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SUMMARY

The discoidin domain receptors, DDR1 and DDR2,
are constitutively dimeric receptor tyrosine kinases
that are activated by triple-helical collagen. Aberrant
DDR signaling contributes to several human patholo-
gies, including many cancers. We have generated
monoclonal antibodies (mAbs) that inhibit DDR1
signaling without interfering with collagen binding.
The crystal structure of the monomeric DDR1 extra-
cellular region bound to the Fab fragment of mAb
3E3 reveals that the collagen-binding discoidin (DS)
domain is tightly associated with the following
DS-like domain, which contains the epitopes of all
mAbs. A conserved surface patch in the DS domain
outside the collagen-binding site is shown to be
required for signaling. Thus, the active conformation
of the DDR1 dimer involves collagen-induced
contacts between the DS domains, in addition to
the previously identified association of transmem-
brane helices. The mAbs likely inhibit signaling by
sterically blocking the extracellular association of
DDR1 subunits.

INTRODUCTION

Receptor tyrosine kinases (RTKs) control many fundamental

cellular processes, such as cell proliferation, differentiation,

migration, and metabolism (Lemmon and Schlessinger, 2010).

RTK activity is normally tightly controlled, and dysregulation of

RTK activity is associated with many human cancers and other

pathologies. Ligand binding to the extracellular region of RTKs

leads to autophosphorylation of their cytoplasmic kinase

domains, creating docking sites for effectors of downstream

signaling. The two major strategies for controlling unwanted

RTK activity in human patients are inhibition by monoclonal anti-

bodies (mAbs) directed against their extracellular regions or by

small molecules targeting the kinase active site (Adams and

Weiner, 2005; Gschwind et al., 2004).
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The discoidin domain receptors, DDR1 and DDR2, are RTKs

that are activated by several types of triple-helical collagen,

a major component of the animal extracellular matrix (Leitinger,

2011; Shrivastava et al., 1997; Vogel et al., 1997). The DDRs

are widely expressed in mammalian tissues and have important

roles in embryo development and human disease (Vogel et al.,

2006). For example, DDR1 is essential for mammary gland devel-

opment (Vogel et al., 2001), and DDR2 is essential for the growth

of long bones (Labrador et al., 2001). DDR2mutations in humans

cause a rare, severe form of dwarfism (Ali et al., 2010; Bargal

et al., 2009). The DDRs are also implicated in cancer, fibrotic

diseases, atherosclerosis, and arthritis (Vogel et al., 2006).

Mechanistically, the DDRs have several features that distinguish

them from other RTKs. Compared with the rapid response of

typical RTKs to their soluble ligands (e.g., growth factors),

collagen-induced DDR autophosphorylation is slow and sus-

tained (Shrivastava et al., 1997; Vogel et al., 1997). Furthermore,

Src kinase plays an essential role in DDR activation (Ikeda et al.,

2002).

Both DDRs are composed of an N-terminal discoidin (DS)

domain (Baumgartner et al., 1998), followed by a predicted

DS-like domain (our unpublished results; Lemmon and Schles-

singer, 2010), an extracellular juxtamembrane (JM) region,

a transmembrane (TM) helix, a large cytosolic JM region, and

a C-terminal tyrosine kinase domain. Collagen binds to the DS

domain, and the structural determinants of the DDR-collagen

interaction have been extensively studied (Carafoli et al., 2009;

Ichikawa et al., 2007; Konitsiotis et al., 2008; Leitinger, 2003;

Xu et al., 2011). The remainder of the extracellular region has

not been characterized structurally or functionally.

How collagen binding results in DDR activation is amajor unre-

solved question. DDR1 can be activated by short collagen-like

peptides, showing that DDR clustering by multivalent collagen

assemblies (e.g., fibrils) is not essential for activation (Konitsiotis

et al., 2008). The DDRs are constitutive dimers at the cell surface,

and residues within the TM helix are required for signaling

(Noordeen et al., 2006). In fact, a comprehensive analysis has

shown that the DDRs have the highest propensity of TM helix

self-interactions in the entire RTK superfamily (Finger et al.,

2009). Therefore, the conformational changes resulting from

collagen binding are likely to occur in the context of a stable

DDR dimer. Our crystal structure of a DDR2DS-collagen peptide
reserved
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Figure 1. The Anti-DDR1 mAbs Block Collagen-Induced DDR1

Phosphorylation

DDR1b was transiently expressed in HEK293 cells, and the cells were stimu-

lated with 10 mg/ml collagen I in the absence or presence of 10 mg/ml of the

indicated anti-DDR1 mAbs. Aliquots of cell lysates were analyzed by SDS-

PAGE and western blotting. The blots were probed with anti-phosphotyrosine

(anti-PY) mAb 4G10 (upper blot) and reprobed with anti-DDR1 Ab (lower blot).

Control, mouse IgG1 isotype control Ab. The experiment was performed three

times with similar results.

See also Figure S1.

Figure 2. The Anti-DDR1 mAbs Bind to the DS-Like Domain and Do

Not Inhibit Ligand Binding

(A) ELISA showing binding of the indicated anti-DDR1 mAbs to recombinant

DDR proteins immobilized on 96-well plates. Shown is a representative of

three independent experiments, each performed in duplicate.

