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Abstract

Recently, Wu and colleagues [1] proposed two novel statistics for genome-wide interaction analysis using case/control or
case-only data. In computer simulations, their proposed case/control statistic outperformed competing approaches,
including the fast-epistasis option in PLINK and logistic regression analysis under the correct model; however, reasons for its
superior performance were not fully explored. Here we investigate the theoretical properties and performance of Wu et al.’s
proposed statistics and explain why, in some circumstances, they outperform competing approaches. Unfortunately, we
find minor errors in the formulae for their statistics, resulting in tests that have higher than nominal type 1 error. We also
find minor errors in PLINK’s fast-epistasis and case-only statistics, although theory and simulations suggest that these errors
have only negligible effect on type 1 error. We propose adjusted versions of all four statistics that, both theoretically and in
computer simulations, maintain correct type 1 error rates under the null hypothesis. We also investigate statistics based on
correlation coefficients that maintain similar control of type 1 error. Although designed to test specifically for interaction, we
show that some of these previously-proposed statistics can, in fact, be sensitive to main effects at one or both loci,
particularly in the presence of linkage disequilibrium. We propose two new ‘‘joint effects’’ statistics that, provided the
disease is rare, are sensitive only to genuine interaction effects. In computer simulations we find, in most situations
considered, that highest power is achieved by analysis under the correct genetic model. Such an analysis is unachievable in
practice, as we do not know this model. However, generally high power over a wide range of scenarios is exhibited by our
joint effects and adjusted Wu statistics. We recommend use of these alternative or adjusted statistics and urge caution when
using Wu et al.’s originally-proposed statistics, on account of the inflated error rate that can result.
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Introduction

Genome-wide association studies (GWAS) have been remark-

ably successful at identifying the genomic locations of variants

involved in a variety of complex diseases [2–7]. In spite of this

success, some researchers have expressed disquiet at the issue of

the ‘missing heritability’ [8], namely the fact that the disease-

associated single nucleotide polymorphisms (SNPs) identified

through GWAS often account for only a small proportion of the

the observed correlations in phenotype between relatives. This

suggests that additional genetic factors remain to be found. Several

explanations for this phenomenon have been suggested. Firstly, the

SNPs identified through GWAS are likely to be surrogates in

(imperfect) linkage disequilibrium (LD) with the true causal

variants, and thus cannot be expected to fully account for their

effects, particularly if the true causal variants are rare. Secondly,

the low power of GWAS to detect loci of small effect means that

many specific true loci remain undiscovered, even though the fact

of their (combined) existence may be detectable from the observed

genetic data [9,10]. Finally (and the main focus of this

communication) is the fact that the single-locus (SNP by SNP)

testing strategy generally undertaken as the primary analysis tool

in a GWAS may be underpowered to detect loci that interact with

other genetic or enviromental factors, since effects at such loci may

not be visible unless the contributing interacting factors are also

taken into account.

The relationship between biological and statistical interaction has

been hotly debated over many years [11–19]. It is now generally

accepted that the lack of direct correspondence between statistical

and biologial interaction makes it difficult to make strong

inferences concerning biological mechanism from the existence

of interaction terms in a statistical model. Nevertheless, the

existence of such terms does imply that the interacting factors

should at least both be ‘involved’ in disease in some way. Detection

of statistical interaction thus provides a good starting point for a

more focussed investigation of the joint involvement of the relevant

factors, which can perhaps be better addressed through other types

of experimental data. In addition, the increased detection power

provided by statistical models that include interaction terms, when

such terms do in fact operate [20], motivates the development of

improved methods for detecting and modelling statistical interac-

tion, particularly in the context of GWAS. The hope is that such

methods will be useful for detecting effects that may be missed in

standard single-locus analysis, thus providing a complementary

strategy to standard GWAS analysis approaches for detecting loci

involved in disease.

In case/control studies, statistical interaction is generally

modelled as departure from a simple linear model describing the
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individual (main) effects of predictor variables on the predicted log

odds of disease [17]. Consider two binary variables, x1 and x2,

whose presence/absence (coded 0/1) is believed be associated with

a disease outcome. Logistic regression models the main effects (b
and c) and interaction term (d) between the variables via the linear

model

log
p

1{p
~azbx1zcx2zdx1x2 ð1Þ

where p represents the probability that an individual in the study is

a case rather than a control. Applying this idea to genetic predictor

variables (such as SNP genotypes) is complicated by the fact that

genetic predictors are not binary, but rather take 3 levels

according to the number of copies (0,1,2) of the susceptibility

allele possessed. However, we can easily convert to a binary coding

by assuming a recessive or dominant model for each of the factors

considered (thus collapsing two genotype categories to one at each

locus). Alternatively, we can fit the above regression model using

predictor variables coded (0,1,2), according to the number of

susceptibility allele possessed, thus imposing an additive model (on

the log odds scale) within each locus for the effect of each

susceptibility allele. Yet another approach would be to fit a more

general nine parameter (saturated) genotype model [17], that

includes effects due to one or two copies of the susceptibility allele

at locus 1 (b1, b2), at locus 2 (c1, c2), and four interaction

parameters (d11, d12, d21, d22) representing the additional

contribution to risk from combinations of these effects, resulting

in the following model:

log
p

1{p
~azb1I(x1~1)zb2I(x1~2)zc1I(x2~1)z

c2I(x2~2)zd11I(x1~1)I(x2~1)z

d12I(x1~1)I(x2~2)zd21I(x1~2)

I(x2~1)zd22I(x1~2)I(x2~2)

ð2Þ

(where here I(E) represents an indicator variable for the

occurence of event E).

Given the simpler logistic regression model (1), a variety of

tests can be performed to assess the effects of the two

contributing factors. (Similar tests can be derived for logistic

regression model (2)). A 3df test of b~c~d~0 tests for

association at both loci, allowing for their possible interaction.

A 2df test of c~d~0 tests for association at locus 2, allowing for

possible interaction with locus 1. Such a test has been shown to

be a powerful approach when interactions exist, while losing

very little power when no interactions exist [20]. In the current

communication, we will focus on the 1df test of d~0 i.e. a test of

the interaction term alone. This test has the disadvantage of

being generally underpowered compared to tests of main effects

[21]. However, we might hope that loci with reasonably large

main effects will be potentially detectable via a single-locus scan.

We are interested in detecting loci that will be missed via single-

locus analysis, i.e. those for which the interaction term is likely

to be particularly important. Moreover, assuming we can

construct a good test of d~0, this test can potentially be

combined with tests of the main effects [22], allowing the

construction of joint tests of association while allowing for

interaction, if desired.

Methods

Wu et al. (2010) statistic
Recently, Wu and colleagues [1] proposed two novel statistics

for genome-wide (pairwise) interaction analysis using case/control

or case-only data. The statistics proposed by [1] were based on

considering ‘haplotypes’ at two diallelic loci, G and H , with locus

G having alleles G1 and G2 and locus H having alleles H1 and H2.

For linked loci, the concept of ‘haplotype’ corresponded to its

usual interpretation in terms of the physical coupling of alleles on

the DNA strand inherited from a single parent. For unlinked loci,

the concept of ‘haplotype’ referred simply to the fact the alleles

involved were inherited from the same parent (a concept

sometimes referred to as gametic phase disequilibrium), without

necessarily implying any physical coupling of the alleles.

Wu et al. [1] propose to detect interaction via consideration of

the log odds ratio

l(h)~ log
P11P22

P12P21
ð3Þ

where Pjk is the haplotype frequency of haplotype Gj2Hk (i.e. the

probability of this haplotype) in some sample under consideration.

We define a parameter vector h~(p,u,D)T , chosen to reparame-

terise the 4 haplotype frequencies Pjk in terms of the allele

frequencies, p~P(G1), q~P(G2)~1{p, u~P(H1), and

v~P(H2)~1{u, and a ‘linkage disequilibrium’ (LD) (or more

generally, for unlinked loci, allelic association) parameter, D, such

that

P11~puzD

P21~qu{D

P12~pv{D

Author Summary

Gene–gene interactions are a topic of great interest to
geneticists carrying out studies of how genetic factors
influence the development of common, complex diseases.
Genes that interact may not only make important
biological contributions to underlying disease processes,
but also be more difficult to detect when using standard
statistical methods in which we examine the effects of
genetic factors one at a time. Recently a method was
proposed by Wu and colleagues [1] for detecting pairwise
interactions when carrying out genome-wide association
studies (in which a large number of genetic variants across
the genome are examined). Wu and colleagues carried out
theoretical work and computer simulations that suggested
their method outperformed other previously proposed
approaches for detecting interactions. Here we show that,
in fact, the method proposed by Wu and colleagues can
result in an over-preponderence of false postive findings.
We propose an adjusted version of their method that
reduces the false positive rate while maintaining high
power. We also propose a new method for detecting pairs
of genetic effects that shows similarly high power but has
some conceptual advantages over both Wu’s method and
also other previously proposed approaches.

Improved Statistics for Interaction Analysis
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P22~qvzD

Note that the odds ratio
P11P22

P12P21

in (3) relates to the odds of a G1

allele appearing on a ‘haplotype’ in coupling with a H1 allele (and a

G2 allele with H2) i.e. it acts a measure of correlation between alleles

at the two loci, rather than relating to the odds of disease. No

correlation (l(h)~0) corresponds to the situation where the allelic

association parameter D~0. Wu et al. (2010) propose that, under

the null hypothesis of no interaction, l(hA)~l(hN ), where A and N
refer to calculating l(h) within the sample of cases and controls

respectively. If, in addition, there is no population-level allelic

association between alleles at G and H, then l(hA)~l(hN )~0.

