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Abstract
Chemotaxis of tumor cells in response to a gradient of extracellular ligand is an important step in
cancer metastasis. The heterogeneity of chemotactic responses in cancer has not been widely
addressed by experimental or mathematical modeling techniques. However, recent advancements
in chemoattractant presentation, fluorescent-based signaling probes, and phenotypic analysis
paradigms provide rich sources for building data-driven relational models that describe tumor cell
chemotaxis in response to a wide variety of stimuli. Here we present gradient sensing, and the
resulting chemotactic behavior, in a ‘cue-signal-response’ framework and suggest methods for
utilizing recently reported experimental methods in data-driven modeling ventures.

Introduction
Although significant progress has been made in the cancer biology field, the mechanisms by
which primary tumor cells metastasize to distant sites in the body are widely unknown. One
important aspect of carcinoma invasion is the presence of multiple stimuli within the tumor
microenvironment, including a wide variety of biochemical factors [1], biophysical effects
of the extracellular matrix [2], and interstitial flow [3]. The spatiotemporal distributions of
these cues are dynamic and demand rigorous analysis for interpretation. Tumor cells must
sense a cue, most often through ligand binding, integrate signals, through activation of
multiple intracellular networks, and respond through mobilization of cytoskeletal machinery
and concomitant modification of surrounding matrix. Often it is only through simplification
of experimental assays and implementation of mathematical and engineering principles can
one begin to understand mechanisms of gradient sensing and response.

Directed cell migration, or chemotaxis, results from the ability of cells to process an
extracellular cue through a complex intracellular signaling network to produce a coordinated
and robust response. This inherent ‘cue-signal-response’ process represents a convenient
paradigm for deconstructing the processes by which cells utilize gradients of chemical and
mechanical stimuli within their microenvironment. We and others have taken advantage of
this framework to build quantitative, data-driven, predictive models of cell response,
analyzing cancer-relevant cell motility behaviors in two- and three-dimensional in vitro
settings [4–7]; these types of relational models (see Box 1) have recently been extended to in
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vivo applications [8]. In this mini-review we concentrate on the quantitative cell biological
and biochemical measurements that can serve as inputs (cues, signals, and responses) to
modeling efforts with a focus on previously underutilized parameters that hold potential for
improving predictive ability in application to chemotaxis in cancer. Recent advancements in
experimental strategies for obtaining multi-dimensional and information-rich datasets will
be emphasized. Particular mathematical techniques will not be discussed here; rather,
readers are directed to reviews focused on the modeling approaches [9,10].

Box 1

Relational modeling for predicting chemotactic behavior

Relational modeling can predict cell motility behaviors based upon measurement of
intracellular signaling network state in vitro [4,5,7,74]. Modeling efforts begin through
stimulation of motility through a set of ‘cues’, which can be addition of extracellular
ligand, intracellular perturbation (siRNA or chemical inhibitor), and/or changes to the
extracellular matrix. Highly multidimensional data is collected through biochemical or
imaging techniques (panel 1). Representation of this type of data typically requires data-
reduction techniques such as principal components analysis to reveal relationships
between the measured ‘signals’ and the input ‘cues’ (panel 2). To gain insight to motility
responses, signals and/or cues can be regressed against cellular ‘response’, often using
techniques such as partial least squares or multilinear regression. These analyses correlate
the clustered ‘signal’ and/or ‘cue’ data to a phenotypic output. For example, specific
signals may be more representative of cell speed versus cell persistence (panel 2).
Relational models are best utilized to generate hypotheses, such as specific ‘signals’ or
‘cues’ that may be inhibited to modulate cell motility (panel 3).

