongly co-varying variables, and different effect sizes of

perturbations, and was designed to be generally applicable to

similar data sets in other experimental settings. We show that

synaptic release is governed by a highly integrated molecular

PLoS Computational Biology | www.ploscompbiol.org 1 April 2012 | Volume 8 | Issue 4 | e1002450



machine with a set of core proteins controlling both the steps of

priming and fusion, implying that functionally distinct steps are

not always regulated by distinct sets of proteins.

Results/Discussion

MPPCA allows clustering of functional data from different
perturbation studies

Vesicle priming and fusion, two important steps in the life cycle

of synaptic vesicles, are the main determinants of synaptic

strength. According to the quantal hypothesis of neurotransmitter

release synaptic strength is given by

EPSC~RRP Pv q, ð1Þ

with EPSC the excitatory post-synaptic current, RRP the size of

the readily releasable pool, which contains all the vesicles that

are primed to be released, Pv the vesicular release probability,

which is the probability that a vesicle will fuse upon arrival of an

action potential at the terminal, and q the postsynaptic quantal

size, which is defined as the current response to the release of a

single vesicle [12]. It is shown in several studies that

manipulation of different presynaptic genes affect RRP size

and Pv. independently [13,14,15,16]. To systematically compare

the effect of presynaptic genes on vesicle priming and fusion we

collected functional data from genetic perturbation studies in

hippocampal island cultures (autapses) to reduce variation

between datasets [17,18] (Figure 1A). All data was obtained

from genes with a known presynaptic gene product, transcription

factors not included. We selected synaptic variables that were

frequently enough reported among different studies to allow

systematic comparison and retrieved data for 378 experiments

(perturbations and control experiments) from 56 published

studies (see database in Table S1). Included variables were the

number of primed vesicles (RRP), the fusion probability (Pv), the

amount of evoked release (A), and the amount of spontaneous

release (F) (Figure 1B–C). Since the variables RRP and Pv are

expected to co-vary with A according to Eq. 1 most papers only

report a subset of these. Wild-type data from different studies

showed a large variation, with only A and Pv, but not A and

RRP, showing the linear correlation predicted by the release

model (Suppl. Info. Figure S1). The variance could not be

attributed to specific experimental conditions in the different

studies, like the external calcium concentration or number of

days in vitro (DIV) (Figure S2). Altogether, this shows that large

variation prevents direct comparison between functional data of

different studies. To overcome this problem and in addition

allow comparison between different data formats (e.g. normal-

ized vs. absolute values, different units) we normalized each

perturbation to a control group from the same experiment and

log2-transformed the data, yielding 121 normalized perturba-

tions of 27 genes from 39 studies with two or more variables

reported (Figure 1D).

We designed a novel method to cluster perturbations with

similar qualitative effects on vesicle release variables A, RRP,

and Pv, irrespective of different effect sizes for different

perturbation types (e.g. heterozygous vs homozygous knock-

out, mild vs strong overexpression), different experimental

conditions, or missing variables. To this end we used a mixture

of probabilistic principal component analyzers (MPPCA), which

clusters the orientations of the normalized Log-2 transformed

data in 3D variable space and assigns probabilities to the

perturbations to belong to each of the detected clusters (for

schematic overview see Figure 2, for a detailed description see

Suppl. Info). Running the cluster algorithm revealed three

clusters based on the structure of the average co-occurrence

matrix, with 87, 21 and 13 perturbations assigned with the

highest probability to cluster 1, 2 and 3, respectively (Figure 3,

Suppl. Info. Figure S3, Table S2).

Perturbation clusters reflect distinct synaptic function
To relate each cluster of perturbations with the priming and/

or fusion step in synaptic release we analyzed the orientation of

the cluster unit vectors in 3D variable space (Figure S5, Suppl.

Info.). This revealed that perturbations in cluster 1 were

affecting Pv, whereas perturbations in cluster 2 were involved

in RRP. Furthermore, an interesting negative correlation

between Pv and RRP was found for perturbations in cluster 3.