Wu et al. [1] give a complicated description motivating their use

of l(h), however this quantity can perhaps more easily be

motivated by analogy with classical ‘case-only’ analysis [23,24,25].

Case-only analysis stems from the observation that, for binary

predictor variables, a test of the interaction term d in the logistic

regresssion model (1) can be obtained by noticing that it equals the

‘ratio of odds ratios’:

d~ log
P’’11P’’00

P’’10P’’01
=

P’11P’00

P’10P’01

� �

where P’’jk and P’jk are the joint probabilities that binary variables

x1 and x2 take values j and k, i.e. P(x1~j,x2~k), calculated

within the sample of cases and controls, respectively. If variables

x1 and x2 are uncorrelated in the controls (or, equivalently, in the

general population under a rare disease assumption) then the

denominator

P’11P’00

P’10P’01
~1

and a test of interaction can be constructed by testing whether

log
P’’11P’’00

P’’10P’’01

� �
~0

This test has the advantage [23,24,25] of being substantially more

powerful than the usual logistic regression test of d~0. If we are

not willing to assume that variables x1 and x2 are uncorrelated in

the controls, then a natural test of interaction can instead be

constructed by testing whether

P’’11P’’00

P’’10P’’01
~

P’11P’00

P’10P’01

or, equivalently, whether

log
P’’11P’’00

P’’10P’’01

� �
{ log

P’11P’00

P’10P’01

� �
~0:

Considered in this light, the log odds ratio l(h) considered by Wu

et al. [1] can be seen as analagous to the quantity used in case-only

analysis, if the unit of analysis is defined to be a ‘haplotype’ (rather

than an individual) and if binary variables x1 and x2 are defined as

indicator variables for the two possible alleles at each locus on the

haplotype.

To test for interaction, Wu et al. [1] propose two x2 test

statistics, one for case-only and one for case/control analysis,

which we denote as TWu{co and TWu{cc

TWu{co~
l(ĥhA)2

v̂vA

ð4Þ

TWu{cc~
½l(ĥhA){l(ĥhN )�2

v̂vAzv̂vN

ð5Þ

Here l(ĥh) is the log OR (for G12H1 and G22H2 alleles being in

coupling, as opposed to G12H2 and G22H1), v̂v is its estimated

variance (calculated using the delta method), and A and N refer to

quantities calculated within the sample of cases and controls

respectively. The case-only test should be suitable provided there is

no correlation (e.g. due to LD) between alleles at the two loci. The

case/control test is more suitable if we expect correlation between

alleles at the two loci due to the fact they are linked, or induced by

other influences such population stratification [26]).

In order to actually calculate TWu{co and TWu{cc, we need to

know (or estimate) the ‘haplotype’ frequencies Pjk in cases and

controls. Even for linked loci, haplotypes are not generally

observed, but luckily many programs exist to estimate haplotype

frequencies (often via an EM algorithm) given unphased genotype

data. Most if not all such programs assume Hardy-Weinberg

equilibrium (HWE) in order to perform the calculation. We expect

HWE to hold in the general population (and thus in controls,

under a rare disease assumption). Under the global null hyothesis

of no association between disease status and the loci in question

(via either main effects or interactions), haplotype frequencies in

cases should be identical to those in controls, and HWE should

also hold in the cases. However, under the alternative hypothesis

of association and/or interaction, HWE will not necessarily hold

in the cases [27] (unless the disease model is assumed to result from

multiplicative haplotype effects [28]), meaning that haplotypes in

cases cannot be considered to come together independently. We

return to this point later.

Wu et al. [1] provide the following formulae for their proposed

statistics:

TWu{co~

log
P̂PA

11P̂PA
22

P̂PA
12P̂PA

21

" #2

1

2nA

1

P̂PA
11

z
1

P̂PA
12

z
1

P̂PA
21

z
1

P̂PA
22

" # ð6Þ

TWu{cc~

log
P̂PA

11P̂PA
22

P̂PA
12P̂PA

21

{ log
P̂PN

11P̂PN
22

P̂PN
12P̂PN

21

" #2

1

2nA

1

P̂PA
11

z
1

P̂PA
12

z
1

P̂PA
21

z
1

P̂PA
22

" #
z

1

2nG

1

P̂PN
11

z
1

P̂PN
12

z
1

P̂PN
21

z
1

P̂PN
22

" #ð7Þ

where nA and nG are the number of sampled case and control

individuals, and P̂PA
jk and P̂PN

jk are estimators of the haplotype

frequencies in cases and controls, respectively. However, the

denominators in these formulae (based on calculating the

asymptotic variances of l(ĥhA) and l(ĥhN )) are only correct if

haplotypes are actually observed i.e. there is no phase uncertainty.

Consequently, we expect these variance estimates to be too small if

Improved Statistics for Interaction Analysis
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haplotype frequencies are estimated from unphased genotype

data, resulting in test statistics that are too large. In Text S1 we use

results from Brown [29] and application of the delta method to

calculate the correct asymptotic variances of l(ĥhA) and l(ĥhN ). We

refer to our corresponding resulting test statistics as ‘adjusted’ Wu

statistics:

TAWu{co~
l(ĥhA)2

v̂vA

ð8Þ

TAWu{cc~
½l(ĥhA){l(ĥhN )�2

v̂vAzv̂vN

ð9Þ

(where v̂v now relates to the correct asymptotic variance of l(ĥh) as

given in Text S1). Interestingly, if one calculates this variance

under the null hypothesis that l(h)~0 (as might be reasonable

when performing case-only analysis, where this assumption is in

any case required), it turns out that the resulting variance is exactly

double that derived by Wu et al. [1]. In these circumstances, our

case-only statistic TAWu{co would be exactly half of the original

Wu case-only statistic. This suggests that another way to construct

a valid version of Wu’s case-only statistic would be to simply divide

the original statistic by two. In computer simulations (data not

shown), we found negligible differences between between our

‘adjusted’ statistic TAWu{co and TWu{co=2, and thus, in our

Results section, we only report results for TAWu{co.

PLINK’s fast-epistasis statistics
Two fast approaches for testing interaction (in addition to a

slower logistic regression based approach) are implemented in the

computer program PLINK [30]. For a set of individuals (either

cases or controls), PLINK takes unphased genotype data as shown

in Table 1 and expands it out to the 2|2 allelic table shown in

Table 2. The log odds ratio lFE in this table can be calculated as

lFE~ log AD
BC

with estimated variance v̂vFE~
1

A
z

1

B
z

1

C
z

1

D
.

PLINK’s fast-epistasis tests test whether correlation between alleles

at the two loci exists (case-only test) or is different between cases

and controls (case/control test) via the following x2 test statistics:

TFE{co~
l2

FEA

v̂vFEA

ð10Þ

TFE{cc~
½lFEA

{lFEN
�2

v̂vFEA
zv̂vFEN

ð11Þ

Here A and N again refer to quantities calculated within the

sample of cases and controls respectively. These statistics are seen

to have exactly the same form as the Wu and adjusted Wu

statistics, but with the log odds ratio l and its estimated variance

relating to slightly different quantities, namely those quantities

shown in Table 2.

Apart from the difference in l, the main difference between

PLINK’s statistics and those proposed by Wu et al. is that fact

that, in PLINK, no estimation of phased haplotype frequencies

is performed. Nevertheless, the log odds ratio lFE can be shown

to be exactly that which would be obtained if one did estimate

haplotype counts, assuming that the middle cell (e) in Table 1

resolves into phased genotypes G12H1/G22H2 or G12H2/

G22H1 with equal frequencies. The haplotype counts implicitly

utilized by PLINK are therefore similar to what would be

obtained from an EM algorithm, except that in PLINK the

middle cell is resolved assuming no correlation between alleles

at the two loci, resulting (presumably) in a set of estimated

haplotype frequencies that will be biased towards showing

lower levels of allelic association. We hypothesise that this bias

towards lower levels of allelic association might partly account

for the inferior performance of PLINK observed by Wu et al.

[1].

Although the log odds ratio lFE in PLINK corresponds to what

would be obtained from attempting to resolve phase while

assuming no correlation between alleles at the two loci, the

variance estimate v̂vFE is based on counting 4N independent alleles

rather than 2N haplotypes (where N is the total number of

individuals in Table 1). The formula for the variance estimate

v̂vFE~
1

A
z

1

B
z

1

C
z

1

D
assumes that there are 3 independent cell

probabilities in Table 2. However, since the data in Table 2 was

originally derived from Table 1, considering these data as

realisations from a multinomial distribution, we can see that in

fact there should be 8 parameters corresponding to 8 independent

cell probabilities. In Text S1, we use the delta method to calculate

the correct asymptotic variances of lFEA
and lFEN

, based on the

multinomial data in Table 1. We refer to the corresponding

resulting test statistics as ‘adjusted’ fast-epistasis statistics:

TAFE{co~
l2

FEA

v̂vFEA

ð12Þ

TAFE{cc~
½lFEA

{lFEN
�2

v̂vFEA
zv̂vFEN

ð13Þ

where v̂vFE now relates to the correct asymptotic variance of lFE as

given in Text S1, and A and N again refer to quantities calculated

within the sample of cases and controls respectively.

Table 1. Multilocus genotype counts at two SNPs in a set of
genotyped individuals.

