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ABSTRACT: Maintaining brain health promotes successful aging.  The main determinants of brain health 

are the preservation of cognitive function and remaining free from structural and metabolic abnormalities, 

including loss of neuronal synapses, atrophy, small vessel disease and focal amyloid deposits visible by 

neuroimaging. Promising studies indicate that these determinants are to some extent modifiable, even 

among adults seventy years and older. Converging animal and human evidence further suggests that 

inflammation is a shared mechanism, contributing to both cognitive decline and abnormalities in brain 

structure and metabolism. Thus, inflammation may provide a target for intervention. Specifically, 

circulating inflammatory markers have been associated with declines in cognitive function and worsening of 

brain structural and metabolic characteristics. Additionally, it has been proposed that older brains are 

characterized by a sensitization to neuroinflammatory responses, even in the absence of overt disease. This 

increased propensity to central inflammation may contribute to poor brain health and premature brain 

aging.  Still unknown is whether and how peripheral inflammatory factors directly contribute to decline of 

brain health. Human research is limited by the challenges of directly measuring neuroinflammation in vivo.  

This review assesses the role that inflammation may play in the brain changes that often accompany aging, 

focusing on relationships between peripheral inflammatory markers and brain health among well-

functioning, community-dwelling adults seventy years and older. We propose that monitoring and 

maintaining lower levels of systemic and central inflammation among older adults could help preserve 

brain health and support successful aging.  Hence, we also identify plausible ways and novel experimental 

study designs of maintaining brain health late in age through interventions that target the immune system.   

 

Key words: Brain health; Central inflammatory processes; Aging 

 

 
Maintaining brain health and preserving cognitive 

functioning as we age are critical for promoting 

autonomy and protecting against disability, dementia, 

and mortality [1, 2]. Brain health is affected by several 

modifiable factors, including cardiometabolic parameters 

and aspects of our lifestyles. Emerging evidence shows 

that these risk factors for brain health decline are also 

related to systemic levels of inflammation. Moreover, 
there is comparable evidence indicating that increases in 

levels of peripheral markers of inflammation are 

associated with age-related declines in brain health. Such 

evidence parallels longstanding findings from 

neurocognitive studies in populations of older adults living 

in the community, consistently indicating an association 

between higher inflammatory levels and lower cognitive 

levels and higher risk of cognitive impairment over time. 

(see Gorelick for a review [3])   

 Considering the above in aggregate, it is important to 
note that an association of heightened peripheral 

inflammatory markers with structural and functional  
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Figure 1.  Communication between central nervous system and immune system.  Triggers (cardiometabolic and 

lifestyle factors, or injuries of other nature) occurring anywhere in the body are communicated to the CNS via release of 

proinflammatory factors. An inflammatory response is initiated when monocytes/macrophages are activated by 

pathogens or tissue damage to release pro-inflammatory cytokines, including interleukin (IL)-6, IL-1β, and tumor 

necrosis factor (TNF)-α, and chemokines, such as IL-8.  These chemical mediators coordinate a local inflammatory 

response, resulting in the recruitment and activation of leukocytes to the site of invasion/injury. They also enter 

peripheral circulation to stimulate a systemic response, which includes the synthesis and release of acute phase proteins, 

such as C-reactive protein and fibrinogen.  The CNS responds to this information by initiating behaviors to adapt to such 

triggers (e.g., fever, reduced activity) and by releasing immune mediators to respond to the peripheral stimulus (green 

arrow). In normal circumstances, peripheral inflammatory responses are terminated quickly by the action of anti-

inflammatory factors released locally and systemically to shut off the inflammatory response, leading to the adaptive 

restoration of a lower inflammatory state.   

 

 

brain changes in association with neurocognitive 

changes over the course of life is biologically plausible, 

because the CNS is intimately and continuously engaged 

in a two- way communication with the peripheral 

immune system (Figure 1).   

To elaborate, multiple behavioral and disease 

processes can lead to heightened levels of systemic 

inflammation. In the case of acute illness, the 

inflammatory response is tightly controlled by a diverse 

set of regulatory mechanisms to handle the extent of the 

precipitating infection or injury, resolve quickly and 

restore health.  In contrast, in older age these regulatory 

processes seem to be impaired, resulting in augmented 

and/or longer inflammatory response with subsequent 

tissue damage. For example, aging is associated with a 

chronic increase in the level of systemic inflammation 

[4, 5], that is relatively stable over extended periods [6], 

and predicts risk for a range of age-associated diseases, 

including cardiovascular disease, type 2 diabetes, frailty 

and general functional decline [7-10].  