These findings were confirmed by analysis of the orientation of

the individual perturbations in 2D. In Figure 4A all individual

perturbations are plotted per cluster, with marker sizes scaled

with the probability to belong to that cluster. We calculated for

all variable subspaces the best fits out of four possible regression

curves, which gave a significant 51% reduction of the total sum

of weighted orthogonal errors compared to the non-clustered

case (Figure 4A, Figure S6, Table S3, M&M Suppl. Info.).

Hence, perturbation data is not randomly scattered in variable

space but clustered in at least three classes with specific

orientations, indicative of different synaptic functions. As a

validation of our method we included in our analysis specific

perturbations of Mecp2, Psen and App that were reported to affect

RRP by changing the number of synapses, whereas other

perturbations in the database did not affect synapse number.

Although these perturbations had either positive or negative

effects on synapse number, all were assigned correctly to the

RRP cluster.

Perturbations of the same gene associate with multiple
release steps

Next we addressed the question to what extent presynaptic

genes are involved in multiple steps in release. We analyzed how

different perturbations of the same gene were distributed over the

Author Summary

Synapses, which are small structures where information is
transmitted between neurons, are the functional units of
computation in the brain implicated in information
processing, learning and memory. In the last few years
several genes that are expressed in synapses have been
linked to brain disorders such as autism, depression and
schizophrenia. However, good understanding of the
molecular basis of these diseases requires more insight
in the functional organization of the protein network. In
the classic view proteins are involved in a specific step of a
cellular process, whereas modern system theories suggest
a more integrated and complex network where proteins
can be involved in several steps. We have developed a
method that allows comparison of high-end but low-
throughput functional data from different genetic pertur-
bation studies despite the poor standardization between
studies. Our analysis shows that synaptic proteins are not
restricted to a single function but that they are part of a
highly integrated supramolecular machine, with overlap-
ping protein sets being involved in distinct steps in
neurotransmitter release. Further characterization of these
complex protein network relations will be important for
new drug design strategies.
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Figure 1. Functional data from genetic perturbation studies in autapses. A) Confocal image of an autaptic neuron, scale bar is 50 mm. B)
Schematic representation of a synapse. In each synapse only a limited number of vesicles, referred to as the readily releasable pool (RRP), is in a
primed state that allows direct fusion during calcium triggering. The probability that a primed vesicle fuses during a calcium trigger is given by the
vesicular release probability (Pv). C) Example traces of synaptic release variables. C1) Evoked EPSC (lower trace), upper trace shows somatic
stimulation to trigger an action potential. C2) Postsynaptic response to a 500 mOsmol hypertonic stimulation for RRP estimation. C3) Spontaneous
release events. D) Scatter plots of normalized and log-2 transformed synaptic variables in 2D projections of the 4D variable space for 121
perturbations (13 perturbations with .10-fold effect are not shown). *Non-genetic perturbations using a biochemical compound.
doi:10.1371/journal.pcbi.1002450.g001
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Figure 2. Schematic representation of data processing steps. A) Perturbations are extracted from publications then log-transformed and
standardized relative to a control condition. B) Two exemplary runs of the probabilistic clustering algorithm for K = 2 clusters are shown in the left and
right panels. Perturbations are colored red or blue depending on the cluster to which they are assigned with the highest probability. Note that some
of the perturbations change color (cluster) for different runs of the probabilistic clustering algorithm. C) Co-occurrence analysis. By observing the co-
occurrence of pairs of perturbations in the same cluster, we built a co-occurrence matrix with color indicating how often each pair co-occurs in the
same cluster. In the right panel we have re-ordered the rows and columns to highlight the two dominant clusters in the data.
doi:10.1371/journal.pcbi.1002450.g002
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three clusters for 9 genes that had one or more perturbations

reported in the database, including those from isoforms (Figure 5,

Table S4). Three genes had all their perturbations assigned to one

cluster (Cplx and Snap25 to the Pv cluster, Mecp2 to the RRP

cluster). However, the other 6 genes (Cadps, Psen, Snapin, Stxbp, Syt

and Unc13) had their perturbations distributed over different

clusters. This was most prominent for Snapin, Syt1, and Unc13, with

4 or more perturbations in the database, of which more than one

third was assigned to a different cluster than their preferred cluster.

