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Abstract

Models of early protein evolution posit the existence of short peptides that bound metals and ions and served as
transporters, membranes or catalysts. The Cys-X-X-Cys-X-X-Cys heptapeptide located within bacterial ferredoxins, enclosing
an Fe4S4 metal center, is an attractive candidate for such an early peptide. Ferredoxins are ancient proteins and the simple
a+b fold is found alone or as a domain in larger proteins throughout all three kingdoms of life. Previous analyses of the
heptapeptide conformation in experimentally determined ferredoxin structures revealed a pervasive right-handed
topology, despite the fact that the Fe4S4 cluster is achiral. Conformational enumeration of a model CGGCGGC heptapeptide
bound to a cubane iron-sulfur cluster indicates both left-handed and right-handed folds could exist and have comparable
stabilities. However, only the natural ferredoxin topology provides a significant network of backbone-to-cluster hydrogen
bonds that would stabilize the metal-peptide complex. The optimal peptide configuration (alternating aL,aR) is that of an a-
sheet, providing an additional mechanism where oligomerization could stabilize the peptide and facilitate iron-sulfur cluster
binding.
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Introduction

Metals in proteins play important roles in stabilizing structure,

promoting electron transfer and performing catalysis. Whole-

genome analyses of phylogenetically diverse microorganisms

suggest the earliest proteins incorporated metals and that metal

usage over biological history evolved to match the availability of

inorganic components in the environment [1,2,3]. The mecha-

nisms by which the ligand environment modulates metal affinity

and specificity are of significant interest in the study of

metalloprotein evolution, function and design. Geometric require-

ments of metal coordination are predicted to impose specific

constraints on the structure and topology of a bound polypeptide

chain. In this study, we computationally model the accessible

conformations of a ferredoxin-like peptide bound to an Fe4S4

cubane cluster in order to better understand how a putative early

metalloprotein may have evolved.

It has been proposed that a set of core genes encode proteins

that carry out key redox reactions essential for promoting life and

driving biogeochemical cycles [4]. These proteins would be among

the earliest to emerge in the ancient oceans. Identifying members

of this set of core genes is an important step in understanding the

evolution of microbial metabolism and emergent biogeochemical

cycles. A number of features of ferredoxins make them an

attractive as key players in the evolution of redox active proteins.

Sequence analysis suggests that ferredoxins evolved very early in

the origins of biological catalysis of redox reactions [5,6]. All

ferredoxins have a simple, conserved fold that binds two Fe4S4

clusters and is composed of fifty to sixty amino acids. Sequence

and structural symmetry suggest it may have evolved from a gene

duplication event of a thirty amino acid sequence, each capable of

binding one iron-sulfur cluster [7,8,9,10]. An early study of the

ferredoxin sequence by Eck and Dayhoff in 1961 revealed even

shorter repeats of four amino-acids [5], suggesting a prebiotic

‘‘protoferredoxin’’ was potentially composed of a primeval subset

of the twenty amino acids [11,12]. Midpoint potentials (2700 to

2300 mV) of ferredoxins are lower than most other proteins,

consistent with the mildly reducing early oceans [13,14].

It has been speculated that the iron-sulfur cluster utilized in

many redox proteins [15] may be an evolutionary relic of prebiotic

chemistry catalyzed by mineral surfaces. Mineral surfaces can

effectively adsorb and concentrate organic molecules and catalyze

various chemical reactions implicated in the origin of non-

equilibrium redox reactions. Chiral mineral surfaces can selec-

tively interact with chiral amino acids, and thus have been

extensively studied as a potential origin of life on Earth [16]. Iron-

sulfur mineral surfaces especially have gained much attention in

the context of deep-sea iron-sulfur rich hydrothermal vents where

the earliest biologically relevant redox reactions are postulated to

have occurred [17,18].

Assuming ferredoxin is one of the select core genes that

originated from a mineral surface catalyst - what might

intermediates in this progression from mineral to protein look

like? (Figure 1): (A) Iron-sulfur minerals such as pyrite and

mackinawite can spontaneously catalyze carbon fixation to

generate essential organic molecules for life [19,20,21,22], (B)
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The regular mineral concentrates amino acids [23], permitting

new chemistry or enhancing existing reactions. (C) Condensation

of small polypeptides occurs at the water-mineral interface [24].

These polypeptides could have sequences similar to Dayhoff’s

proposed tetrapeptides [25] and would be capable of stabilizing

specific oxidation states of bound iron-sulfur fragments. (D) Small

polypeptides are used as components of ferredoxin-like proteins.