(B) Solid-phase binding assay with recombinant DDR1-Fc protein added to

96-well plates coated with either casein or collagen peptide III-23 (Xu et al.,

2011). DDR1-Fc was preincubated with the indicated anti-DDR1 mAbs before

addition to the wells. Bound DDR1-Fc was detected with anti-human Fc Ab

and was measured as absorbance at 492 nm. Shown is a representative of

three independent experiments, each performed in triplicate. The error bars

indicate the sample standard deviation (n = 3).
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complex (Carafoli et al., 2009) revealed a 1:1 complex and did

not clarify how collagen binding affects the conformation of the

DDR dimer. Here, we report the functional characterization of

a set of inhibitory anti-DDR1 mAbs and the crystallization of

the almost complete extracellular region of DDR1 bound to

a mAb Fab fragment. The crystal structure led to the discovery

of DDR1 residues that are required for signaling, even though

they are not part of the known collagen-binding site. These

results provide insight into the process of DDR1 activation.

RESULTS

Generation and Characterization of Anti-DDR1 mAbs
We immunized mice with a recombinant protein spanning the

entire extracellular region of human DDR1 and obtained seven

anti-DDR1 mAbs. All seven mAbs were found to inhibit the

collagen-induced autophosphorylation of DDR1 expressed in

HEK293 cells (Figure 1), and this inhibitory activity was retained

by Fab fragments generated from five of the seven mAbs (Fig-

ure S1 available online). Dose-dependent inhibition experiments

revealed no substantial differences in activity among the mAbs,

which all reduced DDR1 phosphorylation to background levels

when applied at 2 mg/ml, but were only partially inhibitory at

0.2 mg/ml (data not shown). Similarly, an enzyme-linked immuno-

sorbent assay (ELISA) with the immobilized DDR1 extracellular

region (His-DDR1) showed that all mAbs boundwith comparable

apparent dissociation constants of�2 nM (data not shown). In an

ELISA with domain deletion constructs, all sevenmAbs bound to

the membrane-proximal DS-like domain (His-DDS-DDR1), but
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not to the membrane-distal DS domain containing the

collagen-binding site (His-DS-DDR1) (Figure 2A). This result sug-

gested that the inhibitory activity of the mAbs on cells was

unlikely to be the result of a block of collagen binding. Indeed,

when we tested a subset of mAbs in a direct collagen binding

assay, we found that binding of DDR1-Fc to a high-affinity

collagen peptide (III-23) (Xu et al., 2011) was not affected

by the addition of mAbs (Figure 2B). The combined results

demonstrate that the anti-DDR1 mAbs inhibit DDR1 function

by interfering with the signal transduction process resulting

from collagen binding.

Crystal Structure of a DDR1-Fab Complex
For several years, we had attempted unsuccessfully to obtain

diffracting crystals of the extracellular regions of DDR1 or

DDR2. Fab fragments of mAbs have been instrumental in
, 688–697, April 4, 2012 ª2012 Elsevier Ltd All rights reserved 689



Table 1. Crystallographic Statistics of the DDR1-3E3 Fab

Structure

Data Collection Value

Space group C2221

Unit cell dimensions

a, b, c (Å) 102.51, 251.48, 75.37

a, b, g (�) 90, 90, 90

Asymmetric unit content 1:1 DDR1-3E3 Fab complex

Solvent content (%) 57

Resolution (Å) 50–2.8 (2.95–2.80)a

Rmerge 0.079 (0.429)

<I/s(I) > 14.3 (3.8)

Completeness (%) 98.7 (98.9)

Multiplicity 6.0 (6.1)

Refinement

Resolution (Å) 20–2.8

Reflections 24035

Protein atoms 2700 (DDR1) + 3169 (3E3 Fab)

Solvent atoms 2 Ca2+ + 14 H2O

Rwork/Rfree 0.216/0.286

Rmsd bonds (Å) 0.007

Rmsd angles (�) 1.4

Average B-factor (Å2) 53.6

Ramachandran plot (%)b 91.3/98.1
aValues in parentheses are for the highest resolution shell.
bPercentage of residues in favored and allowed regions (Chen et al.,

2010).

Structure

Crystal Structure of a DDR1-Fab Complex
facilitating the crystallization of many recalcitrant proteins

(Nettleship et al., 2008). We therefore screened the Fab frag-

ments of six anti-DDR1mAbs for complex formation and cocrys-

tallization with the extracellular region of DDR1 (the 1F7 Fab

could not be used because it aggregated in solution). Because

the His-DDR1 construct used for mAb generation included the

JM region that is predicted to be unstructured, we produced

a construct terminating at the predicted C terminus of the DS-

like domain, Asp367. All Fab fragments bound to this shortened

DDR1 construct, as determined by analytical size exclusion

chromatography (data not shown). We obtained crystals of the

DDR1-3E3 Fab complex and determined its structure at a resolu-

tion of 2.8 Å (Table 1).

The extracellular region of DDR1 revealed by the crystal struc-

ture is a compact structure measuring approximately 70 3 503

40 Å (Figure 3A). The DS and DS-like domains are arranged such

that the long axes of their b-barrels are roughly perpendicular to

each other. There is an extensive interface between the two

domains that buries 1410 Å2 of solvent-accessible surface (i.e.,

the interface measures �700 Å2). The domain arrangement in

DDR1 is reminiscent of the tandem DS domains in neuropilins

(Appleton et al., 2007; Vander Kooi et al., 2007), but the second

domain is rotated differently in the two proteins (Figure S2). The

N andC termini of the crystallized DDR1 construct are located on

the same face of the molecule near the interdomain linker. In the

intact receptor, the C terminus of the crystallized construct

would be linked to the TM helix by the 50-residue JM region.
690 Structure 20, 688–697, April 4, 2012 ª2012 Elsevier Ltd All rights
The DDR1 DS domain is very similar to the DDR2 DS domain

(rmsd of 0.61 Å for 156 Ca atoms), which was previously crystal-

lized in complex with a collagen-like peptide (Carafoli et al.,

2009). The collagen-binding loops of the DDR1 DS domain,

which are opposite the DS-like domain, have weak electron

density and high temperature factors, suggesting that they are

quite mobile in the absence of the collagen ligand. The 3E3

Fab fragment is bound near the C terminus of the DS-like

domain, distant from the collagen-binding site (for a description

of the epitope, see below).