Close inspection showed that most of the individual perturbations

for these genes were highly significant in the original papers and

tended to cluster with high specificity (P.0.8). Additional entropy

analysis showed that indeed their distribution over different

clusters was not due to weak classification (i.e. aspecific clustering)

(Suppl. Info, Table S4). This confirms the idea that genes are

involved in different steps in release, with individual perturbations

having distinct functional effects. Homeostatic mechanisms, in

which disturbance of synaptic transmission by genetic perturba-

tions lead to the expression of other synaptic gene products to

normalize the release process, could be an alternative explanation

for these findings. However, studies in our database that measured

protein levels reported these to be unchanged or mildly reduced

(interpreted as decreased stability of direct binding partners)

[13,15,16,19,20]. Most likely synaptic protein complexes operate

at locations too remote from the cell nucleus to enable such direct

feedback loops.

Studies in other model systems on individual genes seem to

support this finding with reported effects of Syt1 on RRP, Pv,

positional priming, and docking, Snapin on RRP and synchronous

fusion, Stxbp1 on docking, priming and PDBU dependent

potentiation, and Unc13a on priming and PDBU dependent

potentiation [21,22,23,24,25,26]. A picture emerges where some

genes have a central role in the release machinery and are involved

in multiple steps, whereas others, such as Cplx, act as modifiers of a

specific step in the release cycle. These modifying genes have

possibly evolved to fine-tune the specific behavior of different types

of synapses. In this context it is interesting to see that in the case of

Cplx different isoforms across species can have an opposite effect

on release [27,28].

Gain-of-function perturbations affect RRP inversely with
Pv

We noted that a relatively large number of the perturbations

in the RRP ‘‘prop’’ 1/Pv cluster was designed to enhance

neurotransmission by introducing gain-of-function (GOF) mu-

tants (for instance enhanced calcium sensitivity mutants of Syt1

and PDBU activation mimicking mutants of Unc13a, see Table

S2). To test if GOF perturbations were significantly more

assigned to the RRP ‘‘prop’’ 1/Pv cluster we used a weighted

contingency analysis to compare how GOF perturbations and

loss-of-function (LOF) perturbations were distributed over the

three clusters. Indeed, GOF perturbations did significantly

cluster more in the RRP ‘‘prop’’ 1/Pv cluster, with an average

probability of 0.86, which was corrected for a possible bias from

multiple GOF perturbations per gene (Table S5, Figure S7). In

contrast, the LOF perturbations had no significant preference

Figure 3. Co-occurrence matrices. A) Average over ten restarts of the co-occurrence matrices for clustering with a fixed number of clusters.
Number of clusters K is indicated in each plot. Matrices were ordered for visualization using optimal leaf ordering. B) Consensus co-occurrence matrix
obtained by averaging the individual co-occurrence matrices presented in A. Order of perturbations in the consensus matrix is given in Table S2. Red
color denotes high co-occurrence, and blue low co-occurrence.
doi:10.1371/journal.pcbi.1002450.g003
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for any cluster. The inverse relation between the change in Pv

and RRP for GOF mutants is in line with the idea that these

proteins are involved both in priming and fusion. Mutating a

protein domain to enhance one function might change the

protein structure such that another function becomes impaired.

Similarly, LOF mutations targeted to one function might be not

specific as well. This would explain why some LOF perturba-

tions with large effect size do not have a clear preference for one

cluster, reflecting a mixed Pv and RRP phenotype. This suggests

that the presynaptic protein network has evolved as a highly

integrated molecular machine, with a group of core proteins

that is involved in multiple steps of release. Indeed, biochemical

evidence shows a strongly connected network with protein

interactions between many presynaptic core proteins [29,30].