This is the transition from prebiotic chemistry to life and could

occur within the context of models for such a transition such as an

RNA-world where peptides are co-opted by small RNA hairpins

[26]. (E) Ferredoxin is retained in all kingdoms and becomes a

domain of larger proteins that include many of the core redox

genes of life. Although each of these stages is poorly understood

and arguably controversial, this conceptual framework allows the

design of specific simulations and experiments to explore the

feasibility of ferredoxin evolution from a mineral precursor.

The structural properties of a putative proto-ferredoxin peptide

in Stage C have implications beyond origins of life models to

metalloprotein design. Although several iron-sulfur binding sites

have been designed into existing proteins [27,28] and de novo folds

[29,30,31], very few have shown any significant stability to cycles

of oxidation-reduction, diminishing their utility in catalysis or

bioenergy applications [32,33]. By elucidating the geometric and

energetic constraints on a polypeptide bound to an iron-sulfur

cluster, one can potentially understand the physical rules

governing biological redox reactions and the designing novel

protein structures.

In the ferredoxin fold, iron-sulfur cluster has a quasi-tetrahedral

structure with four coordination sites, which are most commonly

occupied by four cysteine thiolates. The iron-sulfur cluster itself is

achiral and the protein topology is mainly dependent on how the

cysteine groups from a peptide chain are linked with four iron

atoms in the cluster [34]. Topologically, two different modes of

protein-cluster interactions, right-handed or left-handed, are

possible (Figure 2). These two topological states cannot be

superimposed onto each other by bending or stretching the

representative molecular graphs [34]. Previous studies analyzing

iron-sulfur proteins in the Protein Data Bank (PDB) reported that

all redox active proteins had a right-handed fold; although left-

handed configurations existed for redox inactive proteins [35].

Herein, we present the work that elucidates why a right-handed

heptapeptide topology may have evolved in the context of metal-

protein energetics.

Results/Discussion

Definition of handedness in protein folds
The achiral iron-sulfur (Fe4S4) cluster has a D2d point group

symmetry and is generally bonded to four cysteine thiolate groups

[36,37]. Three of the coordination sites are occupied by cysteine

thiolates from a conserved heptapeptide sequence motif

(CXXCXXC) and the remaining fourth coordination site is

occupied by an outlier cysteine, which is most frequently followed

by a proline (CP) [38]. This particular binding motif accounts for

approximately 25% (36 out of 137) of iron-sulfur binding motifs

from 104 crystal structures available from PDB (Table S1). Among

the CXXCXXC motifs, about 85% (31 out of 36) have a

ferredoxin fold and approximately 15% have globin-like folds and

others as defined by Structural Classification of Proteins (SCOP)

[39]. Topologically, the CXXCXXC heptapeptide motif can

interact with an iron-sulfur cluster in two different ways, right-

handed or left-handed (Figure 2). For the discussion of these

topological states, we quantitatively describe the handedness of the

folding using a ‘‘topology angle’’, h aligning the outlier cysteine on

a z-axis of an internal coordinate frame (Figure 3). Once the

outlier cysteine is specified, handedness in this study is defined

relative to the N- to C-terminus chain direction, either proceeding

clockwise (right-handed: 0u,h,90u) or counterclockwise (left-

handed: 90u,h,180u) around the cluster (Figure 4). The outlier

cysteine residue can be located before or after the CXXCXXC

motif (CP…CXXCXXC or CXXCXXC…CP).

Figure 1. Hypothesized progression of iron-sulfur clusters from
hydrothermal vents to life.
doi:10.1371/journal.pcbi.1002463.g001

Figure 2. Two topological states of peptide-Fe4S4 cluster.
doi:10.1371/journal.pcbi.1002463.g002

Author Summary

The ferredoxin fold is one of the oldest structures capable
of catalyzing electron transfer reactions. In nature, only a
right-handed topology exists in the ferredoxin fold. To
understand how a specific fold-handedness was selected,
we analyzed the structural motif using the tools of de novo
protein design, searching in an unbiased fashion for
backbone geometries that can favorably interact with
the tetrahedral iron-sulfur cluster. In silico, we found both
left-handed and right-handed folds can be formed,
however the right-handed folds provide up to six
hydrogen bonds that can stabilize the reduced iron-sulfur
cluster, whereas left-handed folds at most form three
hydrogen bonds. The difference in electrostatic conforma-
tional energy may have influenced selection of topology
early in the evolution of iron-sulfur cluster containing
proteins. This observation led us to establish a fundamen-
tal protein design principle that only right-handed peptide
folds can properly interact while maintain redox function.
Our results provide guidance in the creation of artificial
proteins capable of carrying out redox reactions.