Structure of the DS-like Domain
As predicted (our unpublished results; Lemmon and Schles-

singer, 2010), the DS-like domain belongs to the coagulation

factor V/VIII type C superfamily. A search with the program

SSM (Krissinel and Henrick, 2004) showed that the DS-like

domain of DDR1 is most closely related to family 32 carbohy-

drate-bindingmodules (CBMs) (Boraston et al., 2004), but a pair-

wise alignment of the DS and DS-like domains of DDR1 gave

only a marginally lower Z-score and a rmsd of 3.0 Å for 120

aligned Ca atoms (Figure 3B). To facilitate the comparison of

the DS and DS-like domains, the eight b strands that are

common to both domains have been labeled b1–b8. The DS-

like domain contains five additional strands, labeled ba–be, in

a long insertion between b1 and b2. Both domains are character-

ized by two antiparallel b sheets with jellyroll topology (b1-b2-b7-

b4 sheet and b5-b6-b3-b8 sheet). At one end of the b-barrel (the

‘‘bottom’’) the b2–b3 and b6–b7 loops cross over between the

sheets and create a relatively flat surface. At the other end (the

‘‘top’’), several long and irregular loops protrude from the barrel.

In the DS domain, these loops constitute the collagen-binding

site (Carafoli et al., 2009; Ichikawa et al., 2007; Leitinger, 2003).

In the DS-like domain, they contribute the extra strands ba–be,

two N-linked glycosylation sites (Asn211 and Asn260), and

a calcium-binding site. The calcium ion is coordinated by the

side chains of Asp233 andGlu361, as well as by threemain chain

carbonyl groups; an analogous calcium coordination is seen in

many family 32 CBMs (Boraston et al., 2004). It is noteworthy

that the glycosylation site at Asn211 and the calcium ligands

are strictly conserved in all vertebrate DDRs (Figure S3). A

second ion in the DS-like domain was also modeled as calcium,

but this ion appears to be bound more weakly and may be

a crystal artifact (not shown). The DS-like domain of DDR1

contains three cysteines: Cys303 and Cys348, which form

a deeply buried disulphide bridge linking the adjacent b4 and

b7 strands, and Cys287, which is unpaired and also buried. A

previous study suggested that Cys303 and Cys348 may be

involved in the covalent dimerization of DDR1 (Abdulhussein

et al., 2008). However, the DS-like domain would have to unfold

for these two residues to become available for intermolecular

disulphide bridges. The disulphide-linked dimers seen in cell

lysates in that study therefore are more likely to have resulted

from oxidation following denaturation.

The interface between the DS and DS-like domains of DDR1 is

formed between the bottom of the DS domain, in particular the

b4–b5 and b6–b7 loops, and the long convoluted insertion

between strands b1 and b2 of the DS-like domain (Figure 3C).

A key interface residue is Trp187, which is located in the short

linker between the two domains and which interacts with
reserved



Figure 3. Crystal Structure of the DDR1-3E3 Fab Complex

(A) Overall structure. The 3E3 Fab fragment is shown as a surface (tan, light chain; gray, heavy chain), and DDR1 is shown as a cartoon (cyan, DS domain; green,

DS-like domain; and red, collagen-binding loops; Carafoli et al., 2009; orange, disulphide bridges). A calcium ion is shown as a magenta sphere and the two

N-linked glycans are shown as light blue sticks. The N and C termini of the DDR1 construct are indicated. The b strands of the jelly roll in the DS and DS-like

domains are numbered 1–8, and the extra b strands in the DS-like domain are labeled a–e.

(B) Superposition of the DS domain (cyan) and the DS-like domain (green) of DDR1.

(C) Detailed structure of the interface between the DS domain (cyan) and the DS-like domain (green) in DDR1. Selected residues are shown in atomic detail and

labeled. Hydrogen bonds are indicated by dashed lines.

See also Figures S2 and S3.
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residues of both the DS domain (Leu94 and Val160) and the DS-

like domain (Leu191, Leu192, Leu228, and Ala232). With the

exception of Leu192 and Ala232, these residues are strictly

conserved in all vertebrate DDRs (Figure S3). Also conserved is

an ion pair spanning the interface, involving Arg124 of the DS

domain and Asp216 of the DS-like domain. Additional interdo-

main contacts are made between the 134–138 and 245–253

loops (Figure 3C). Even though the shape complementarity of

the domain interface is not particularly high (sc-value of 0.56;

Lawrence and Colman, 1993), its size and the conservation of

key interface residues suggest that the domain arrangement

seen in our structure is stable and representative of DDRs in

general.