Additionally, recent evidence shows that older brains 

mount exaggerated central inflammatory responses to 

peripheral inflammatory stimuli even in the absence of 

clinically overt neuropathology [11, 12]. Thus, 

prolonged exposure to inflammatory triggers, higher 

levels of peripheral pro-inflammatory mediators that 

communicate with the CNS, lower levels of anti-

inflammatory factors, and the “priming” of immune 

target cells in the brain can all contribute to heightened 

or prolonged neuroinflammation (Figure 2).  

This review assesses evidence for, and potential 

mechanisms of, the contribution of peripheral 

inflammatory markers to brain health and the potential 

for prevention and intervention.  Specifically, it remains 

to be determined whether and to what extent higher 

levels of peripheral inflammation reflect the presence 

and the severity of brain abnormalities and of brain 

inflammation in community-dwelling older adults. The 

answer to this question is critical to understand whether 

serum measurements of inflammatory markers could 

serve as biomarkers of underlying brain health.  The 

potential use of these markers is very attractive because 

these measures present low risk, they are reasonably easy to 

be obtained, inexpensive, and reliable.  We caution in this  
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Figure 2. Biological rationale for a relationship between peripheral inflammatory factors and brain 

health.  Proinflammatory cytokines cause greater endothelial permeability and adhesively of the blood brain 

barrier (BBB) and may reach the CNS through several pathways: 1 = through the post-inflammatory 

dysfunctional endothelium of the BBB; 2 = through binding to specific receptors on the BBB cell, and 

subsequently triggering mRNA production of pro-inflammatory factors; 3 = via diffusion through “nude” 

areas. 4. Via stimulation of the adrenergic system through the vagal nerve.  Upon stimulation, the microglia 

in the CNS is also capable of producing cytokines directly, thus cytokines levels can increases in the CNS and 

can trigger brain inflammation even if they are not transferred from the peripheral blood into the brain 

parenchyma.   

 

 

review, however, that researchers cannot assume that 

circulating levels of inflammatory mediators provide 

one-to-on measures of immune-derived inflammatory 

processes, as many cells other than immune cells 

produce these signaling proteins, including adipocytes 

and endothelial cells [13, 14]. Indeed, adipose tissue is a 

key source of peripheral IL-6, with adipocytes 

(particularly those residing in visceral adipose tissue) 

producing 10-35% of circulating levels [13]. Thus, this 

review will also consider the possible contribution of 

obesity to neuroinflammatory processes. 

This review is organized into three sections: Section 

One describes and defines the determinants of brain 

health and proposes a model for potential inflammatory 

mechanisms; Section Two assesses evidence for the 

contribution of peripheral inflammatory markers to 

declining brain health; Section Three identifies 

opportunities to help maintain brain health late in age, 

through interventions targeting the immune system.  

The complexity of the inflammatory and immune 

systems will not be addressed in detail in this review. 

The reader is invited to consult the many excellent 

reviews published on these topics [15-24].   

 

1.  Brain health in older age: measurements and 

potential inflammatory mechanisms. 

 

This section provides the background for a relationship 

between inflammation and brain health decline in older 

adults. We first summarize the main measurements of brain 

health that is brain function and structure using cognitive 

testing and neuroimaging methods, and brain indicators of 

inflammation (1.1.).  We then briefly review the main 

cardiometabolic and lifestyle factors related to brain health 

(1.2.) and their relationship with inflammatory factors (1.3). 

Lastly, we describe potential mechanisms that may 

contribute to age-related declines in brain health (1.4), 

considering the role of cardiometabolic and lifestyle factors, 

and related systemic inflammation.  

 

1.1. Overview of measurements of brain function and 
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structure in older adults. 

Cognitive decline generally begins in the late 20s and 

progresses at a consistent rate across adulthood [25].  

Some domains, including working memory, attention, 

and executive functioning, are more affected than others 

in older age, and age-related declines are predominant in 

processing speed [26, 27]. Compared with younger 

individuals, healthy elderly also perform less well on 

measures of delayed recall and recognition, and mental 

flexibility [28-30].  

Overall, declines in brain function among older adults 

are associated with brain atrophy, hyperintensities in the 

white matter, and lacunae, as well as with amyloid 

deposits and metabolic changes [2, 31, 32].  However, 

these neuroimaging findings accompany numerous 

conditions and are not disease-specific. For example, 

global brain atrophy and hippocampal atrophy 

commonly accompany a variety of memory impairment 

syndromes, including Alzheimer’s, Vascular, and 

Parkinson dementias [33], as well as memory 

impairment in healthy elderly adults 
 
[34]. They are also 

frequently seen in those who have suffered severe 

hypoxia and traumatic brain injury [35].  Observational 

studies have also shown associations of higher prevalence 

of infarcts, white matter hyperintensities, and atrophy with 

inflammatory markers in older adults in the absence of 

overt clinical disease [36-43].   