Energetic Selection of Topology in Ferredoxins
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Analysis of experimentally determined protein structures
from PDB

Since the initial analysis on protein structure database [35], the

number of solved protein structures has increased at an

exponential rate. A non-redundant subset (30% sequence

similarity filter) of the PDB was searched for structures with an

iron-sulfur (Fe4S4) cluster coordinated by a CXXCXXC sequence.

The topology angle, h, was calculated from the PDB coordinates

(Figure 4). A histogram of the topology angles reveals that only

right-handed folds are involved in an iron-sulfur cluster binding

(Figure 5). The CXXCXXC motif always has a topology angle

around 75u.

Computational simulation with protCAD & AMBER
Left-handed configurations of CXXCXXC were not observed,

leading us to examine whether such configurations were

energetically plausible. An ensemble of CGGCGGC polypeptide

configurations was generated. Glycine was chosen for non-Cys

positions due to its high backbone flexibility, ensuring the primary

conformational constraints came from metal-peptide interactions.

The protCAD software platform(protein Computer Assisted

Design) [29,40] was used to exhaustively enumerate all combina-

tions of backbone and sidechain torsions in 60u intervals for W,y
and 120u intervals for the cysteine x1 rotamer (Figure 6 and

Figure 7). Out of 5.861010 (336612) configurations, 232 exhibited

net-favorable van der Waals interactions (less than 0 kcal/mol),

Fecluster??? Sc distances (,3 A) and Cb-Sc???Fecluster angles (120u to

180u) that would permit binding to an iron-sulfur cluster. The

protein structures were then minimized in AMBER to reduce

strain from distortions caused by discrete conformation sampling

[41].

Topology angles of the computationally generated dataset

clustered into two distinct populations - right and left-handed folds

- suggesting the CGGCGGC heptapeptide could bind to the iron-

sulfur cluster with either topology (Figure 8). In fact, the simulation

identified more left-handed structures (67%) than right-handed

structures (32%), indicating left-handed topologies were entropi-

cally favorable. Conducting the same simulation on CAACAAC

resulted in 54% left-handed and 46% right-handed structures,

suggesting that the steric hindrance of amino acid side chains itself

is not sufficient to discriminate the handedness of the topological

state. A histogram of the energy distributions for left and right-

handed topologies show no significant difference (Figure 9),

indicating intrinsic stability of the fold alone is unlikely to account

for evolution of a unique topology.

Hydrogen bonds in iron-sulfur proteins
The reduced state of the iron-sulfur cluster can be stabilized by

hydrogen bonds contributed by nearby backbone amides [42].

The number of hydrogen bonds around the iron-sulfur cluster is

also related to the solvent accessibility to the cluster, thereby

tuning the midpoint potential [43,44]. A typical ferredoxin fold

exhibits six such interactions with backbone amides directing the

proton toward the cluster. Hydrogen bond formation is at the

expense of unfavorable backbone dihedral angles, particularly the

positive W values at X2 and X3 positions (Table S2).

For the analysis of the hydrogen bonding environment of

computationally generated structures, interactions were counted

based on discrete distance and angular cutoffs: a hydrogen-sulfur

Figure 3. Fold topology in a ferredoxin fold. Right/Left fold
configuration can be defined with an outlier, by orienting the outlier
cysteine along the z-axis and iron-sulfur cluster being at the origin. A
ferredoxin fold, with a conserved sequence CxxCxxC with an outlier
cysteine, can create either right or left topological configuration. Right-
handed fold is shown.
doi:10.1371/journal.pcbi.1002463.g003

Figure 4. Topology angle in a ferredoxin fold for database
analysis. An arbitrary plane was defined with three cysteine carbon
alpha coordinates. Three dimensional vector calculations were done to
determine the topology angle of the protein fold.
doi:10.1371/journal.pcbi.1002463.g004

Figure 5. Topology of experimentally determined protein
structures (Protein Data Bank). The absence of peaks between 90
to 180 degrees suggests that the left-handed fold conformation does
not exist in the known structures archived in the PDB.
doi:10.1371/journal.pcbi.1002463.g005

Energetic Selection of Topology in Ferredoxins
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distance less than 3.5 Å and N-H???S angles between 120 to 180u
[45]. The number of hydrogen bonds between nitrogen and sulfur

were counted based on cutoffs: 3.8 Å and 110 to 180u. Right-

handed folds could accommodate six hydrogen bonds, but a

maximum of three hydrogen bonds were found in structures with

left-handed folds (Figure 10).