DS Domain Residues Required for DDR1 Signaling
The DDRs are believed to be constitutive dimers at the cell

surface (Mihai et al., 2009; Noordeen et al., 2006). Analytical

ultracentrifugation of the crystallized DDR1 ectodomain

construct showed it to be monomeric at concentrations of up

to 6.8 mg/ml (data not shown), in agreement with an earlier result

obtained by size-exclusion chromatography for His-DDR1

(Leitinger, 2003). However, because the high protein concentra-

tion in the crystal might favor a very weak dimer association, we

inspected the crystal lattice for DDR1 dimers. There was only

one plausible dimer. The interface between the two DDR1 mole-
Structure 20
cules in this dimeric lattice contact is dominated by two identical,

symmetry-related contacts and buries 1580 Å2 of solvent-

accessible surface with good shape complementarity (sc-value

of 0.64). In each of the symmetry-related contacts, four DS

domain residues—Arg32, Leu99, Leu152, and Tyr183—interact

with Leu247 and Arg248 of the other DDR1molecule (Figure 4A).

The four DS domain residues in the contact are strictly

conserved in DDR1 and DDR2 from several species, whereas

Leu247 and Arg248 are variable (Figure S3). To test whether

these DDR1 regions are required for function, we expressed

three DDR1 mutants (R32E, L152E, and L247E/R248E) in

HEK293 cells and measured their collagen-induced autophos-

phorylation. Flow cytometry showed that the mutants were

expressed at the cell surface similarly to wild-type DDR1

(Figure 4B). Furthermore, SDS-PAGE analysis of the mutants

showed the characteristic two bands corresponding to the

immature (intracellular) and mature (cell surface-expressed) gly-

coforms of the receptor (Noordeen et al., 2006) (Figure 4C). The

L247E/R248E double mutation had no effect on DDR1 activation

(Figure 4C), indicating that the dimeric crystal lattice contact

does not recapitulate a signaling state of the receptor. In sharp

contrast, the R32E and L152E mutations abrogated DDR1 acti-

vation (Figure 4C). This result was unlikely to be due to an effect

on ligand binding, given that the two mutations are distant from

the high-affinity collagen-binding site (Carafoli et al., 2009).
, 688–697, April 4, 2012 ª2012 Elsevier Ltd All rights reserved 691



Figure 4. A Conserved Patch in the DS Domain Is Required for DDR1 Signaling

(A) The lattice contact resulting in a symmetric DDR1 dimer (see text). The DDR1molecule on the left is in cyan (DS domain) and green (DS-like domain); the DDR1

molecule on the right is in gray, with the collagen-binding loops (Carafoli et al., 2009) in red. The 2-fold symmetry axis is vertical. Selected residues are shown in

atomic detail (pink, conserved surface patch in the DS domain).

(B) Cell surface expression of mutants. Wild-type DDR1b or the indicated mutants were transiently expressed in HEK293 cells. The cells were stained on ice with

10 mg/ml of anti-DDR1 mAb 7A9 (filled gray histograms) or mouse IgG1 isotype control Ab (black lines) followed by FITC-conjugated goat-anti mouse IgG and

analysis by flow cytometry. The experiment was performed twice with similar results.

(C) Collagen-induced activation ofmutants.Wild-type DDR1b or the indicatedmutants were transiently expressed in HEK293 cells. The cells were stimulatedwith

collagen I at the indicated concentrations (in mg/ml). Aliquots of cell lysates were analyzed by SDS-PAGE and western blotting. The blots were probed with anti-

phosphotyrosine (anti-PY) mAb 4G10 (upper blot) and reprobed with anti-DDR1 Abs (lower blot). The experiment was performed three times with similar results.

(D) Solid-phase binding assay with recombinant DDR1-Fc protein (filled circles, wild-type; open circles, R32E mutant) added to 96-well plates coated with

collagen peptide III-23 (Xu et al., 2011). Bound DDR1-Fc was detected with anti-human Fc Ab and was measured as absorbance at 492 nm. Shown is

a representative of two independent experiments, each performed in duplicate.
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Indeed, collagen-binding experiments with soluble DDR1 R32E

and DDR2 L152E proteins (Figure 4D and data not shown)

confirmed that these mutants are not defective in collagen

binding. These findings demonstrate that the conserved surface

patch in the DS domain containing Arg32 and Leu152 is required

for DDR1 signaling, even though it is not part of the primary

collagen-binding site.

Epitopes of Anti-DDR1 mAbs
The 3E3 epitope is formed from three regions of the DDR1 DS-

like domain, which are discontinuous in sequence but contig-

uous in space: the start of b3 (Ala279, Gln281, and Ala282), the

b6–b7 loop (Ser 335, Pro337, Gly340, Arg341, and Val342),

and the very end of the DS-like domain (Ile365 and Asp367)

(Figure 5). The 3E3 Fab uses predominantly aromatic residues

to recognize this epitope: Thr30, Phe32, Tyr34, Tyr49, and

Leu50 of the light chain; and Ile31, Trp33, Tyr52, Tyr56, and
692 Structure 20, 688–697, April 4, 2012 ª2012 Elsevier Ltd All rights
Tyr96 of the heavy chain. In total, the DDR1-3E3 interface buries

1390 Å2 of solvent-accessible surface and has a high shape

complementarity value of 0.68, a typical value for antibody-

antigen complexes (Lawrence and Colman, 1993). The finding

that mAb 3E3 binds close to the C terminus of the DS-like

domain suggests that it may inhibit DDR1 function by preventing

the association of the DS-like domains and/or JM regions in the

signaling DDR1 dimer. The JM region is unlikely to make a major

contribution to 3E3 binding, however, given that the 3E3 Fab and

the truncated DDR1 ectodomain construct used for crystalliza-

tion form a stable complex upon size-exclusion chromatography

(see Experimental Procedures).