Locus G Locus H

H1H1 H1H2 H2H2

G1G1 n22 n21 n20

G1G2 n12 n11 n10

G2G2 n02 n01 n00

doi:10.1371/journal.pgen.1002625.t001

Table 2. Allele counts derived from Table 1, as calculated by
PLINK.

Locus G Locus H

H1 H2

G1 A~4n22z2n21z2n12zn11 B~4n20z2n21z2n10zn11

G2 C~4n02z2n01z2n12zn11 D~4n00z2n01z2n10zn11

doi:10.1371/journal.pgen.1002625.t002

Improved Statistics for Interaction Analysis
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Wellek and Ziegler (2009) statistics
Both the methods of Wu et al. [1] and the fast-epistasis tests

implemented in PLINK operate by turning a question about

statistical interaction into a question about allelic association (or

correlation), namely, whether association between alleles two loci

exists (case-only test) or is different between cases and controls

(case/control test)). However, many different measures of allelic

association (usually calculated for linked loci, and thus assumed to

reflect LD) have been proposed. Arguably the most popular are

Lewontin’s D’ [31] and Pearson’s product-moment correlation

coefficient r (or the square of it, r2) [32]. In most current genetic

applications, these measures are calculated based on known or

estimated haplotype frequencies. Wellek and Ziegler [33] pointed

out that one advantage of r is that it may be calculated without

estimating phase, simply by applying it to two variables, x1 and x2,

coded (0,1,2) according to the number of susceptibility alleles

possessed at each locus. Wellek and Ziegler [33] examined the

performance of r as a measure of LD using either estimated

(phased) haplotype frequencies or using unresolved genotype data

and showed that, if HWE holds, the loss of precision for estimating

r was negligible when using unphased genotypes rather than

(phased) haplotypes.

If HWE does not hold, Wellek and Ziegler found the genotype-

based estimator of r to be unbiased but the haplotype-based

estimator to be strongly biased, i.e. to not reflect the ‘true’ value of

r based on the true haplotype frequencies. This would seem an

unappealing property of the haplotype-based estimator, if the goal

is to accurately estimate the true level of allelic association (or LD)

between two loci. However, if the purpose is rather to test for

interaction (via testing whether correlation between alleles two loci

exists (case-only test) or is different between cases and controls

(case/control test)), it is possible that such a bias could be

advantageous in terms of improving power. Since the method of

Wu et al. [1] relies on estimating ‘haplotypes’ within the sample of

cases (under a potentially incorrect HWE assumption), we

hypothesise that the bias pointed out by [33] might also contribute

to the superior performance observed by Wu et al. [1] for their

approach compared to PLINK.

Given a genotype-based estimator of r, Wellek and Ziegler [33]

propose using Fisher’s z transformation to calculate a quantity

z(r)~
log½(1zr)=(1{r)�

2

and its estimated variance. A natural pair of statistics for testing

interaction based on z(r) might therefore be:

Tz{co~
zA

2

Var(zA)

Tz{cc~
(zA{zN )2

Var(zA)zVar(zN )

In computer simulations (data not shown), we found the

performance of these statistics to be virtually identical to statistics

based on the correlation coefficient itself. We therefore instead

define our Wellek and Ziegler inspired statistics based on the

correlation coefficient as:

TWZ{co~
rA

2

Var(rA)
ð14Þ

TWZ{cc~
(rA{rN )2

Var(rA)zVar(rN )
ð15Þ

where again A and N refer to quantities calculated within the sample

of cases and controls respectively. Formulae for the correlation

coefficient r and its estimated variance are given by Wellek and Ziegler

[33]. Note that the test based on the difference in the correlation

coefficients between cases and controls, TWZ{cc, was also proposed by

Kam-Thong et al. [34] and implemented in a program called

EPIBLASTER. In EPIBLASTER, TWZ{cc is used as a screening

step, prior to performing a full logistic regression analysis on the subset

of pairs of loci showing some loose level of significance with TWZ{cc.

New ‘‘joint effects’’ tests
Although designed to test specifically for (statistical) interaction,

several of the test statistics proposed above can be shown to be

sensitive to the situation where there is, in fact, no interaction, but

one or both of the loci display main effects (see details in Text S2).

This is rather unsatisfactory as, even if one of the loci does have a

genuine main effect, this phenomenon could lead to potentially

increased false positive rates with respect to detection of the other

locus (through its apparent – but false – interaction with the locus

that has genuine main effects). Ideally, one would hope that detection

of a significant interaction effect would indicate genuine interaction,

but, even if this is not the case, one would at least hope that both loci

identified have some involvement in disease (with their precise joint

effects - interactive or otherwise - being determinable through

further, more focussed, statistical or biological investigation).

In order to address this issue, we propose two new ‘joint effects’

tests that are sensitive only to either a) a genuine interaction effect

or b) (if the disease is not sufficiently rare), main effects present at

both loci. Our tests are motivated by a desire to test the same

interaction parameter as tested by Wu et al. [1]. However, unlike

some previously-proposed tests, our new tests can be shown to

have the advantage of not being sensitive to main effects at a single

locus. Moreover, under a rare disease assumption, our new tests

can also be shown to be insensitive to main effects at both loci, thus

reflecting genuine interaction. Thus, application of our joint effects

tests will not result in an inflated type 1 error rate with respect to

the detection of loci that are not involved in the disease (even

though, for a common disease, our tests could potentially result in

an inflated type 1 error with respect to whether the pair of loci

actually interact, in the usual statistical sense).

Our new tests are based on the counts in Table 1, calculated

separately within the sample of cases and controls. Consider using

each of the four top left cells in Table 1 in turn, to estimate four

odds ratios relative to the baseline (bottom right) cell:

îi22~
n22n00

n20n02
îi21~

n21n00

n20n01
îi12~

n12n00

n10n02
îi11~

n11n00

n10n01

In Text S3 we show that, under a rare disease assumption, these

estimated odds ratios îijk can be considered as estimates of the

following functions of l(h), where l(h) refers to to the log odds

ratio estimated in the method of Wu et al. [1]:

i22~e2l(h) i21~el(h) i12~el(h) i11~
el(h)z1

2
ð16Þ

To construct our proposed tests, we therefore propose to use the

four relationships in (16) as four estimating equations for l(h), and test
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the hypothesis that l(h)~0 (case/only test) or that l(h) is equal for

cases and controls (case/control test). Further motivation for our tests

is provided in Text S3. Note that l(h)~0 corresponds to the situation

where all four of the ‘interaction’ odds ratios (i22, i21, i12, i11) equal 1.

We construct two separate estimates of l(h), using the data in

Table 1 as tabulated for either cases or controls. Equation (16)

implies that we can estimate l(h) via a weighted average:

~ll~w22
log îi22

2
zw21 log îi21zw12 log îi12zw11 log (2̂ii11{1)

where îikl relates to the estimate of ikl obtained from Table 1, and

the weights wkl are chosen to sum to 1 and make the variance of ~ll

minimum (see Text S1 for details). Having estimated ~ll and its

variance ~vv (see Text S1) separately using data from either cases or

controls, we can then construct ‘joint effects’ tests:

TJE{co~
~ll2

A

~vvA

ð17Þ

TJE{cc~
½~llA{~llN �2

~vvAz~vvN

ð18Þ

where again A and N refer to the quantities calculated within

cases and controls respectively.

A difficulty with estimation arises when 2̂ii11{1ƒ0. If this

occurs, we replace the objective quantity l by

m~ log
elz1

2
,

which reduces to zero if l~0 (i.e. possesses the same desirable

property under the null hypothesis). Writing i22,i21,i12,i11 in terms

of m, we obtain four estimating equations for m instead of l, and we

estimate m as:

~mm~w22 log

ffiffiffiffiffi
îi22

p
z1

2

 !
z

w21 log
îi21z1

2

� �
zw12 log

îi12z1

2

� �
zw11 log îi11

with optimal weights chosen to make the variance minimum as

before. Estimating the variance of ~mm as ~vvm, this results in alternate

versions of our joint effects tests:

TJE{co~
~mm2

A

~vvmA

ð19Þ

TJE{cc~
½~mmA{~mmN �2

~vvmA
z~vvmN

ð20Þ

where again A and N refer to quantities calculated within cases

and controls respectively.

Relationship to standard regression approaches
Text S3 motivates our ‘joint effects’ tests through consideration

of the relationship between the original Wu et al. [1] method and

standard logistic regression. A natural question of interest is the

relationship between the other two methods described here (FE,

WZ) and standard regression approaches – and, in particular, to

what extent the different odds ratios (l) estimated by these

methods correspond to the usual interaction parameters (d and

d11, d12, d21, d22) in Equations (1) and (2). In Text S4 we show, for

each of these methods, the relationship between the parameters

estimated in that method and those estimated in standard logistic

or linear regression. In addition, in Text S5, we show that the WZ

case-only statistic can be viewed equivalently as a score test with

respect to the interaction parameter d. It would be of interest to

determine whether a similar relationship holds for the other

statistics considered here. However, providing this derivation for

the remaining statistics is beyond the scope of the current

manuscript, and we defer it to future work.

Simulation study
We performed computer simulations to evaluate the perfor-

mance (type 1 error and power) of the various test statistics

described above. For the Wu and adjusted Wu methods, haplotype

frequencies in cases and controls were calculated from unphased

genotype data using an EM algorithm as implemented in either

PLINK or the R library ‘Genetics’. The general structure of the

disease models we considered is shown in Table 3, assuming two

loci G and H, each having two alleles G1,G2 and H1,H2. We

simulated 1000 cases and 1000 controls from a general population

assumed to be in HWE. Writing the haplotype frequencies in the

general population as yjk~P (Gj2Hk) for j,k~1,2, we

considered the same two sets of haplotype frequencies considered

by [1]:

1. Loci not in LD: y11~0:06, y12~0:14, y21~0:24 and

y22~0:56.