Energetics of peptide-cluster interactions
The electrostatic stabilization of a bound cluster by proximal

backbone amides was estimated by comparing the total energies of

charged versus uncharged clusters in the context of a coordinating

peptide. The net contribution of hydrogen bonds can represented

several ways: the average of pairwise distances between hydrogen

and sulfur atoms (Figure 11A) and discrete number of hydrogen

bonds plotted against the peptide-cluster interaction energies

(Figure 11B). The interaction energy improves as the distances

between sulfur atoms to hydrogen atoms are reduced. The result

also indicates that the right-handed peptide-cluster interaction can

have a stabilization effect up to 280 kcal/mol, whereas a left-

handed fold can only achieve 250 kcal/mol. For comparison, we

generated a CGGCGGC peptide using coordinates from exper-

imental ferredoxin structures, including proteins with non-

ferredoxin fold (Figure 11A inset, Supplementary data). The

right-handed topology in natural ferredoxin and non-Fd proteins

presents a network of stabilizing backbone amides that interact

strongly with the Fe4S4 cluster. The result shows the best right-

handed structure contributes more stabilizing hydrogen bonds

than the best left-handed structure. Additionally, the inset to

figure 11A reveals tightly clustered experimental results, all which

Figure 6. Protein ensemble generated by modifying psi, phi
and chi dihedral angles. For a model heptapeptide-cluster complex,
CGGCGGC fused to an iron-sulfur cluster, there are total 6 y angles, 6 W
angles, 3 x1 angles, and one each for x2 and x3 angles. The
permutations are carried out by 60 degrees step size for W and y
and 120 degrees step size for x angles.
doi:10.1371/journal.pcbi.1002463.g006

Figure 7. Cys-Gly-Gly-Clu-Gly-Gly-Cys peptide created with
protCAD. All possible structures are explored by permuting 17
rotatable dihedral angles of the peptide from 2180 to 180 with a
step size of 60 degrees.
doi:10.1371/journal.pcbi.1002463.g007

Figure 8. Topology angles of entactic structural states. Cys-Gly-
Gly-Clu-Gly-Gly-Cys hepeptide model has 232 structural entactic states,
either right-handed (blue, 75 out of 232) or left-handed (red, 157 out of
232). Despite the inexistence of left-handed topological state in nature,
model peptide suggests that left-handed structure can also properly
interact with an iron-sulfur cluster.
doi:10.1371/journal.pcbi.1002463.g008

Energetic Selection of Topology in Ferredoxins
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cluster around the same right-handed configuration and present

six hydrogen bonds, suggesting the right-handed heptapeptide

topology is a unique entactic state.

Conclusion
A microscopic analysis of the Fe4S4 binding region of ferredoxin

provides some insights into the predicted features of an ancient,

short proto-ferredoxin. The right-handed topology observed in

redox-active iron-sulfur proteins is not dictated by the peptide

chain. In fact, left-handed chain topologies are entropically

favored and have slightly improved stabilities in the absence of

the cluster. Only when considering electrostatic interactions with

the cofactor is the natural right-handed topology the optimal

solution. Thus short CxxCxxC peptides alone are unlikely to serve

as early redox active species without additional external stabilizing

interactions. These may have taken the form of longer sequences

with super-secondary structure such as those in designed peptide

maquettes [38,46]. It is interesting to note that the model

conformation with the best peptide-cluster interaction energy

and the ferredoxin-like conformations are both an a-sheet,

characterized by residues in alternating aL and aR conformations.

This motif was first described by Pauling and Corey as the ‘pleated

sheet’ [47]. a-sheets are thought to be intermediates in a number

of protein aggregation disorders [48,49]. The conformation is also

implicated in early peptides due to their anion binding properties

[50]. It is possible that stabilization of a-sheets provides the

entactic state required for favorable cluster binding. The

identification of a specific iron-sulfur binding topology may point

the way to a mechanism by which the first core metalloproteins

evolved.