To better understand how the anti-DDR1 mAbs inhibit DDR1

function, it was of interest to determine the epitopes of the other

mAbs as well. We therefore made a series of DDR1 mutants,

which targeted all linear and nonconservative human-to-mouse

substitutions in the DS-like domain (Figure S3). These DDR1
reserved



Figure 5. Detailed Structure of the DDR1-3E3 Fab Interface

The 3E3 Fab fragment is shown as a semitransparent surface (tan, light chain;

gray, heavy chain), and the DDR1 region interacting with the Fab is shown as

a green cartoon. Selected interface residues are shown in atomic detail and

labeled. Hydrogen bonds are indicated by dashed lines.
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mutants were expressed in HEK293 cells, and mAb binding was

measured by flow cytometry (Figure 6A and Figure S4). Mutant

mut7 (R341H/A343G) was consistently expressed at lower levels

than the wild-type protein, suggesting that the mutation may

have compromised the DDR1 structure. All other mutants were

expressed at similar levels to the wild-type protein. Saturating

concentrations of all but one mAbs gave similar fluorescence

profiles for wild-type DDR1. The single exception was 1F10,

which is a different isotype (IgG2b) than the other anti-DDR1

mAbs (IgG1) and therefore may be detected less well by the

secondary Ab.

Four of the DDR1 mutants (mut2, mut3, mut4, and mut7)

showed unperturbed binding of all seven mAbs. The mut1 muta-

tion (203-YLSEAVY to QLSEVMVH) abolished binding of mAbs

3G10, 3H10, and 7A9. The mut6 mutation (M318V/N321A/

N325S) abolished binding of mAbs 1F7 and 1F10. The mut5

mutation (A279T/A282T) reduced binding of mAb 3E3 by

�70% (mean fluorescence data in Figure S4). Inspection of the

DDR1-3E3 interface structure (Figure 5) suggests that, in order

to completely disrupt 3E3 binding, Arg341 would have to be

substituted in addition to Ala279 and Ala282. Given that

Arg341 (mut7) interacts with Met318 (mut6), disruption of 3E3

binding is likely to require a combination of mut5-7—that is,

a complete reconfiguring to the mouse structure at the base of

the DS-like domain. Binding of mAb 5D5 was not affected by

any of the mutations, and we assume that the 5D5 epitope simi-

larly is a combination of the linear sequence motifs targeted in

our experiments. In summary, the six inhibitory anti-DDR1

mAbs for which the epitopes could be defined (by eithermutation

or structure determination) bind to two distinct regions of the

DS-like domain that are >50 Å away from the collagen-binding

site in the DS domain (Figure 6B).
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DISCUSSION

In this article, we report three major findings that advance the

mechanistic understanding of DDR signaling: First, crystal struc-

ture analysis has revealed that the extracellular region of DDRs

consists of two structurally related domains, a collagen-binding

DS domain and a DS-like domain. Second, we have generated

anti-DDR1 mAbs that inhibit collagen-induced DDR1 activation

by binding to the DS-like domain. Third, we have identified

a conserved surface patch in the DS domain that is distinct

from the collagen-binding site, yet is required for DDR activation.

These results are integrated into a working model of how

collagen binding might alter the extracellular structure of DDRs

and thereby lead to receptor activation.

The N-terminal domain of DDRs has long been recognized as

amember of the DS superfamily (Johnson et al., 1993; Karn et al.,

1993), and its role in collagen binding is understood in atomic

detail (Carafoli et al., 2009; Ichikawa et al., 2007). Our crystal

structure shows that the second DDR domain is a distant relative

of the DS domain, termed the DS-like domain. Tandem repeats

of DS domains occur in a number of secreted and cell surface

proteins (Baumgartner et al., 1998; Kiedzierska et al., 2007). In

the blood coagulation factors V and VIII, the two DS domains

are arranged side by side with limited contacts between them,

so that their top loops can both interact with the same cell

membrane (Adams et al., 2004; Ngo et al., 2008; Shen et al.,

2008). In neuropilin-1 and -2, the two DS domains are related

by a �90� rotation and form a compact structure, as in DDR1

(Appleton et al., 2007; Vander Kooi et al., 2007). This angled

arrangement in DDR1 results in the C terminus of the DS-like

domain emerging near the interdomain linker. The presumably

unstructured JM region of DDR1 linking the DS-like domain to

the TM helix (residues 368–417) contains 12 prolines and

a number of predictedN- andO-linked glycosylation sites. If fully

extended, it would project the DS and DS-like domains of DDR1

�150 Å from the cell surface. The JM regions of other DDRs are

similarly long, ranging from 32 to 74 residues.

mAbs directed against RTKs are invaluable tools for research

and have been developed into successful therapeutics (Adams

and Weiner, 2005). We have characterized seven anti-DDR1

mAbs that inhibit DDR1 function by binding to two distinct

regions in the DS-like domain. Notably, Fab fragments derived

from these mAbs were equally effective as DDR1 inhibitors. No

mAbs were obtained that bind to the DS domain, possibly

reflecting the higher degree of surface conservation in that

domain (not shown). In agreement with their epitope locations,

the mAbs inhibit DDR1 function without blocking collagen

binding. We think that they do so by preventing the proximity

of the two DS-like domains and the following JM regions in the

collagen-bound, signaling, state of the DDR1 dimer (Noordeen

et al., 2006). Deletion of the DS-like domain or JM region of

DDR1 results in receptors that are not trafficked to the cell

membrane, so the contribution of these regions to signaling

could not be studied (Noordeen et al., 2006). Remarkably,

however, the DS-like domain of DDR2 could be deleted without

abrogating collagen-induced receptor autophosphorylation

(Leitinger, 2003), suggesting that the DS-like domain is not

making any essential contacts in the signaling DDR dimer. This

leaves the collagen-bound DS domain as the most likely site of
, 688–697, April 4, 2012 ª2012 Elsevier Ltd All rights reserved 693