Furthermore, it was shown that PKC-dependent and -indepen-

dent pathways in the synapse are interdependent and need to be

activated simultaneously to induce presynaptic plasticity [31].

Same set of presynaptic genes controls spontaneous and
evoked release

Finally, we investigated whether genes that control AP induced

release are also involved in spontaneous release which is relevant

in a long-standing debate on whether or not evoked and

spontaneous release share the same vesicle pools and synaptic

pathways [32,33,34,35,36,37]. In all 3 clusters and the non-

clustered situation, the 45u regression curve yields the best fit of

the A–F correlation indicating that the majority of the

perturbations affecting AP induced release also affect spontane-

ous release proportionally (Figure 4B, Table S3). This is

confirmed by the fact that in the RRP cluster, F correlates well

with RRP, but not with Pv, implying that spontaneous release and

evoked release are to a large extent driven by the same RRP-

modifying genes, whereas for the Pv cluster the opposite holds.

The fact that the same set of presynaptic genes controls

spontaneous and evoked release favors a model where both

modes of release are governed by the same molecular release

machinery instead of being recruited from different vesicle pools.

Until now the only exception seems to be Doc2 that most likely

competes with Syt1 for snare binding but exclusively regulates

spontaneous release in hippocampal neurons [38]. It should be

noted however, that by some unknown mechanism some genetic

perturbations affect spontaneous release differentially in autaptic

cultures compared to other model systems, especially for Syt1 and

Cplx, which seem to act as a clamp on spontaneous release in

these systems [16,22,39,40,41].

Molecular machines in the synapse
Our novel approach to cluster non-standardized functional

data from different perturbation studies allowed us to study the

role of presynaptic genes in vesicle release at the network level,

which could not be addressed in the original papers. We show

that individual presynaptic proteins are not restricted to a single

step in the release process but have evolved to contribute to

multiple steps. Currently there is too little physical interaction

data available, for instance from immunoprecipitation or yeast-

two-hybrid experiments, to get a complete picture of the

presynaptic protein interactome. This makes it difficult to

interpret our results in terms of molecular interactions in the

network, although we do know that protein complexes are

formed and play an important role in the vesicle release

machinery [10,29,30,42]. We would like to discuss three network

scenarios for the presynapse, and to what extend they can explain

our findings. The first option is that the proteins in presynaptic

terminal form a highly connected network, with a high number of

cross-reactions, and many proteins involved in many steps of the

vesicle release cycle. This seems unlikely since most protein

networks have a scale-free organization, which implies that

clusters of locally connected proteins are connected with each

other through a few hub nodes in the network [43]. A second

possibility is that there is a single macro-molecular complex, with

many presynaptic proteins directly bound to each other, which is

involved in the steps of docking, priming and fusion. However,

there is no biochemical evidence for such a large complex in the

presynapse and it would be difficult to reconcile with the

observation that many genetic perturbations affect exclusively

one step only. Finally, a third possibility is that the presynaptic

release machinery comprises multiple smaller and dynamic

protein complexes, which adapt their molecular configuration

and function as the vesicles progress in the vesicle cycle. In this

view, the stereotypical presynaptic protein complex does not

exist. Instead, a whole range of complexes can be formed around

a core set of proteins, with their specific function determined by

different combinations of proteins or isoforms. For instance,

different C2 domain proteins could compete for binding to the

SNARE complex and make the vesicles more prone for

spontaneous or action potential evoked release [44]. Likewise, a

particular protein can be part of different complex configurations

associated with different steps. For example, binding of Syt1 to

Stx1/SNAP25 complexes is important for vesicle docking

whereas Syt1 also functions as a calcium sensor for synchronous

release when bound to the fully assembled SNARE complex

[25,45]. The fact that some Syt1 gain-of-function mutants both

affect priming and fusion, whereas the Syt1 KO only shows a

strong reduction of Pv, could be explained by partial redundancy

of the system: i.e. other proteins can take over the role of Syt1 in

docking/priming, but not in vesicular release probability, while

the Syt1 mutants have a dominant negative effect.