2. Loci in LD: y11~0:1, y12~0:1, y21~0:2 and y22~0:6.

When the two SNPs were not in LD, we examined the

performance of both case/control and case-only statistics. When

the SNPs were simulated to be in LD, we examined only the

performance of case/control statistics (since we know that case-

only statistics will show inflated type 1 error in this situation). To

investigate type 1 error we considered 8 scenarios, each using

10,000 data replications. To investigate power we considered a

further 4 scenarios, each using 1,000 data replications. The

structure of the simulated models and the parameter values

assumed are given in Tables 3 and 4. Note that in Tables 3 and 4

we denote the baseline, main effect and interaction parameter

values (a, b, c, d in Equation (1)) as (b0, bG, bH , bGH ) respectively.

In each scenario apart from 5c and 5d, the baseline regression

coefficient b0 was chosen to equal log (0:02=0:98), corresponding

to a baseline penetrance of 2%. For Scenarios 5c and 5d we

assumed a rarer disease, with baseline penetrance 0.0001. For

each power scenario, we increased bGH from 0 (no interaction) to a

value at which the power to detect an effect (at significance level

0.01) was close to 100% for the best-performing statistics.

In addition to the test statistics described above, when

comparing power (Scenarios 6–9) we also calculated several

additional statistics. Firstly, as an ‘optimal’ test we considered

analysing the data assuming the ‘correct’ model (i.e. imposing the

correct structure in terms of whether a model was assumed to be

additive, dominant or recessive at each locus, see Table 4). For

case/control data this was achieved by using logistic regression

with the correct coding of predictor variables at each locus, and

then comparing models in which an interaction term was or was

not included via a likelihood ratio test. For case-only data, the

Improved Statistics for Interaction Analysis

PLoS Genetics | www.plosgenetics.org 6 April 2012 | Volume 8 | Issue 4 | e1002625



‘optimal’ analysis was implemented by using the Wellek and

Ziegler statistic (14) with the correct coding of predictor variables

(corresponding to an additive, dominant or recessive model) at

each locus. For comparison, we also considered ‘sub-optimal’ tests

where an incorrect coding for the simulation model was used.

Secondly, we considered an ‘ideal’ version of the Wu et al. statistics

(Equations (6) and (7)), in which we assumed haplotypes could be

inferred without error. In this case, the formulae proposed by Wu

et al. [1] should be correct, as there is no increase in the

asymptotic variances used in the denominator due to phase

uncertainty. Although not achievable in practice, for theoretical

interest we investigated the performance of the Wu et al. statistics

(with respect to both type 1 error and power) in this ‘ideal’

situation.

To gain additional insight into the properties of the methods

considered, for Scenario 7 we noted the ‘haplotype’ frequencies

and resulting LD measures l, r and D’ obtained from the EM

algorithm applied (separately) to cases and controls (as used in the

Wu and adjusted Wu approaches). These were compared to the

true haplotype frequencies and correlation measures (as implied by

the generating model), the genotype-based correlation coefficient

(as used in the Wellek and Ziegler inspired approaches), and the

haplotype frequencies and correlation measures calculated from

Table 2 (which are, effectively, those used by PLINK).

Data application
As an illustration of the methods described, we also applied

them to real data from a publicly available genome-wide data set

consisting of 1748 cases of Crohn’s disease and 2938 population-

based controls obtained from the Wellcome Trust Case Control

Consortium (WTCCC) [2]. Since this exercise was purely for

illustrative purposes, in the interests of time we limited our analysis

to that of a single chromosome, chromosome 22. We used the

same quality control procedures as the WTCCC [2] to remove

Table 3. Structure of log odds log (p=1{p) in disease models used for simulation study.

Model Locus G Locus H

H1H1 H1H2 H2H2

Recessive|Recessive G1G1 b0zbGzbHzbGH b0zbG b0zbG

G1G2 b0zbH b0 b0

G2G2 b0zbH b0 b0

Dominant|Dominant G1G1 b0zbGzbHzbGH b0zbGzbHzbGH b0zbG

G1G2 b0zbGzbHzbGH b0zbGzbHzbGH b0zbG

G2G2 b0zbH b0zbH b0

Additive|Additive G1G1 b0z2bGz2bHz4bGH b0z2bGzbHz2bGH b0z2bG

G1G2 b0zbGz2bHz2bGH b0zbGzbHzbGH b0zbG

G2G2 b0z2bH b0zbH b0

Dominant|Additive G1G1 b0zbGz2bHz2bGH b0zbGzbHzbGH b0zbG

G1G2 b0zbGz2bHz2bGH b0zbGzbHzbGH b0zbG

G2G2 b0z2bH b0zbH b0

doi:10.1371/journal.pgen.1002625.t003

Table 4. Description of simulation scenarios.

Scenarioa Description

1 Both loci have no effect, corresponding to bG~bH~bGH~0 in a Recessive | Recessive model

2 Locus G has main effect in a Recessive|Recessive model, with bG~ log 3, bH~bGH~0

3 Locus G has main effect in a Dominant|Dominant model, with bG~ log 3, bH~bGH~0

4 Locus G has main effect in an Additive|Additive model, with bG~ log 3, bH~bGH~0

5a Both loci have main effects in an Additive|Additive model, with bG~bH~ log 3, bGH~0

5b Both loci have main effects in a Recessive|Recessive model, with bG~bH~ log 3, bGH~0

5c As for Scenario 5a, but assuming a rare disease (baseline penetrance 0.0001)

5d As for Scenario 5b, but assuming a rare disease (baseline penetrance 0.0001)

6b Recessive|Recessive with either no main effects (bG~bH~0) or main effect at locus G (bG~ log 3)

7b Dominant|Dominant with with either no main effects (bG~bH~0) or main effect at locus G (bG~ log 3)

8b Additive|Additive with with either no main effects (bG~bH~0) or main effect at locus G (bG~ log 3)

9b Dominant|Additive with with either no main effects (bG~bH~0) or main effect at locus G (bG~ log 3)

aIn each scenario (apart from 5c and 5d) the baseline regression coefficient b0 was chosen to equal log(0.02/0.98), corresponding to a baseline penetrance of 2%.
bFor Scenarios 6–9 we increased bGH from 0 (no interaction) to a value at which the power to detect an effect (at significance level 0.01) was close to 100% for the best-
performing statistics.
doi:10.1371/journal.pgen.1002625.t004
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poor-quality SNPs and samples prior to analysis. This generated

5750 SNPs across chromosome 22, resulting in 16,528,375

pairwise combinations to be tested for interaction.

Results

Evaluation of type 1 error
Figure 1 shows quantile-quantile (QQ) plots of the distribution

of the different test statististics calculated in Scenario 1 (so under

the global null of no effects at either locus). For a test that is

performing correctly (i.e. with well-calibrated type 1 error), we

would expect to see all points lying on the line with slope equal to

1. We find this to be true for all methods except the original Wu et

al. [1] statistics (Equations (6) and (7)), which show strong

departure from the line, indicating a severe inflation in type 1

error.

Figure 2 shows QQ plots for Scenario 2 in which locus G has a

recessive main effect. Again the original Wu et al. [1] statistics

show a severe inflation in type 1 error. A severe inflation is also

seen for the Wellek and Ziegler inspired statistics and PLINK’s

fast-epistasis tests (both the original and our adjusted version) in

case/control analysis, when the two SNPs considered are in LD in

the general population. (Some theoretical explanation for these

results can be found in Text S2). This inflation in the presence of

LD is not seen for the ideal Wu statistics or for our new joint effects

statistics. For case-only analysis, we see a small inflation in type 1

error for PLINK’s fast-epistasis test, which is corrected through use

of our adjusted version of this test. We also see a slight deflation in

type 1 error (indicating the method is conservative) for our

adjusted Wu statistic.

A similar pattern is seen for Scenario 3 (in which locus G has a

dominant main effect, see Figure S1) except that, in this case, the

Wellek and Ziegler inspired case/control statistic does not appear

to show inflated type 1 error in the presence of LD, and, for case-

only analysis, PLINK’s fast-epistasis test shows a slight deflation

(rather than inflation) in type 1 error, while our adjusted Wu

statistic shows a slight inflation. Correct type 1 errors are achieved

by the ideal Wu statistics and by our new joint effects statistics.

Results from Scenario 4 (in which locus G has an additive main

effect) are shown in Figure S2. In this case, all methods appear to

have correct type 1 error except the original Wu et al. [1] statistics

and the Wellek and Ziegler inspired case/control statistic in the

presence of LD.

Figures S3, Figure S4, Figure 3, and Figure 4 show the results

from Scenarios 5a, 5b, 5c, 5d, in which both loci have main effects.

Provided the disease is rare (Figure 3 and Figure 4), our joint

effects statistics show correct type 1 error, while the adjusted fast-

epistasis and Wellek and Ziegler methods can show inflated type 1

errors, particularly in the presence of LD. (Some theoretical

explanation for these results can be found in Text S2). The

Adjusted Wu method has generally correct type 1 error although it

appears to be slightly conservative for case/only analysis in

Figure 4. When the disease is more common (Figures S3 and S4),

the presence of main effects appears to have an impact on the type

1 error of virtually all methods, indicating that none are

completely immune from detecting pairs of loci that are both

involved in disease, but which do not, in fact, require any statistical

interaction term to describe their action. The only method that

appears immune to this problem is the ideal Wu statistic applied to

case/control (but not to case-only) data.