Figure 6. Epitope Mapping of Anti-DDR1 mAbs

(A) Wild-type DDR1b or the indicated mutants were transiently expressed in HEK293 cells. The cells were stained on ice with 10 mg/ml of the indicated anti-DDR1

mAbs or mouse IgG1 isotype control Ab, followed by FITC-conjugated goat-anti mouse IgG and analysis by flow cytometry. Binding of isotype control Ab is

shown by the filled gray histograms. Shown are representative data of at least three experiments for each DDR1 mutant.

(B) Surface representation of DDR1 structure showing the location of mAb epitopes determined by mutation (mut1, blue: 3G10, 3H10, 7A9; mut6, purple: 1F7,

1F10). The 3E3 footprint from the crystal structure is shown in light orange, andmut5 is shown in dark orange. The DS and DS-like domains are in cyan and green,

respectively. The collagen-binding site and conserved surface patch (Arg32, Leu99, Leu152, and Tyr183) are shown in red and light pink, respectively. The

C terminus is indicated.

See also Figure S4.
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contact between the extracellular regions of the two DDR proto-

mers in the signaling dimer.

An analysis of crystal lattice contacts in the DDR1-3E3 Fab

structure led to the fortuitous discovery of functionally important

residues near the base of the DS domain, close to the interface

with the DS-like domain and distant from the collagen-binding

site at the top of the DS domain. The patch formed by these resi-

dues is the largest concentration of conserved surface residues

in the extracellular region of DDRs apart from the collagen-

binding site, consistent with its essential role in signaling. We

think that the conserved patch is involved in mediating protomer

contacts in the signaling DDR dimer, either by forming a direct
694 Structure 20, 688–697, April 4, 2012 ª2012 Elsevier Ltd All rights
DS-DS interface or by providing a secondary collagen-binding

site. The latter alternative is more appealing, because it provides

a plausible mechanism whereby collagen could cross-link

two DS domains (analogous to the ‘‘composite binding site’’

model discussed by Carafoli et al., 2009). In solution, the

isolated DDR2 DS domain binds a 28-residue collagen peptide

with 1:1 stoichiometry (Carafoli et al., 2009). However, inspection

of the crystal lattice of this DS-collagen complex reveals that

the conserved patch is involved in a lattice contact with

the N-terminal glycine-proline-hydroxyproline triplets of the

collagen peptide. This intriguing observation may suggest that

the conserved patch in the DS domain indeed has weak affinity
reserved
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for collagenous sequences and, therefore, could provide a

secondary collagen-binding site in dimeric, full-length DDR.

Whichever interactions are formed between the DS domains

and the collagen ligand, they are expected to lead to structural

changes within the DDR dimer that are propagated across the

cell membrane to result in DDR autophosphorylation (Noordeen

et al., 2006). Tight coupling of the extracellular conformational

changes to intracellular domain arrangements is difficult to

imagine in the DDRs, given their long, and presumably flexible,

JM regions. Recent studies of the epidermal growth factor

receptor (EGFR) have shown that the conformational coupling

across the cell membrane is looser than commonly believed,

even in a receptor with less extensive JM regions (Lu et al.,

2010; Mi et al., 2011). However, one important difference is

that the TM helices of DDRs have a much higher propensity for

self-interactions than that of EGFR (Finger et al., 2009). We

propose that the TM helices are largely responsible for constitu-

tive DDR dimerization (Noordeen et al., 2006), but that collagen-

induced interactions involving the DS domains are additionally

required for DDR activation.

EXPERIMENTAL PROCEDURES

DNA Constructs and Site-Directed Mutagenesis

All mutations were generated by strand overlap extension PCR using a cDNA

of human DDR1 as a template (Leitinger, 2003). The PCR primers used to

generate these constructs are available on request. The amplified DNAs

were cloned into the mammalian expression vectors pcDNA3.1/Zeo (Invitro-

gen) or pRK5 (BD PharMingen) for expression of full-length proteins, or into

modified pCEP vectors (Kohfeldt et al., 1997) for expression of soluble

proteins. All PCR-derived DNA constructs were verified by sequencing.

Production of Soluble DDR1 Proteins

The following proteins were produced as described elsewhere (Leitinger,

2003): His-DDR1 contains the entire extracellular region of human DDR1

(residues 19–416 of UniProt entry Q08345). His-DDR2 contains the entire

extracellular region of human DDR2 (residues 22–398 of UniProt entry

Q16832). His-DS-DDR1 and His-DDS-DDR1 are deletion constructs based

on His-DDR1. His-DS-DDR1 lacks the DS-like domain (D201–369), and His-

DDS-DDR1 lacks the DS domain (D31–185); both proteins retain the JM

region. DDR1-Fc contains the entire DDR1 extracellular region fused to

a C-terminal human IgG1 Fc sequence (Leitinger, 2003; Xu et al., 2011).