Cues
A major challenge of data-driven modeling is the need for generation of appropriate
multivariate datasets, sufficiently broad in scope to comprehend a significant range of
response behaviors driven by a spectrum of potentially germane cue conditions. More
specifically, when studying a heterogeneous response, such as chemotaxis, how does one
collect relevant data from enough cells that are exposed to a consistent set of cues? In
contrast to macrogradients that persist over long distances, such as those that direct
organogenesis [11], control lymphocyte egress [12], or are encountered in some wound
healing models [13], most tumor cells encounter local gradients of signaling molecules
arising from autocrine or paracrine secretion of chemokines and growth factors. This
situation has been observed in vivo using intravital microscopy in murine mammary
carcinoma, where tumor-associated macrophages induce tumor cell migration via secretion
of Epidermal Growth Factor (EGF). In turn, tumor cells secrete Colony Stimulating Factor-1
(CSF-1), which is a potent chemoattractant for macrophages [14,15]. In vivo collection of
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stromal and carcinoma cells from ectopic and spontaneous tumors in response to growth
factor diffusion from a Matrigel-based solution within a hollow-bore needle [16] has
confirmed chemotaxis towards a variety of stimuli [14,17,18]. Several important points arise
from these studies, including the demonstration of a saturable chemotactic response (thus
setting boundary conditions on relevant in vitro studies), differential ligand requirement
based upon receptor expression (lending insight into in vivo response across clinical
subtypes), and demonstration of relative independence of biomechanical properties of the
tumor (as the peak invasion across studies is roughly equivalent, but the position of
collection is variable and does not account for tumor mechanics). These insights must be
considered when designing experiments informative for model construction.

Close Encounters: Presentation of Chemoattractants in Tumors
Although it is clear that the mechanical properties of the tumor microenvironment play a
role in tumor progression, we will focus here on cell-secreted ligands whose gradients could
be influenced by their binding of extracellular matrix components. The most commonly
studied in carcinoma are the EGF receptor family ligands (EGF, TGFα, HB-EGF,
amphiregulin, NRG1), the angiogenic factor VEGF, the macrophage-motility factor CSF-1,
the ‘scatter factor’ HGF, the antiproliferative factor TGFβ, and the cytokines CCL19,
CCL21, and CXCL12 or SDF-1. Several methods of ligand presentation have been utilized
to study chemotaxis of tumor cells in vitro, with Boyden or transwell chambers being the
most common end-point assays [19]. Despite providing a convenient screening approach for
evaluation of chemoattractant potency [20], there are several drawbacks to these assays,
predominantly gradient instability [21,22]. To overcome this limitation several groups have
developed microfluidic devices capable of generating stable gradients of chemoattractants
that mimic the nonlinearity of early time points found with diffusion-based approaches [23–
28]. These devices allow direct visualization of chemotaxis within well-defined gradients in
both 2D- and 3D-culture formats and in some cases can be utilized for high-throughput data
collection [29]. Alternatively, passive release of ligands from synthetic or natural hydrogels
can also be used to create chemoattractant gradients [30,31].

ECM-binding properties of cytokines and growth factors present an additional challenge for
re-creating and characterizing chemoattractant gradients in vitro. For example, the heparin-
associated matrix binding properties of CCL21, a chemokine that binds CCR-7, promotes
formation of autologous autocrine gradients that are amplified in the presence of interstitial
flow [3,32]. Creating appropriate CCL21 gradients in vitro is difficult due to the time
required to reach steady-state gradient formation [26,27]. To address this issue, Haessler et
al. created a microfluidic device incorporating a CCL21-containing agarose overlay. By
allowing steady-state gradient formation to occur across the agarose, injection of a cell-
containing ECM yields minimal system perturbation and leads to rapid gradient formation
across the area of interest (see Figure 1) [26]. Such a device could be employed along with
high-resolution imaging to study real-time dynamics of events during early stages of the
chemotactic response in 3D culture.

Active Release: Accounting for Extracellular Proteases
Several families of extracellular proteases, including matrix metalloproteinases (MMPs), A
Disintegrin and Metalloproteinases (ADAMs), serine proteases (such as matripase/
MTSP-1), and cysteine proteases (such as cathepsins) are secreted by tumor cells (see [33]
for a recent comprehensive review). Although their contributions to cancer progression and
metastasis are well appreciated, therapeutic targeting of proteases in cancer has been
unsuccessful [34]. The lack of systematic studies identifying and validating protease targets,
which is a direct consequence of the complexity of the network and the paucity of specific,
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quantitative tools, likely underlies failure of protease-targeted drugs. In the context of
gradient sensing, extracellular proteases -- often membrane-bound or secreted from tumor
and stromal cells (Figure 1) -- can generate free ligand through cleavage of ECM-binding
domains [35,36], enhance gradient formation through cleavage of ECM-binding ligands
from the cell surface [37], and contribute to unmasking of cryptic ligand-like binding sites
through direct cleavage of ECM proteins. Therefore, activities of extracellular proteases
provide cues for gradient sensing, but have been largely neglected in data-driven relational
models for cell migration.