Evaluation of power
Figure 5 shows power curves for Scenario 6 (Recessive|Recess-

Recesssive model) for all methods considered, including methods

that assume ‘correct’ or ‘incorrect’ knowledge of the true structure

of the underlying generating model. The left hand panels show

results when there are no main effects, while the right hand panels

show results in the presence of a main effect at locus G. We use

solid lines to represent methods that have been shown (Figure 1,

Figure 2, Figure 3, Figure 4; Figures S1, S2, S3, S4) or would be

expected on theoretical grounds to have correct type 1 error. We

use dashed lines to represent methods that have been shown

(Figure 1, Figure 2, Figure 3, Figure 4; Figures S1, S2, S3, S4) to

have incorrect type 1 error under the relevant generating model

(and whose ‘power’ should therefore be interpreted cautiously in

the light of that fact). In all cases, we find that the highest power

among methods that correctly control the type 1 error is seen for

‘optimal’ tests that impose the correct structure, while the lowest

power is seen for ‘sub-optimal’ tests that impose the incorrect

structure, as might be expected from standard statistical theory.

Amongst the other tests, no method consistently outperforms the

others; in some cases our joint effects test has highest power, in

other cases the adjusted Wu or adjusted or original fast-epistasis

tests perform best. The ideal Wu test (in which we assume

haplotypes can be estimated without uncertainty) shows generally

lower power than the other tests considered, in this scenario.

Figure 6 shows power curves for Scenario 7 (Dominant|Domi-

Dominant model). The original Wu statistic shows apparent

highest power, but this observation is tempered by the fact that we

know it has inflated type 1 error. Again, highest power among

methods that correctly control the type 1 error is generally

obtained for ‘optimal’ tests that impose the correct structure,

although in some cases this power is closely matched by the

adjusted Wu or joint effects tests. The original and adjusted fast-

epistasis tests show low power when applied to case/control data.

The ideal Wu test also shows generally low power when applied to

either case/control or case-only data.

Figure S5 shows power curves for Scenario 8 (Additive|Addi-

Additive model). Most methods perform fairly similarly, except for

analysis under an incorrect model and the ideal Wu test, which

both show lower power. For case/control data, in this scenario, the

Wellek and Ziegler test slightly outperforms most other tests.

Figure S6 shows power curves for Scenario 9 (Domi-

nant|Additive model). Again we find that the highest power

among methods that correctly control the type 1 error is seen for

‘optimal’ tests that impose the correct structure, while the lowest

power is seen for either for the ideal Wu statistic, or for ‘sub-

optimal’ tests that impose the incorrect structure. Amongst the

other tests, no method consistently outperforms the others; in some

cases the Wellek and Ziegler test shows highest power, whereas in

other cases the joint effects or adjusted Wu statistics show highest

power.

Table 5 shows the true and estimated haplotype frequencies and

correlation measures, as used by several different methods, under

one particular setting for simulation Scenario 7. When data is

simulated without LD between the loci, we see that, in controls,

both the EM algorithm (as used in the Wu et al. and adjusted Wu

methods) and the allele counting algorithm (used in PLINK’s fast-

epistasis method) give very similar results with respect to estimated

haplotype frequencies and resulting correlation measures. The

correlation measures (along with the Wellek and Ziegler genotype-

based correlation coefficient) are correctly estimated as being close

to 0. The slight departure from 0 results from the fact that the

disease is not particularly rare, and so the presence of an

interaction effect will cause unaffected controls, as well as cases, to

show some slight correlation between alleles at the two loci.

In cases (with no LD) however, the story is very different. All

methods show correlation between alleles at the two loci, however
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the haplotype frequencies and resulting correlation measures

estimated using PLINK’s allele counting algorithm seem to be

much closer to the true generating values. The EM algorithm (as

used in the Wu et al. and adjusted Wu methods) produces

upwardly biased estimates, presumably because of the incorrect

(within cases) HWE assumption made. This results in much higher

apparent correlation, which could plausibly increase power when

testing whether correlation between alleles two loci exists (case-

only test) or is different between cases and controls (case/control

test)). However, the power of any given test will depend not just on

the level of apparent correlation, but also on the estimated

variance of the correlation measure used, and our results overall

suggest that the bias induced by the incorrect HWE asssumption

does not necessarily always translate to a substantially improved

power.

In the presence of LD, for controls the EM algorithm (as used in

the Wu et al. and adjusted Wu methods) appears to better capture

the true haplotype frequencies and resulting correlation measures,

while the PLINK’s allele counting algorithm produces results that

are biased downwards (i.e. towards showing lower levels of

correlation). For cases, PLINK’s allele counting algorithm

produces correlation measures that are biased downwards from

the true values, while the EM algorithm produces correlation

measures that biased upwards. Given that any analysis in the

presence of LD needs to be based on the difference in correlations

between cases and controls, it is unclear to what extent these biases

Figure 1. Chi-squared (1 df) Q-Q plot for Scenario 1 (Global Null). Top panels ((a), (b) and (c)): Case/Control not in LD; Middle panels ((d), (e)
and (f)): Case/Control in LD; Bottom panels ((g), (h) and (i)): Case-Only not in LD; FE: Fast-Epistasis; AFE: Adjusted FE; Wu: Wu et al. statistic; AWu:
Adjusted Wu statistic; IWu: Ideal Wu statistic; WZ: Wellek and Ziegler statistic; JE: Joint Effects statistic.
doi:10.1371/journal.pgen.1002625.g001
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will operate to improve power for one method over another,

although the results shown in Figure 6 suggest that these bias may

partly account for the high power of the adjusted Wu methods in

that scenario.

Data application
Figure S7 shows the results from applying the different methods

to 5750 SNPs across chromosome 22 genotyped in the WTCCC

Crohn’s disease dataset. Since SNPs on the same chromosome are

likely to be in LD, we limited our analysis to the case/control

version of all statistics considered. Given the large number of

potential tests performed (16,528,375 pairwise combinations), for

the joint effects, fast-epistasis and Wellek and Ziegler inspired

methods, we only output results passing a P value threshold of 0.001

(although note that, for the fast-epistasis statistic, PLINK in fact only

performed a total of 13,818,410 tests that passed its validity criteria).

The QQ plots (Figure S7) show that the joint effects, fast-epistasis

and Wellek and Ziegler inspired statistics all follow the expected

distribution under the null hypothesis, even in this tail (Pv0:001)

of the distribution. We also noted that, for these three methods, the

proportion of tests falling into this tail was v~0:001, as expected

(data not shown). The most computationally efficient implemen-

tation was PLINK, which took approximately 20 minutes to

perform 13,818,410 tests. The Wellek and Ziegler and joint effects

methods were considerably slower, each taking 20 hours (on the

same computer system) to perform 16,528,375 tests. We

Figure 2. Chi-squared (1 df) Q-Q plot for Scenario 2 (Recessive effect at locus G). Top panels ((a), (b) and (c)): Case/Control not in LD; Middle
panels ((d), (e) and (f)): Case/Control in LD; Bottom panels ((g), (h) and (i)): Case-Only not in LD; FE: Fast-Epistasis; AFE: Adjusted FE; Wu: Wu et al.
statistic; AWu: Adjusted Wu statistic; IWu: Ideal Wu statistic; WZ: Wellek and Ziegler statistic; JE: Joint Effects statistic.
doi:10.1371/journal.pgen.1002625.g002
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implemented the Wellek and Ziegler and joint effects statistics

through code written by ourselves in R, and so these times could

be considerably reduced by re-writing the code (e.g. in C++) and

making use of mechanisms for efficient binary data storage.

The original and adjusted Wu methods were prohibitively slow

to calculate for all 16,528,375 pairwise combinations, most likely

because of the requirement of these methods to estimate haplotype

frequencies from unphased genotype data (e.g. via an EM

algorithm). (We implemented these methods through code written

by ourselves in R; calculation might be achievable in reasonable

time through use of more efficient programming in C++, binary

data storage and parallel execution on a computer cluster). Figure

S7 therefore shows the results for the original and adjusted Wu

methods for a subset of 10813 SNP pairs consisting of the first and

the thousandth SNP, each paired with all others. Even in this

reduced data set, we can see that the adjusted Wu statistic follows

the expected distribution under the null hypothesis while the

original Wu statistic shows an inflated distribution, in line with the

results we found in our computer simulations.

The results in Figure S7 do not provide any strong evidence for

the existence of interactions between SNPs on chromosome 22 in

the WTCCC Crohn’s data. However, it is of interest to see to what

extent the different methods implicate the same ‘top SNP pairs’.

Figure S8 plots the observed test statistics for the joint effects, fast-

epistasis and Wellek and Ziegler inspired statistics against one

another. The results from these three methods are seen to be

broadly correlated, with the same SNP pairs tending to fall at the

extreme of the distribution, regardless of which method is used.