Materials and Methods

Topology angle
To have a quantitative measure for the fold-handedness, an

arbitrary plane was defined with two vectors, which were defined

by Ca coordinates from three cysteine residues. The topology

angle, a quantitative measure of fold-handedness, was then defined

as the angle between a normal vector of the arbitrary plane and a

vector from the middle cysteine Ca to the cluster. By definition, the

quantitative measurement of fold-handedness (topology angle) can

take any numeric value from 0u to 180u.

protCAD
Iron-sulfur cluster coordinates were extracted from the PDB file,

2FDN. We created a hybrid artificial amino acid residue (Clu) by

linking an iron-sulfur cluster to a cysteine residue. The artificial

Figure 9. The energy distributions of right (blue) and left-
handed (red) structures. The gaussian fits are very similar, which
suggests that the natural selection was not influenced by the energetic
stability alone. The energy corresponding to the ensemble that has the
lowest RMSD to the experimentally determined ferredoxin structure
(PDB: 2FDN)- green circle.
doi:10.1371/journal.pcbi.1002463.g009

Figure 10. Computationally generated entactic states of the
model heptapeptide with optimal peptide-cluster interaction
energies. (A) Right-handed fold can form six hydrogen bonds, whereas
(B) left-handed fold can only contribute three hydrogen bonds.
doi:10.1371/journal.pcbi.1002463.g010

Figure 11. Hydrogen bonding environment of the 232 left- and
right-handed heptapeptide-cluster conformations. (A) Interac-
tion energy vs. average H-S distance of left (red), right-handed (blue)
complexes. Experimentally determined ferredoxin structures (green)
and non-ferredoxin redox active proteins (purple) show nearly identical
bond geometries and calculated interaction energies. (B). The same
dataset presented as the number of hydrogen bonds versus interaction
energy. Only one simulated peptide in the ensemble contributes six
hydrogen bonds, corresponding to the best interaction energy. This is
equivalent to the natural right-handed fold.
doi:10.1371/journal.pcbi.1002463.g011

Energetic Selection of Topology in Ferredoxins
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amino acid was added to the amino acid library of protCAD.

Initially a peptide ensemble (Cys-Gly-Gly-Cys-Gly-Gly-Cys) was

created and subsequently the central Cys was substituted to Clu.

For a given ensemble, there are six W (C9-N-Ca-C9), six y (N-Ca-

C9-N). For each cysteine residue, there three x1 (N-Ca-Cb-Sc)

dihedral angles. For the central iron-sulfur cluster fused cysteine

residue, there are additional dihedral angles, which are x2 (Ca-Cb-

Sc-FeClu) and x3 (Cb-Sc-FeClu-SClu). All phi and psi dihedral angles

were increased by a step size of 60u and all chi dihedral angles

were set at 2180u, 260u, or 60u. The entire protein structural

space was searched by the permutations of seventeen dihedral

angles. Plausible protein structures were then determined by

geometric parameters, such as a distance from Sc to FeClu with a

cutoff (,3.0A). Energy parameters calculated based on a Lennard-

Jones equation [45] was also used to detect feasible structures (total

energy,0 kcal/mol).

AMBER 11
The structures obtained from the ProtCAD simulations were

subjected to energy minimization calculations using Amber 11

[51], with a generalized Born solvent model [52,53]. Protein atoms

were described with the parm99SB [54,55,56] force field

parameterization. The atomic charges were modified so that an

oxidized Fe4S4
+2 cluster bound to 3 Cys had a net charge of 21,

yielding the following charges: qFe = 0.6518 e, qS (clus-

ter) = 20.5552 e, qSG (cysteine) = 20.6042 e. The maximum

number of minimization cycles was set to 105, and the structures

were considered minimized when the root-mean-square of the

Cartesian elements of the gradient was less than 1024 kcal/mol-Å.

To compare the degree of electrostatic stabilization of the cluster

in the different peptide models, the charge of the S atoms of the

Fe4S4 cluster was set to zero, and a single point energy calculation

was performed. A number of structures converged to an identical

structure after the energy minimization process. The redundant

structures were then removed by MMTSB (Multiscale Modeling

Tools in Structural Biology) k-clustering algorithm [57].

Supporting Information

Table S1 List of structures collected from Protein Data

Bank(PDB). Structures containing a CXXCXXC binding motif

with 30% sequence similarity were collected. The most common

iron-sulfur cluster binding motif is CXXCXXC with two types of

outlier positions: Type A: (CXXCXXC….C) Type B:

(C….CXXCXXC).

(DOC)

Table S2 Alternating aL,aR secondary structure, also known as

alpha-sheet, characterized by positive phi dihedral angles in C-X1-

X2-C-X3-X4-C motif (Protein structures from PDB). Alpha-left

(aL) friendly amino acids (e.g. Asp, Asn, His, Lys) (1) are color

coded with pale blue and residues that are unlikely to

accommodate positive phi dihedral angle are noted with orange.

Glycine and cysteine are colored pale green and yellow,

respectively.

(DOC)
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