Protease activity probes, based upon a decrease in fluorescence resonance energy transfer
(FRET) upon substrate cleavage, have been employed to study protease activities in vitro
[38,39]. However, identification of which protease is responsible for cleavage is problematic
because of broad promiscuity for multiple substrates by many proteases [40] and substrate
cross-recognition among several protease family members [38]. Miller et al. reported a
multi-variate approach to deconvolving protease activity networks using combinatorial
measurements coupled to a mathematical analysis permitting elucidation of specific protease
activities [41]. The method involves construction of a matrix of kinetic rate parameters
determined from purified enzymes with a library of FRET-based probes (see Figure 1). This
parameter matrix is readily expandable to include additional proteases as desired depending
on reagent availability. Although this method has to date been applied to two-dimensional
culture systems, it can be extended to study of cells cultured in a range of ligand and matrix
conditions -- thus permitting quantification of changes in protease activities during tumor
progression.

Signals
Currently, most data-driven, relational models utilize population-level measurements to
represent the signaling state of cells at various time-points after stimulation, often in the
presence of perturbations such as RNAi or chemical inhibition [4–7,42]. Given the
heterogeneity characteristic within tumors and tumor cell lines, this simplification may fail
to capture signaling events occurring in the most dangerous cells, which may be rare within
any given population. Development of more robust reporters and effective analysis tools
[43] should facilitate building predictive models for cell gradient sensing that include
quantitative measures of receptor distribution, protein localization, and spatiotemporal
evolution of signaling states.

Initiation of Signal Propagation: Distribution of Cell Surface Receptors
Regardless of cue presentation, cells begin information processing at the cell membrane. In
the case of most biochemical ligands (e.g., growth factors or cytokines), cell surface
receptors initiate signaling flux upon ligand binding, so that the original spatial distribution
of unligated receptor could influence initial gradient sensing. This may not be the case for
cytokine sensing in mammalian cells as G-protein coupled receptors are uniformly
distributed along the plasma membrane regardless of chemokine gradient [44]. Similarly,
receptor tyrosine kinases (RTKs), such as the EGF receptor, are typically distributed evenly
along the cell perimeter in vitro in the absence of signaling gradients [45]. However, despite
a uniform total receptor distribution as visualized using epiflourescence microscopy
techniques, bias towards increased receptor clustering at the cell periphery has been inferred
using fluorescently-tagged receptor or single-particle tracking and TIRF microscopy [46,47].
Therefore, relevant receptor distribution studies might be those describing redistribution of
receptors in the first minutes after exposure to a graded cue. The spatiotemporal parameters
of receptor distribution, trafficking, and ligand binding have not yet been incorporated into
relational models of cell migration. Nor have these parameters been combined with large
proteomic or genomic datasets to obtain a systems view of how the biophysical presentation
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of cytokine and growth factor receptors directly impact specific cell responses. Increased
accessibility of live-cell, high resolution imaging modalities should enable correlation of
near-single molecule dynamic data to downstream signaling pathways.

Choosing a direction: Receptor proximal signaling in single cells
In the simplest sense, chemotaxis is driven through coordinated cycles of actin
polymerization at sites of ligand-bound receptor and substrate adhesion [48]. Our knowledge
of the molecules involved in the chemotactic response has increased significantly in the last
decade, and a review of many of the known mechanisms underlying chemotaxis in cancer
was recently published [1]. Here, we will concentrate on novel experimental and
quantitative methods for studying the underlying signaling cascades.

An early step in the chemotactic response of mammary carcinoma cells is the activation of
PLCγ, which facilitates initial actin polymerization through a local increase in filament
severing activity by PI(4,5)P2-associated proteins [49]. This activity of PLCγ is required for
directional migration in response to a chemotactic cue [50,51]. Generally, phosphorylation
of PLCγ is used as a proxy for hydrolysis of PI(4,5)P2, but van Rheenen et al. showed
through FRET-based assays that local hydrolysis of PI(4,5)P2 leading to spatially-restricted
cofilin-actin interaction sets the directional compass of carcinoma cells responding to
gradients [52]. The amplitude of this response likely varies within heterotypic cultures,
especially considering that cells from the same tumor can exhibit dramatically different
responses to growth factor stimulation [53].