Figure 3. Chi-squared (1 df) Q-Q plot for Scenario 5c (Rare disease, Additive effects at both loci). Top panels ((a), (b) and (c)): Case/
Control not in LD; Middle panels ((d), (e) and (f)): Case/Control in LD; Bottom panels ((g), (h) and (i)): Case-Only not in LD; FE: Fast-Epistasis; AFE:
Adjusted FE; Wu: Wu et al. statistic; AWu: Adjusted Wu statistic; IWu: Ideal Wu statistic; WZ: Wellek and Ziegler statistic; JE: Joint Effects statistic.
doi:10.1371/journal.pgen.1002625.g003
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Since we were unable to calculate the Wu and adjusted Wu

statistics for all pairs of SNPs, at the suggestion of a reviewer, we

used another approach for calculating these statistics, which we

hoped would be computationally quicker. We used a phasing

algorithm to infer haplotypes across chromosome 22, for each

individual. We carried out this step using the program SHAPEIT

[35], which has the advantage of outputting for each individual

not just a single ‘‘most likely’’ haplotype configuration, but

additionally allows one to store the uncertainty and sample a set of

haplotype configurations. We sampled 100 replicate haplotype

configurations for each individual. Since the idea of the Wu

method is to compare ‘apparent LD’ within cases to that within

controls, we initially carried out the phasing in case and control

groups separately, although we later compared our results to those

obtained when phasing the cases and controls together.

Having generated 100 replicates of phased haplotypes, we then

calculated, for each pair of SNPs, the mean (over the 100 replicates)

haplotype frequencies in cases and controls. (The haplotype

frequencies within each replicate were calculated simply by counting

resolved case and control haplotypes). We used these mean haplotype

frequencies in the formulae for the Wu and adjusted Wu statistics

(Equations 7 and 9 respectively). Note that these formulae were

derived on the basis of sampling theory under the assumption of a

certain number of observed haplotypes, and it is unclear whether the

same theoretical arguments should apply to haplotype frequencies

that have been estimated in a different way. In particular, SHAPEIT

Figure 4. Chi-squared (1 df) Q-Q plot for Scenario 5d (Rare disease, Recessive effects at both loci). Top panels ((a), (b) and (c)): Case/
Control not in LD; Middle panels ((d), (e) and (f)): Case/Control in LD; Bottom panels ((g), (h) and (i)): Case-Only not in LD; FE: Fast-Epistasis; AFE:
Adjusted FE; Wu: Wu et al. statistic; AWu: Adjusted Wu statistic; IWu: Ideal Wu statistic; WZ: Wellek and Ziegler statistic; JE: Joint Effects statistic.
doi:10.1371/journal.pgen.1002625.g004
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uses a hidden Markov model that is motivated by population genetics

principles, resulting in a greater borrowing of information across

SNPs and individuals than is used in the other approaches. This fact,

together with the fact we averaged (over 100 replicates), suggests that

the haplotype frequencies (and thus l(ĥhA) and l(ĥhN )) estimated from

SHAPEIT may be more accurate and less variable than those

estimated in the other approaches, thus requiring a smaller variance

in the denominator of the test statistic. To address this issue, we used

an additional strategy of calculating the variance directly from the

100 replicates. Within each replicate, we calculated the haplotype

frequencies and log odds ratios l(ĥhA) and l(ĥhN ). We then calculated

the sample mean and variance of l(ĥhA) and l(ĥhN ) over the 100

replicates and constructed a ‘SHAPEIT variance-based Wu (SVBW)

test statistic’:

TSVBW~
½mean(l(ĥhA)){mean(l(ĥhN ))�2

½var(l(ĥhA))zvar(l(ĥhN ))�

Figure S9 shows QQ plots for the Wu and adjusted Wu test

statistics (Equations 7 and 9) applied to the mean estimated

Figure 5. Power curves for Scenario 6 (Recessive|Recessive). Power to achieve significance level P~0:01. Top panels ((a) and (b)): Case/
Control not in LD; Middle panels ((c) and (d)): Case/Control in LD; Bottom panels ((e) and (f)): Case-Only not in LD; Left hand panels ((a), (c) and (e)): No
main effect; Right hand panels ((b), (d) and (f)): Locus G has main effect; FE: Fast-Epistasis; AFE: Adjusted FE; Wu: Wu et al. statistic; AWu: Adjusted Wu
statistic; WZ: Wellek and Ziegler statistic; JE: Joint Effects statistic; IWu: Ideal Wu statistic; C: Logistic regression using correct coding; IC: Logistic
regression using incorrect ( = Recessive|Dominant) coding; WZC: Wellek and Ziegler case-only statistic using correct coding; WZIC: Wellek and
Ziegler case-only statistic using incorrect ( = Recessive|Dominant) coding.
doi:10.1371/journal.pgen.1002625.g005
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haplotype frequencies from SHAPEIT, for the subset of 10813

SNP pairs consisting of the first and the thousandth SNP, each

paired with all others. The test statistics (shown in red and black)

are seen to be considerably deflated in comparison to the expected

x2 distribution, suggesting that the variance of the SHAPEIT-

derived haplotype frequencies is indeed considerably lower than

that implied by Equations 7 and 9. We noticed, however, that the

x2 test statistics appeared to be approximately half their expected

value. We therefore constructed an alternative ‘SHAPEIT mean-

based Wu (SMBW) test statistic’:

TSMBW~

log
P̂PA
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Figure 6. Power curves for Scenario 7 (Dominant|Dominant). Power to achieve significance level P~0:01. Top panels ((a) and (b)): Case/
Control not in LD; Middle panels ((c) and (d)): Case/Control in LD; Bottom panels ((e) and (f)): Case-Only not in LD; Left hand panels ((a), (c) and (e)): No
main effect; Right hand panels ((b), (d) and (f)): Locus G has main effect; FE: Fast-Epistasis; AFE: Adjusted FE; Wu: Wu et al. statistic; AWu: Adjusted Wu
statistic; WZ: Wellek and Ziegler statistic; JE: Joint Effects statistic; IWu: Ideal Wu statistic; C: Logistic regression using correct coding; IC: Logistic
regression using incorrect ( = Dominant|Recessive) coding; WZC: Wellek and Ziegler case-only statistic using correct coding; WZIC: Wellek and
Ziegler case-only statistic using incorrect ( = Dominant|Recessive) coding.
doi:10.1371/journal.pgen.1002625.g006
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which can be seen to be equivalent to the original Wu case/control

statistic, but under the assumption of double the number of

haplotypes. The SMBW test statistics (shown in green) are seen to

closely follow the expected x2 distribution, suggesting that variance

of the SHAPEIT-derived haplotype frequencies is indeed

equivalent to what would be obtained from observing twice the

number of haplotypes. We consulted the description of the

algorithm used by SHAPEIT [35] and noticed that it involves an

iterative procedure of updating an individual’s current haplotype

configuration by sampling haplotypes from a set of currently

resolved haplotypes (for the other individuals in the data set), in

such a way that recombination and mutation events are allowed

for. This means that, for SNPs close together, the sampling

procedure would effectively be sampling alleles from 2(N{1)
currently-resolved haplotypes (where N is the number of

individuals in the data set) while for SNPs that are far apart, a

recombination event is virtually guarranteed and so the sampling

procedure is effectively sampling from 4(N{1) haplotypes

constructed by sampling the alleles at each SNP independently.

Since the majority of our pairwise tests involve SNPs that are far

apart, the majority of the tests will indeed closely correspond to

effectively observing 4(N{1)&4N haplotypes. Note that this

argument is quite similar to the argument that could be used to

justify the construction of PLINK’s fast-epistasis statistic on the basis

of 4N alleles.

Logically, one would expect that the variance could be

estimated even better by allowing for the actual recombination

distance between each pair of SNPs, so that SNPs that are closer

together are considered to have a probability r of undergoing a

recombination and thus being sampled from 4(N{1) haplotypes,

and probability 1{r of not undergoing a recombination and thus

being sampled from 2(N{1) haplotypes. (For definition of r, see

[35]). However, we found implementation of this approach

resulted in test statistics that did not follow the expected x2 (on 1

df) distribution quite as well as simply assuming 4N or 4(N{1)

haplotypes (data not shown). One possible explanation is that the

iterative nature of the SHAPEIT algorithm means that even SNPs

that lie close together are likely to be subject to a recombination

event at some point during the procedure, generating closer to

4(N{1) effective haplotypes. Further work, beyond the scope of

this paper, would be required to follow up the explanation for

these observations in more detail.

Figure S10 (Panel (a)) shows the QQ plot for the SHAPEIT

variance-based Wu (SVBW) test statistic, for the subset of 10813

SNP pairs consisting of the first and the thousandth SNP, each

paired with all others. Although the majority of the points do lie on

the expected line, there are a number of outliers. We noticed that

the most severe outliers corresponded to pairs of SNPs that lie

within 1 cM of one another (shown in red), suggesting that the

variance of the haplotype frequencies within short regions may

perhaps be under-estimated by the SHAPEIT algorithm. (Another

explanation is that these are true interactions and/or haplotype

effects, however this seems a little unlikely given that they are not

identified by any other method). We removed all pairs of SNPs

that lie within 1 cM of one another from both the SVBW and

SMBW results, which resulted in test statistics that followed the

expected distribution more closely (Panels (b) and (c)). Panel (d)

shows a comparison between the resulting SMBW and SVBW test

statistics, showing how extremely similar they are. Figure S11

Panels (a) and (b) show a comparison between the SMBW and

SVBW statistics and the AWu statistic, while Panels (c) and (d)

show a comparison between the SMBW and SVBW statistics and

the JE statistic. Although these different test statistics are by no

means identical, they are seen to be broadly correlated, as

expected.

Figure S12 shows a comparison of the SMBW (left hand panels)

and SVBW (right hand panels) results from haplotypes estimated

by applying SHAPEIT to cases and controls separately (y axes) or

together (x axes). Points marked in red on the top panels

correspond to SNP pairs where the SNPs are less than 1 cM apart;

Table 5. True and estimated haplotype frequencies and correlation measures used by different methods.