The DDR1 construct for crystallography contains the DS and DS-like

domains of human DDR1 (residues 30–367) fused to a C-terminal His-tag

(AAAHHHHHH). A vector-derived APLA sequence is present at the N terminus

of the mature protein. The protein was produced in human embryonic kidney

HEK293 c18 cells (ATCC). The cells were grown at 37�C with 5% CO2 in

Dulbecco’s modified Eagle’s medium/F12 (Invitrogen) containing 10% fetal

bovine serum, 2 mM glutamine, 10 U/ml penicillin, 100 mg/ml streptomycin,

and 250 mg/ml geneticin. The cells were transfected with the pCEP-Pu expres-

sion plasmid using Fugene (Roche Diagnostics) and were selected with

1 mg/ml puromycin (Sigma). Confluent cells in a HYPERFlask (Corning) were

washed twice with PBS and incubated with serum-free medium for 3–4 weeks,

with weekly medium exchanges. The pooled serum-free conditioned medium

was loaded onto a 5-ml HisTrap column (GE Healthcare) using an Äkta Purifier

(GE Healthcare). The protein was eluted with 500 mM imidazole in PBS,

concentrated using a Vivaspin centrifugal device (Sartorius), and further puri-

fied on a Superdex 200 HR10/30 size-exclusion chromatography column (GE

Healthcare) with Tris-buffered saline (TBS) (25 mM Tris, 150 mM NaCl, and

2 mM KCl [pH 7.4]) as the running buffer.

Generation of Anti-DDR1 Antibodies

To prepare an untagged antigen for immunization, 500 mg of His-DDR1

(Leitinger, 2003) was digested with 25 U EKMax enterokinase (Invitrogen) for
Structure 20
16 hr at 4�C. EKMax was removed with EK-Away resin (Invitrogen) according

to themanufacturer’s protocol. UncleavedHis-DDR1 and the cleaved tagwere

removed with TALON metal affinity beads (Clontech). The untagged DDR1

protein was dialyzed against PBS and concentrated to 2 mg/ml by ultrafiltra-

tion. Mouse anti-DDR1 mAbs were generated by immunizing female BALB/c

mice with the untagged DDR1 protein. Three days after the final boost, one

mouse was sacrificed to obtain splenocytes for hybridoma production by

standard procedures. Hybridoma cell supernatants were screened against

DDR1-Fc and His-DDR1 proteins by ELISA. Reactive hybridoma supernatants

were further screened for recognition of native DDR1 by cell-based ELISA,

using HEK293 cells expressing full-length DDR1. Positive hybridoma cells

were subcloned by limited dilution and screened as above. The isotype

of each mAb was determined by standard methods. All mAbs are of the

IgG1 isotype, with the exception of mAb 1F10, which is IgG2b.

Antibody and Fab Fragment Production

Hybridoma cells were grown at 37�C with 5% CO2 in RPMI-1640 medium

(Invitrogen) containing 10% fetal bovine serum, 1 mM sodium pyruvate,

10 U/ml penicillin, 100 mg/ml streptomycin, and 1 mg/ml fungizone (Invitrogen).

The serum concentrationwas gradually reduced to 5% in a final culture volume

of 1 l. The hybridoma cell culture supernatant was loaded onto a 2 3 1-ml

HiTrap rProtein A column (GE Healthcare). The mAbs were eluted with Immu-

nopure gentle elution buffer (Pierce) and dialyzed against TBS. Fab fragments

were generated with a Fab Preparation Kit (Pierce) according to the manufac-

turer’s protocol. Briefly, 8 mg of mAb were incubated overnight at 37�C
with activated papain immobilized on agarose resin. The Fc fragment and

undigested mAb were removed using a 1-ml HiTrap rProtein A column (GE

Healthcare), yielding �3 mg of Fab fragment. The Fab fragments used in

cocrystallization experiments were further purified by size-exclusion chroma-

tography on a Superdex 200 HR10/30 column (GE Healthcare) with TBS as the

running buffer.

mAb cDNA Synthesis and Sequencing

Total RNA was prepared from �107 3E3 hybridoma cells using the RNeasy

Mini Kit (QIAGEN). The RNA was reverse-transcribed, and cDNA fragments

encoding the heavy- and light-chain variable regions of the mAb were ampli-

fied using the SuperScript III One-Step RT-PCR system (Invitrogen) and

suitable universal primers (Orlandi et al., 1989). The PCR products were

gel-purified and sequenced using the same primers. The mAb residues are

numbered according to Al-Lazikani et al. (1997).

DDR1 Activation Assay

The assay was performed as described elsewhere (Leitinger, 2003). Briefly,

HEK293 cells were grown in 12-well tissue culture plates and transfected

with 2 mg/well of DDR1 wild-type or mutant plasmid DNA using calcium

phosphate precipitation. Twenty-four hours after transfection, the cells were

incubated with serum-free medium for 16 hr. Cells were then stimulated with

10–50 mg/ml acid-soluble rat tail collagen I (Sigma) for 90 min at 37�C before

being lysed. In the inhibition experiments, anti-DDR1 mAbs or their Fab frag-

ments were added together with collagen I, without prior incubation. Aliquots

of the cell lysates were subjected to SDS-PAGE and blotted onto nitrocellulose

membranes. The blots were first probed with a mouse anti-phosphotyrosine

mAb (clone 4G10, Upstate Biotechnology) followed by a horseradish peroxi-

dase-conjugated sheep anti-mouse Ig (Amersham Biosciences). Detection

was done by Enhanced Chemiluminescence Plus (Amersham Biosciences)

using an Ettan DIGE Imager (GE Healthcare). To reprobe the blots, the

membranes were treated with Ab stripping solution (Alpha Diagnostic Interna-

tional), followed by incubation with rabbit anti-DDR1 Ab (SC-532, Santa Cruz

Biotechnology), and finally goat horseradish peroxidase-conjugated anti-

rabbit Ig (P0448, DAKO).