In lower organisms as well as tumor cells, a second wave of polymerization-competent actin
barbed end generation occurs and is dependent on signaling through the PI3K pathway [49].
The activation of PI3K, and the generation of PI(3,4,5)P3, is recognized as a primal step in
cell polarization. A recent series of reports from Haugh and colleagues demonstrates a
technique to monitor motility parameters as a function of PI3K activity on an individual-cell
basis [54–56]. The evolution of spatiotemporal PI3K-mediated PI(3,4,5)P3 generation was
tracked using a fluorescently tagged Akt-PH domain in randomly migrating and
chemotaxing cells. A custom algorithm revealed significant positive correlation between a
motility parameter (the chemotactic index) and a PI3K-specific parameter (the signaling
index) that is a measure of the directionality of signal strength based upon localization and
fluorescence intensity (see Figure 1). This correlation was independent of growth factor
gradient, suggesting that the location of PI3K signaling is indicative of directional migration
regardless of a spatiotemporal cue context [54]. These results agree with the polarized role
of PI3K in previous models of motility [57], but extend the insight to include mechanistic
coupling between stochastic generation of signal and the subsequent migration directionality
in mammalian cells [55].

Assessing signaling activities using ectopic expression of biosensors remains compromised
by potential artifactual effects. Another, perhaps more generally reliable and accessible,
approach to obtain information-rich, single-cell, spatially relevant data for relational models,
is the employment of high-content imaging [58]. Two examples illustrate the usefulness of
this approach for studying directed migration. First, the localization of active
(phosphorylated) cofilin is inversely related with its ability to sever actin filaments and
promote early membrane protrusion, rendering cell-averaged measures of phospho-cofilin
uninformative about fast cell migration responses [59,60]. Second, chemotaxis is dependent
on detachment of the cell rear from the underlying substrate [48], and cleavage of adhesion
components by m-calpain is integral to this process [61,62]. Localization of m-calpain to
PI(4,5)P2 at the cell membrane that regulates this activity, instead of phosphorylation level
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of either the inhibitory or activating phospho-serine sites [63]. Therefore, localization of at
least certain signaling proteins can produce increased insights concerning chemotaxis.

Responses
The final input variable for cue-signal-response relational models, and the most important
for connection to physiological applications, is the cell phenotypic response(s) elicited by
imposed signaling gradients. One consequence of building relational models that result in
identification of important signals (or cues) is the issue of context dependency. When
measuring motility phenotypes it is important to consider the relevance of experimental
conditions to the physiological question that is being interrogated. Classic two-dimensional
chemotaxis assays exhibit release profiles and kinetics that are predictable based upon
diffusive transport phenomenon [64,65], which usually are inappropriate for tumor cell
chemotaxis due to fast dissipation of the imposed gradient (min) in comparison to the
relatively slow rate of tumor cell migration in vitro (hours). Thus we raise here recently
developed methods for quantifying directed motility parameters arising from acute cell
response to chemokine and long-term chemotaxis.

Measuring the output: New methods to quantify gradient sensing
phenotype

Among the first quantifiable cell responses to a chemotactic cue is formation of a
lamellipodial protrusion. Membrane protrusion response to paracrine factors occurs in vivo
(see Supplemental Movie 3 from [15]) and has been examined in three-dimensional culture
following perturbation in adhesion-related proteins [66]. Unbiased characterization of
lamellipodial dynamics in response to growth factors and cytokines has proven challenging,
especially in unmodified cells (those not expressing a fluorescently tagged protein), due to
the heterogeneous shape of the extending cell protrusion in most cell types. The manual
nature of these analyses has limited their applicability in correlative studies due to small
sample size. Recently, morphodynamic profiling [67] (see Figure 1) approaches for
quantification of leading edge dynamics in resting cells and in response to various
perturbations have provided significant insight to the roles of several proteins important in
the chemotactic response [59]. Thus far only the localized dynamics of signaling proteins
occurring near the leading edge have been analyzed with respect to the detailed membrane
activity maps [43,59,67–70]. These data could also be analyzed in combination with
network-wide signaling measurements and measurements of protein secretion and
proteolytic activity (on a population-level as a first pass) to construct network maps
informative of changes in lamellipodial dynamics. We have observed that the initial
membrane protrusion response across a panel of triple negative breast cancer cell lines is
highly predictive of subsequent 3D migration in extracellular matrix (Meyer, A.S., Hughes-
Alford, S.K., Lauffenburger, D.A., unpublished work). Therefore, insight gained from using
morphodynamic profiling techniques applied to cells in a gradient of chemoattractant might
provide predictive power in regards to paracrine and autocrine sensing in 3D culture.