LD Quantity Cases Controls

True Wu FE WZ True Wu FE WZ

No G1H1 0.091 0.107 0.092 - 0.059 0.059 0.059 -

G1H2 0.150 0.136 0.151 - 0.140 0.140 0.140 -

G2H1 0.243 0.227 0.242 - 0.240 0.241 0.240 -

G2H2 0.516 0.531 0.515 - 0.561 0.560 0.561 -

l 0.253 0.609 0.257 - 20.015 20.025 20.012 -

r2 0.003 0.017 0.003 0.013 2.361026 0.001 2.361024 0.001

D’ 0.066 0.160 - - 0.005 0.059 - -

Yes G1H1 0.148 0.158 0.118 - 0.099 0.099 0.079 -

G1H2 0.104 0.095 0.134 - 0.100 0.100 0.120 -

G2H1 0.196 0.187 0.223 - 0.200 0.200 0.220 -

G2H2 0.551 0.561 0.522 - 0.600 0.601 0.581 -

l 1.386 1.615 0.711 - 1.089 1.086 0.559 -

r2 0.088 0.119 0.023 0.104 0.047 0.047 0.012 0.048

D’ 0.369 0.429 - - 0.283 0.282 - -

Data was simulated under Scenario 7 (Dominant|Dominant) with bG~bH~0 and bGH~ log (1:75). The table shows the mean of the relevant quantity (haplotype
frequency or correlation measure) as estimated within cases or controls from 1000 simulation replicates. Wu: Estimated using EM algorithm as used by Wu et al. [1]
methods. FE: Estimated based on counts in Table 2, as used by fast-epistasis methods. WZ: estimated using genotype-based correlation coefficient, as used by Wellek
and Zigler inspired methods.
doi:10.1371/journal.pgen.1002625.t005
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these pairs are seen to generate outliers for the SVBW test

regardless of whether SHAPEIT is applied to cases and controls

separately or together. These outliers do not occur with the

SMBW test when SHAPEIT is applied to cases and controls

together. The bottom panels repeat these plots, but with SNP pairs

where the SNPs are less than 1 cM apart removed. Overall the

results from applying SHAPEIT to cases and controls separately (y

axes) or together (x axes) are seen to be highly correlated,

particularly for the SMBW test. We investigated the outliers

(where the results were very different according to whether cases

and controls were phased separately or together) and noticed that

the vast majority of these corresponded to SNPs whose minor

allele frequency is close to 0.5, and for which there had been a

swap with respect to which allele was designated as the minor

allele between the case and control groups, when phased

separately. This resulted in an incorrect matching of haplotypes

between case and control groups, resulting in an incorrect test

statistic. (Interestingly, the 7 outliers for which the test statistic is

close to 0 when the cases and controls were phased separately are

also seen as outliers when compared to the AWu and JE tests

(Figure S11), indicating that the results from SHAPEIT applied to

cases and controls together are concordant with the AWu and JE

results). We found that the allele swap problem had occurred in 46

out of the 5750 SNPs considered i.e. just under 1% of the results

presented from applying SHAPEIT to cases and controls

separately were incorrect. This might suggest that the strategy of

phasing cases and controls together is more reliable, although in

practice one could avoid this problem when phasing cases and

controls separately by performing a more careful check at the

analysis stage. Intuitively, one might expect that the strategy of

phasing cases and controls separately might be more powerful

when constructing tests that are based on haplotype differences

between cases and controls, but a detailed comparison of the

relative power of these two approaches would required further

investigation.

Although the SHAPEIT approaches appear to result in more

accurate haplotype estimation than the EM algorithm-based Wu

and AWu approaches, generating haplotype frequency estimates

that can (with care) be translated into Wu-like interaction tests, in

our hands, implementation of these approaches was not

computationally faster than the original Wu and AWu methods.

Although generation of 100 replicates of phased chromosome 22

haplotypes in SHAPEIT was relatively fast (taking around

28 hours on our system), our program for generating the resulting

SMBW and SVBW test statistics ended up taking about 3 seconds

per SNP pair. (For each SNP pair we needed to read in – or store

in memory – 100 replicates of phased haplotypes for each

individual, in order to pick out the required alleles at the two

SNPs, and then calculate haplotype frequencies, l(ĥhA) and l(ĥhN ),
within each replicate, followed by the mean and variance of these

quantities across replicates). No doubt more efficient program-

ming, binary data storage and implementation on a computer

cluster could considerably speed up this procedure. Given the close

correspondence between the SMBW and SVBW tests, together

with the better performance of SMBW for SNPs that lie close

together, a natural first step might be to initially focus on SMBW

alone, for which l(ĥhA) and l(ĥhN ) within each replicate, and all

variances across replicates, would not need to be calculated.

Discussion

Here we have investigated, through theoretical derivation,

computer simulations and a real data example, the properties of

several previously-proposed statistics for performing genome-wide

interaction analysis using case/control or case-only data [1,30],

together with a number of alternative statistics proposed by

ourselves and others [33,34]. Our main finding is that the statistics

proposed by Wu and colleagues [1] show substantially increased

type 1 error due to the incorrect variance estimates used

(Equations (6) and (7)) which do not account for the uncertainty

induced when estimating phased haplotype frequencies from

unphased genotype data. This inflation in type 1 error can be

corrected by using a variance estimate that accounts for this

uncertainty, as in our adjusted Wu statistics. All other methods

investigated appear to show adequate control of type 1 error under

the null hypothesis of no genetic effects (main effects or

interactions), although several methods (including the fast-epistasis

method implemented in PLINK [30] and the Wellek and Ziegler

method [33,34]) can show increased type 1 error when there is a

main effect at one or both loci, particularly if there is also LD.

Only the ideal Wu method and our new joint effects statistics

achieve consistent control of type 1 error in the presence of a main

effect at just one of the loci.

In terms of power, comparison of the different methods is

somewhat complicated by the fact that several of the methods

show increased type 1 error in different circumstances. However,

even when comparing methods that control the type 1 error rate in

a given situation, no method consistently outperforms all others.

Generally high power over a range of scenarios is exhibited by the

Wellek and Ziegler statistics [33,34] and by our new joint effects

statistics and adjusted Wu statistics. Given that, out of these

options, only the joint effects statistics achieve adequate control of

type 1 error in the presence of a single main effect, this might

suggest that the joint effects tests would be the overall preferred

option. Although the ideal Wu method also shows adequate

control of type 1 error in the presence of a single main effect,

observation of known haplotypes, as required by this method, is

unachievable in practice. Even if it were achievable, e.g. through

experimental assays that allow determination of haplotypes, or

through the use of larger numbers of markers to help infer phase

between the two SNPs in question, Figure 5 and Figure 6 and

Figures S5 and S6 show that the power achieved by the ideal Wu

approach is generally lower than for other approaches. This

slightly counter-intuitive result might be due to the fact that the

ideal Wu method is not affected by the bias that results from

incorrectly assuming HWE when estimating haplotype frequencies

in cases, a bias that can potentially increase power.

Somewhat surprisingly, many of our results appear to contradict

results presented by Wu and colleagues [1] who found in

simulations (using similar generating models to those considered

here) and application to real data that their method gave adequate

control of type 1 error and higher power than competing methods

(including logistic regression analysis under the correct model). We

have been unable to fully determine the reason for these

discrepencies, even after discussion with the authors of [1],

although our discussions have highlighted some possible explana-

tions. With respect to the simulation results, our current

understanding is that the simulations performed by Wu et al.

did not, in fact, include any consideration of haplotype uncertainty

(their simulations simply assumed haplotypes could be observed

without error – as, in a simulated data set, they can). This explains

the apparently correct type 1 error observed by Wu et al. but it

means that all their simulations (of both type 1 error and power)

are highly misleading with respect to illustrating how their method

might perform in practice (where haplotype uncertainty will

invariably exist, particularly at loci that are not in strong LD). It

also does not explain the difference in power we see compared to

Wu et al. when we also assume haplotypes can be observed
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without error (our ‘ideal’ Wu statistics). We speculate that one

possible explanation for this difference might be that Wu et al.

assumed in their simulations that haplotypes come together

independently in cases (which is true under a multiplicative

haplotype model [28], but not under recessive or dominant

models). It is unclear what effect such an erroneous assumption

would have on the power of the different methods, but it might

possbly explain why Wu et al. found their method to give

consistently higher power than logistic regression analysis under a

correct model, whereas we find (as might be expected from

statistical theory) that logistic regression analysis under a correct

model gives generally higher power than the adjusted or ideal Wu

statistics.

The explanation of these simulation discrepencies also does not

explain why Wu et al. found correct (or possibly slightly deflated)

type 1 error in analysis of real data (see QQ plot shown in Figure 1

of Wu et al. (2010) [1]), whereas in our own application of the

original Wu et al. (2010) method to real data (Figure S7), we found

the same general inflation of test statistics as we observe in

computer simulations. One possibility is that Wu et al.

inadvertedly divided by a factor of two when using their formulae

(our Equations (6) and (7)) to calculate the desired test statistics.

This would result in a test that would approximately correspond to

our adjusted Wu statistic. In any case, unless or until these issues

can be resolved, we recommend use of our new joint effects or

adjusted statistics, and urge caution when using Wu et al.’s [1]

originally-proposed statistics, on account of the inflated error rate

that can result.