Our method for probabilistic clustering of genetic perturbation

data can in principle be applied to any high dimensional

functional dataset obtained by medium or low-throughput

experiments, including imaging or behavioral data. The success

of this method will be enhanced through the availability of

standardized and well-annotated functional data in publicly

accessible databases, which are expected to become more and

more available in the coming years.

Methods

See the supplementary material (Text S1) for a detailed

description of the materials and methods.

Figure 4. Perturbation clusters reflect distinct synaptic function. A) Functional data on synaptic vesicle release from all perturbations is
plotted for the three clusters and the non-clustered case. RRP ‘‘prop’’ 1/Pv denotes the cluster with the RRP being proportionally related to the inverse
of Pv. Marker sizes indicate the cluster probability. Dotted lines indicate the best fit of the data for four possible regression curves of 0,45, 90 and 135
degrees. B) Idem as in A but now for the correlation of evoked release variables A, RRP, Pv with the frequency F of spontaneous release. To avoid bias
towards the A–F relation of genes with many perturbations in the database, cluster probabilities are corrected for the number of perturbations per
gene plotted in the graph. Final weighted probabilities are indicated by the marker sizes.
doi:10.1371/journal.pcbi.1002450.g004
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Supporting Information

Figure S1 Pearson pairwise correlations among the functional

variables from the 35 control experiments. The panels on the

diagonal show a histogram of each of the four functional variables.

The off-diagonal panels show the pairwise correlations. In each

panel we report the number of variables (because of missing values

this number varies), the Pearson correlation coefficient and the p-

value of a linear regression (from an F-test). A and Pv showed a

correlation which was significant after Bonferroni correction for

multiple comparisons (p,0.0083). Correlation for other variable

combinations was not significant.

(PDF)

Figure S2 Analysis of correlations between experimental

conditions (salt concentrations and days in vitro) on the functional

variables from the 35 control experiments. In each panel we report

the number of variables (because of missing values this number

varies), the Pearson correlation coefficient and the p-value of the

correlation.

(PDF)

Figure S3 Cluster assignment probabilities qkj for all 121

perturbations. Red = probability of belonging to Pv cluster, green = -

probability of belonging to RRP cluster, blue = probability of

belonging to RRP ‘‘prop’’ 1/Pv cluster. Perturbations are ordered

with increasing cluster assignment probability for the dominant

cluster. This ordering is roughly the same as the ordering of the

average co-occurrence matrix. Row and column number into the

co-occurrence matrix are indicated after the underscore.

(PDF)

Figure S4 Cluster assignment probability entropies Ej as a

function of RMS perturbation distance from control condition

RMSj. The color coding of the dots is determined by the cluster

for which the perturbation has the largest assignment probability

qkj.

(PDF)

Figure S5 Cluster unit vectors e(k)
m show separation of pertur-

bation clusters A) Crosses: fitted unit vectors plotted in the 3D

evoked release variable space. Solid black curve (great circle)

indicates all possible functional variable combinations obeying the

release model. Open circles denote the projection of each fitted

unit vector onto the release model circle. Red = Pv cluster,

green = RRP cluster, blue = RRP ‘‘prop’’ 1/Pv cluster B) Ortho-

graphic projection of the unit sphere on the RRP-Pv variable

subspace. Solid black ellipse is the projection of the release model

curve. Crosses and open circles as in panel A.

(PDF)

Figure S6 Blue: average orthogonal error of the proportional

linear model of 1000 random permutations of the data matrix X.

Red line: observed average orthogonal error of the proportional

linear model as plotted in Figure 4A.