It is attractive to hypothesize that the intracellular signaling pathways underlying random
and directed migration are similar [54,71], and that migration mode is governed by signal
initiation that could result from cue gradients, receptor presentation [46] or stochastic
variability [55,57,71]. Indeed, there is substantial evidence for a set of common pathway
participants, although the utilization of individual components may differ among cell types.
Gruver et al. recently proposed a simple analysis technique based upon distinct changes in
cellular morphology that characterize cell motility, random and directed, using a single
scaling law derived from bimodal analysis [72]. Migration can be parsed into the time spent
moving in a persistent manner versus that spent reorienting the cell polarity. When
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compared, these characteristic times are inversely correlated and fit an exponentially
decreasing curve. The authors show that the model is robust to abrupt changes in cell
direction, which offers an advance over the commonly used ‘persistence time’ parameter
found by fitting migration paths to a persistent random-walk model [73].

Conclusions and Future Perspectives
Data that can be generated with single-cell experimental methods are optimal for estimation
of molecular-level mechanistic process parameters. However, the realization of fully
mechanistic network models encompassing multiple processes and their regulatory pathways
remains a future hope. Accordingly, our notion of integrating these kinds of data into
relational multi-variate network models can begin to bridge the spatiotemporal knowledge
gap that currently exists in the era of high-throughput genomic and proteomic analysis. How
does one incorporate single cell measurements with population level data to make
predictions about cell phenotype? One advantage of single-cell measurements is the
realization of a distribution of response. It is then possible to use measures of error, or
distribution width, to characterize the heterogeneity within a specific signaling or response
measurement. These data may allow identification of ‘rare cell’ populations, such as those
that respond in the bottom or top 5% of the distribution, and might represent the most
aggressive tumor cells.

Although the gradient sensing mechanisms in chemotaxis are productively conceptualized in
a ‘cue-signal-response’ framework, in reality the process for building data-driven, predictive
models is iterative. For example, challenges in measuring the appropriate ‘responses’ that
arise from well-planned ‘cues’ mandate preliminary experiments to determine what
experimental conditions should be used when measuring the signaling dataset. The most
useful signaling data may not come from experiments that are exactly the same as those used
to measure the phenotypic response. For instance, the similarity between the leading edge of
a cell in chemotaxis versus chemokinetic stimuli suggests that measurement of the signaling
network under the latter conditions is likely be to equally as informative and more tractable
on a large scale. Certainly, careful consideration of trade-offs between experimental
consistency and physiological relevance will aid in most effective construction of data-
driven multi-variate relational models for tumor cell chemotaxis.
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Figure 1. New experimental approaches for populating data-driven relational models of
chemotaxis in cancer
Growth factor gradients (circles) that arise from paracrine signaling between tumor-
associated macrophages (yellow) and breast carcinoma cells (blue) represent one example of
chemotaxis within tumors [14]. Relational models for probing the mechanisms underlying
tumor cell chemotaxis can be conceptualized using a ‘cue-signal-response’ paradigm. [1]
Utilization of recently developed, highly controllable 3D microfluidic platforms can provide
physiologically relevant presentation of chemoattractant cues. [75]. Device diagram used
with kind permission from Dr. Andrew Darling. [2] Quantification of protease activities
utilizing a systems biology approach provides mechanism underlying gradient generation
and cue presentation. A matrix of kinetic rate parameters measured with purified enzymes
can be utilized to estimate specific protease activity in biological samples. Figure courtesy
of M. Miller and D. Lauffenburger [41]. [3] New single cell analyses, including Signaling
Vector Analysis [54,55], provide novel signaling metrics, such as the magnitude and
direction of Akt-PH domain localization (pseudo-colored such that red is highest intensity).
The resulting time-dependent vectors, inset arrows, can be correlated with input cues and
phenotypic response. Figure used with kind permission from [55]. [4] Quantification of
phenotypic response ultimately determines the applicability of any data-driven, relational
model. Automated analyses, such as morphodynamic profiling [67], may provide unbiased
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quantitative data about acute cell response upon exposure to chemoattractant gradients. The
metrics derived from analysis of edge dynamics can be correlated to cues, such as protease
activity (chemoattractant release), or signals, such as growth factor receptor distribution
(See Signals sub-section), to generate hypotheses through application of relational modeling.
Figure reproduced with kind permission from [67].
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