We have focussed in this communication on methods that test

for interaction per se i.e. that test (or attempt to test) the interaction

term in a linear model (such as Equation 1). As mentioned

previously, if one prefers to test combinations of terms (e.g. in

order to implement tests of association allowing for interaction

[20,17]) one may do so by combining a test of the interaction term

with some test of the other terms [22]. It is well-known (and indeed

can be seen from Figure 5 and Figure 6 and Figures S5 and S6)

that case-only tests are more powerful than case/control tests for

testing interaction, provided there is no population-level correla-

tion between the two variables being tested. Although such an

assumption should in principal be reasonable when testing genetic

variants that are located sufficiently far apart as to be expected not

to show LD, in practice GWAS data often does display long-range

allelic association [17], possibly due to population structure [26] or

other confounding influences. This suggests that, in application to

GWAS data, the case/control versions of the statistics described

here might be preferred over the case-only versions, in spite of

their lower power. Alternatively, construction of weighted

combinations of the case-only and case/control statistics [36])

might prove a more powerful approach. Several authors have

recently proposed the use of retrospective likelihoods [37,26] that

can increase power by exploiting an assumption of gene-gene

independence in the underlying population (or in controls, if the

disease is rare or controls unselected). These methods have been

used, for example, in a conditional search exercise exploiting

known loci for prostate cancer in a multi-stage GWAS [38]. The

advantage of these frameworks is that they allow the incorporation

of covariates (such as principal components scores) to account for

population stratification, as well as allowing a wider class of tests.

Since the methods described here can all be formulated in terms of

(prospective) linear or logistic regression models (see Text S3 and

S4), in theory such approaches could be applied to the tests

described here. However, an advantage of the current formula-

tions is that closed-form expressions for the tests are available,

which makes them attractive when carrying out all pairwise

interaction scans in GWAS, on account of the fact that the tests

are rapidly computed.

R code for implementing the joint effects, Wellek and Ziegler

and adjusted Wu statistics described in this manuscript is available

on request from the authors.

Supporting Information

Figure S1 Chi-squared (1 df) Q-Q plot for Scenario 3

(Dominant effect at locus G). Top panels ((a), (b) and (c)): Case/

Control not in LD; Middle panels ((d), (e) and (f)): Case/Control in

LD; Bottom panels ((g), (h) and (i)): Case-Only not in LD; FE: Fast-

Epistasis; AFE: Adjusted FE; Wu: Wu et al. statistic; AWu:

Adjusted Wu statistic; IWu: Ideal Wu statistic; WZ: Wellek and

Ziegler statistic; JE: Joint Effects statistic.

(TIF)

Figure S2 Chi-squared (1 df) Q-Q plot for Scenario 4 (Additive

effect at locus G). Top panels ((a), (b) and (c)): Case/Control not in

LD; Middle panels ((d), (e) and (f)): Case/Control in LD; Bottom

panels ((g), (h) and (i)): Case-Only not in LD; FE: Fast-Epistasis;

AFE: Adjusted FE; Wu: Wu et al. statistic; AWu: Adjusted Wu

statistic; IWu: Ideal Wu statistic; WZ: Wellek and Ziegler statistic;

JE: Joint Effects statistic.

(TIF)

Figure S3 Chi-squared (1 df) Q-Q plot for Scenario 5a (Additive

effects at both loci). Top panels ((a), (b) and (c)): Case/Control not

in LD; Middle panels ((d), (e) and (f)): Case/Control in LD; Bottom

panels ((g), (h) and (i)): Case-Only not in LD; FE: Fast-Epistasis;

AFE: Adjusted FE; Wu: Wu et al. statistic; AWu: Adjusted Wu

statistic; IWu: Ideal Wu statistic; WZ: Wellek and Ziegler statistic;

JE: Joint Effects statistic.

(TIF)

Figure S4 Chi-squared (1 df) Q-Q plot for Scenario 5b

(Recessive effects at both loci). Top panels ((a), (b) and (c)):

Case/Control not in LD; Middle panels ((d), (e) and (f)): Case/

Control in LD; Bottom panels ((g), (h) and (i)): Case-Only not in

LD; FE: Fast-Epistasis; AFE: Adjusted FE; Wu: Wu et al. statistic;

AWu: Adjusted Wu statistic; IWu: Ideal Wu statistic; WZ: Wellek

and Ziegler statistic; JE: Joint Effects statistic.

(TIF)

Figure S5 Power curves for Scenario 8 (Additive|Additive).

Power to achieve significance level P~0:01. Top panels ((a) and

(b)): Case/Control not in LD; Middle panels ((c) and (d)): Case/

Control in LD; Bottom panels ((e) and (f)): Case-Only not in LD;

Left hand panels ((a), (c) and (e)): No main effect; Right hand

panels ((b), (d) and (f)): Locus G has main effect; FE: Fast-Epistasis;

AFE: Adjusted FE; Wu: Wu et al. statistic; AWu: Adjusted Wu

statistic; WZ: Wellek and Ziegler statistic; JE: Joint Effects statistic;

IWu: Ideal Wu statistic; C: Logistic regression using correct

coding; IC: Logistic regression using incorrect ( = Additi-

ve|Recessive) coding; WZC: Wellek and Ziegler case-only

statistic using correct coding; WZIC: Wellek and Ziegler case-

only statistic using incorrect ( = Additive|Recessive) coding.

(TIF)

Figure S6 Power curves for Scenario 9 (Dominant|Additive).

Power to achieve significance level P~0:01. Top panels ((a) and

(b)): Case/Control not in LD; Middle panels ((c) and (d)): Case/

Control in LD; Bottom panels ((e) and (f)): Case-Only not in LD;

Left hand panels ((a), (c) and (e)): No main effect; Right hand

panels ((b), (d) and (f)): Locus G has main effect; FE: Fast-Epistasis;

AFE: Adjusted FE; Wu: Wu et al. statistic; AWu: Adjusted Wu

statistic; WZ: Wellek and Ziegler statistic; JE: Joint Effects statistic;
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IWu: Ideal Wu statistic; C: Logistic regression using correct

coding; IC: Logistic regression using incorrect ( = Domi-

nant|Recessive) coding; WZC: Wellek and Ziegler case-only

statistic using correct coding; WZIC: Wellek and Ziegler case-only

statistic using incorrect ( = Dominant|Recessive) coding.

(TIF)

Figure S7 QQ plots from analysis of pairwise (SNP|SNP)

interactions on chromosome 22 in the WTCCC Crohn’s data set.

JE: Joint Effects statistic; FE: Fast-Epistasis; WZ: Wellek and

Ziegler statistic; Wu: Wu et al. statistic; AWu: Adjusted Wu

statistic.

(TIF)

Figure S8 Correlations between three different methods applied

to the WTCCC Crohn’s data set. Each point represents a

particular SNP|SNP pair on chromosome 22. Shown are

pairwise plots of the test statistics generated by each of the three

methods. JE: Joint Effects statistic; FE: Fast-Epistasis; WZ: Wellek

and Ziegler statistic.

(TIF)

Figure S9 QQ plots from analyses based on the mean haplotype

frequencies (over 100 replicates) estimated using SHAPEIT. Red

crosses denote results calculated using the original Wu formula.

Black plusses denote results calculated using the Adjusted Wu

formula. Green circles denote results calculated using the SMBW

formula, which corresponds to twice the original Wu statistic.

(TIF)

Figure S10 Panel (a): QQ plots from analyses based on the

SVBW test statistic. Results from SNP pairs where the SNPs are

less than 1 cM apart are shown in red. Panel (b): QQ plots from

analyses based on the SVBW test statistic, having removed all SNP

pairs where the SNPs are less than 1 cM apart. Panel (c): QQ plots

from analyses based on the SMBW test statistic, having removed

all SNP pairs where the SNPs are less than 1 cM apart. Panel (d):

Plot of SVBW test statistic (y axis) against SMBW test statistic (x

axis), for each SNP pair.

(TIF)

Figure S11 Panel (a): Plot of SMBW test statistic (y axis) against

Adjusted Wu test statistic (x axis), for each SNP pair. Panel (b): Plot

of SVBW test statistic (y axis) against Adjusted Wu test statistic (x

axis), for each SNP pair. Panel (c): Plot of SMBW test statistic (y

axis) against Joint Effects test statistic (x axis), for each SNP pair.

Panel (d): Plot of SVBW test statistic (y axis) against Joint Effects

test statistic (x axis), for each SNP pair.

(TIF)

Figure S12 SMBW (left hand panels (a) and (c)) and SVBW

(right hand panels (b) and (d)) results, from haplotypes estimated by

applying SHAPEIT to cases and controls separately (y axes) or

together (x axes). Points shown in red on top panels (a) and (b)

correspond to SNP pairs where the SNPs are less than 1 cM apart.

These points have been removed from the plots shown in bottom

panels (c) and (d).

(TIF)

Text S1 Details of the variance calculation for our various

proposed statistics.

(PDF)

Text S2 Here we demonstrate that several of the test statistics

described in this manuscript may show sensitivity to the presence

of main effects at one or both loci, rather than showing sensitivity

purely to interaction effects.

(PDF)

Text S3 A logistic regression view of the Wu et al. statistic.

(PDF)

Text S4 Here we consider the relationship between the fast-

epistasis (FE) and Wellek and Ziegler (WZ) inspired statistics and

standard logistic and linear regression.

(PDF)

Text S5 Here we show that the Wellek and Ziegler inspired case-

only statistic can be viewed equivalently as a score test with respect

to the interaction parameter d in the model given in the second

table on page 5 of Text S3.

(PDF)
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