(PDF)

Figure S7 Gain-of-function perturbations affect RRP inversely

with Pv. Weighted contingency analysis shows a significant higher

prevalence of gain-of-function perturbations in the RRP ‘‘prop’’

1/Pv cluster than loss-of-function perturbations. See text for

explanation of the randomization test based on the Pearson Chi

square statistic.

(PDF)

Table S1 Excel file with presynaptic gene database: Column

description: (A) name of first author on publication, (B) Pubmed

ID, (C) abbreviated NCBI name of the perturbed gene or applied

compound, (D) alias used in the publication if different from the

NCBI gene name, (E) full NCBI gene name, (F) name of the gene

family to which the perturbed gene (isoform) belongs, (G)

description of the perturbation or control group, (H) number of

rows above the current row to which perturbation data should be

normalized, (I) Indicate WT data (1 data set per publication) for

the analysis of experimental variability between studies (1 if only A

is reported, 2 if both A and RRP are reported), (J-M) salt

concentrations in mM used in extracellular medium, (N) ratio of

extracellular calcium and magnesium, (O) additional compounds

in extracellular medium, (P) age of measured cells expressed in

number of days in vitro (DIV), (Q) average DIV, (R) range of DIV,

(S) temperature at which the experiments were performed, (T)

description of the experimental groups with reference to the data

source in the publication, (U) mean amplitude expressed in nA

unless otherwise indicated in the previous column, (V) SEM, (W)

number of measurements, (X-AA) idem for RRP (in pC unless

otherwise indicated) as in column T-W, (AB-AE) idem for Pv (%),

(AF-AI) idem for F (in Hz unless otherwise indicated).

(XLS)

Table S2 Excel file with clustering results for 121 genetic

perturbations: file contains sheets sorted by gene name, cluster,

and author. Column description: (A) name of first author on

publication, (B) Pubmed ID, (C) abbreviated NCBI name of the

perturbed gene or applied compound, (D) alias used in the

publication if different from the NCBI gene name, (E) full NCBI

gene name, (F) name of the gene family to which the perturbed

gene (isoform) belongs, (G) description of the perturbation, (H)

description of the control group to which the perturbation is

normalized, (I) row index in the presynaptic gene database (Table

S1) of the perturbation, (J) row index in the presynaptic gene

database of the control group, (K) index of perturbation in the co-

occurrence matrix (Figure 3), (L-O) synaptic variables normalized

to control, (P-W) log2 transformed normalized synaptic variables

with log2 transformed SEM of the normalized variables, (X-Z)

probabilities for clusters 1–3, (AB) entropy measure for cluster

specificity calculated from the cluster probabilities using eq. 13,

(AD) RMS calculated from the log2 transformed normalized data

using eq. 12.

(XLS)

Table S3 Excel file with correlation model fits: (A) Weighted

orthogonal errors (not corrected and corrected for the average

probability) for fits to the different correlation models (0, 45, 90,

135 degrees) in the 2D projections of the evoked release variable

space plotted in Figure 4A. The average probability of all data

points shown in a particular subspace (this may vary between

subspaces because not all variables are reported for all subspaces)

are given for each subspace and cluster. (B) Idem for the

correlation between the spontaneous release variable F and the

evoked release variables as plotted in Figure 4B.

(XLS)

Table S4 Excel file with the average cluster probabilities per

gene calculated from the probabilities of the individual perturba-

tions.

(XLS)

Figure 5. Perturbations from the same gene are assigned to different clusters. Perturbations are plotted per gene with marker color
indicating to which cluster the perturbation is assigned and marker size indicating its cluster probability.
doi:10.1371/journal.pcbi.1002450.g005
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Table S5 Selection of Gain-of-Function mutants (GOF) and

Loss-of-Function mutants (LOF) for contingency analysis in Figure

S7.

(XLS)

Text S1 Supplementary info with extended Materials and

Methods.

(PDF)
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