ELISA and Solid Phase Binding Assays

Recombinant DDR proteins, diluted to 10 mg/ml in 50 mM Tris and 100 mM

NaCl (pH 8.5), were coated in 50-ml aliquots onto Maxisorp 96-well plates

(Nalgene NUNC) overnight at room temperature. The wells were blocked

with 150 ml of incubation buffer (PBS containing 40 mg/ml bovine milk k-casein

[Sigma] and 0.05% Tween-20) for 1 hr at room temperature. Anti-DDR1 mAbs

were added at 30 mg/ml in 50-ml aliquots and were incubated for 1.5 hr at room
, 688–697, April 4, 2012 ª2012 Elsevier Ltd All rights reserved 695
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temperature. The wells were washed six times with incubation buffer, followed

by the addition of horseradish peroxidase-conjugated sheep anti-mouse Ig

(Amersham Biosciences, 1:1000 dilution in incubation buffer) for 1.5 hr at

room temperature. After six washes as above, bound mAbs were detected

with 75 ml/well of 500 mg/ml o-phenylenediamine dihydrochloride (Sigma-

Aldrich) in 50 mM citrate-phosphate (pH 5.0). The reaction was stopped after

3–5 min with 50 ml/well of 3 M H2SO4. The absorbance at 492 nm was

measured using a Sunrise 96-well plate reader (Tecan).

To measure DDR1 binding to the collagen-derived peptide III-23, Immulon 2

HB 96-well plates (Fisher Scientific) were coated overnight at room tempera-

ture with 10 mg/ml III-23 in 10 mM acetic acid (Xu et al., 2011). The wells

were then blocked in incubation buffer as described above. DDR1-Fc proteins

were added in various concentrations and incubated for 3 hr. In the inhibition

experiments, the DDR1-Fc protein was incubated with anti-DDR1 mAbs for

30 min at room temperature before being added to the wells. After six washes

with incubation buffer, bound DDR1-Fc was detected with horseradish perox-

idase-conjugated goat anti-human Fc (Jackson ImmunoResearch Laborato-

ries, 1:3333 dilution), added for 1 hr at room temperature. The assay was

completed as described above.

Flow Cytometry

HEK293 cells were grown in 6-well plates and transfected with 5 mg/well of

DDR1 wild-type or mutant plasmid DNA using calcium phosphate precipita-

tion; 48 hr after transfection, the cells were dissociated with nonenzymatic

cell dissociation solution (Sigma) and resuspended in PBS containing 1%

BSA. The cells were incubated with primary mAb or mouse IgG1 isotype

control Ab (Cambridge Bioscience) at 10 mg/ml in 100 ml PBS/BSA for

30 min on ice, followed by three washes with PBS/BSA and incubation with

FITC-conjugated goat anti-mouse IgG (F-9006, Sigma) for 30 min on ice. After

three washes as above, the cells were resuspended in 2% formaldehyde in

PBS and analyzed on a FACSCalibur flow cytometer using Cell Quest Pro soft-

ware (Becton Dickinson Biosciences).

Crystal Structure Determination

The purified DDR1 protein for crystallography and the 3E3 Fab fragment were

mixed in an equimolar ratio and incubated on ice for 30 min. The solution was

subjected to size-exclusion chromatography on a Superdex 200 HR10/30

column (GE Healthcare) with TBS as the running buffer. The DDR1-3E3 Fab

complex was eluted as a single peak and was concentrated to 6mg/ml. Sitting

drop vapor diffusion crystallization screens were set up using a Mosquito

nanolitre robot (TTP LabTech). Crystals were obtained after 1–2 days at

room temperature using 2% Tacsimate (pH 5.0) (Hampton Research),

100 mM sodium citrate tribasic dihydrate (pH 5.6), and 20% PEG 3350 as

precipitant. Crystals were flash-frozen in liquid nitrogen after a brief soak in

mother liquor supplementedwith 25%glycerol. Diffraction datawere collected

at 100 K on station I02 at the Diamond Light Source (Oxfordshire, UK). The

data were processed with MOSFLM (www.mrc-lmb.cam.ac.uk/harry/

mosflm) and programs of the CCP4 suite (CCP4, 1994). The DDR1-3E3 Fab

structure was solved by molecular replacement with PHASER (McCoy et al.,

2007), using as search models the DDR2 DS domain (PDB entry 2wuh) and

a Fab fragment of an Ab directed against neuropilin-2 (PDB entry 2qqk). The

electron density map calculated from the correctly positioned search models

showed weak density for several b strands in the DS-like domain, which were

used to place the related coagulation factor V/VIII type C domain of galactose

oxidase (PDB entry 1k3i) as an aid for model building. The model was built with

O (Jones et al., 1991) and refined with CNS (Brünger et al., 1998). Crystallo-

graphic statistics are summarized in Table 1. The figures were made with

PyMOL (http://www.pymol.org).

ACCESSION NUMBER

The coordinates of the DDR1-3E3 Fab structure have been deposited in the

Protein Data Bank (entry code 4ag4).
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