Applications of advanced neuroimaging methods that 

quantify micro-structure and metabolism with increased 

spatial resolution and regions-of interest approaches 

have begun to change our understanding of brain aging 

processes. For example, atrophy in older adults free from 

dementia primarily affects the prefrontal cortex and the 

subcortical regions, including the basal ganglia and the 

hippocampus [44-50]. Similarly, the very recent 

application of the Pittsburgh-Compound B to study 

amyloid deposition in cognitively normal older adults 

has shown focal amyloid deposition within fronto-

parietal and posterior cingulated networks, known to be 

related to executive control function [51, 52]. 

Additionally, Diffusion Tensor Imaging (DTI) has 

uncovered the presence of microstructural abnormalities 

that remain otherwise invisible on conventional MRI [53, 

54] Specifically, higher mean diffusivity and lower 

fractional anisotropy from DTI indicate loss of 

homogeneity of brain tissue and are observed in brain 

abnormalities that develop with aging [55] and are 

associated with slower processing speed  [56]. Overall, 

these neuroimaging findings support the clinical 

observations that older adults who are non-demented 

primarily display executive and memory dysfunction. 

 Recent methodological developments in 

neuroimaging are also beginning to provide markers of 

brain inflammation in vivo. For example, MRI combined 

with Gadolinium as a contrast agent can provide images 

of brain vascular permeability, a correlate of blood-brain 

barrier alterations and thus a potential inflammatory 

marker. Notably, however, this newer method has a 

limited spatial resolution. Additionally, greater vascular 

permeability occurs in advanced stages of inflammation; 

thus, this method would not yet appear to capture subtle 

signs or earlier stages of inflammation. Ultra high-field 

neuroimaging combined with injections of iron oxide 

nanoparticles is emerging as a neuroimaging method to 

visualize inflammatory phenomena at the cellular level 

by marking activated microglia in early inflammatory 

stages. This method shows greater regional binding of 

contrast agent even in the absence of frank disruptions to 

blood-brain barrier permeability and with greater spatial 

resolution than Gadolinium contrast approaches (see 

references [57-60] for reviews). Magnetic resonance 

molecular imaging has been used in acute ischemic 

stroke to identify endothelial activation by targeting 

biomolecular agents [61]. Although very promising, to 

date these methods have been applied mostly in patient 

populations and in animal disease models [62-69]. 

Moreover, compared with many of the other modalities 

reviewed here, these neuroimaging approaches are more 

invasive and less feasible for large-scale and longitudinal 

epidemiological studies.  

 

1.2. Association of cardiometabolic and lifestyle factors 

with brain health 

Although the biological bases for the selective spatial 

distribution of brain abnormalities accompanying aging 

remain unclear, growing evidence points to the vascular 

anatomy and hemorrheological characteristics of the flow 

within these regions as predisposing factors. Fronto- 

subcortical networks, deep striato-capsular and lenticular 

regions, and finally the deep white matter are localized 

within the watershed areas of the cerebral blood supply 

system, and thus have poor collateral vascularization as 

well as low cerebral perfusion pressure.  These 

predisposing conditions make the fronto-parietal and 

subcortical regions more susceptible to disturbances of 

cerebral perfusion [70].  

Several factors related to aging, in particular 

hypertension, arteriosclerosis and glucose dysregulation, 

contribute to disturbances of cerebral perfusion, and are 

associated with cognitive decline and related changes in 

brain structure and metabolism  [71-73].  Among adults 

75 years and older, hypertension is the most common 

risk factor longitudinally associated with increased white 

matter hyperintensities, along with arteriosclerosis, and 
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hemodynamic dysregulation [44, 74-77]. A role of cerebral 

amyloid angiopathy in altering the blood brain barrier 

permeability and contributing to small vessel disease has 

also been proposed [78, 79]. Pulse pressure (the difference 

between systolic and diastolic blood pressure, which is 

associated with vessel stiffening and vascular aging) has 

also been cross-sectionally associated with white matter 

hyperintensities in older adults [80]. Glucose-related 

disturbances have also been associated with brain structural 

changes [81-83]. 

Among lifestyle factors, attention has recently 

focused on the role of diet and physical activity as well 

as to social and cognitive engagement in brain aging 

[84]. This review focuses on these modifiable factors 

because they may be amenable to cost-effective, non-

pharmacological interventions that promote other aspects 

of whole-body and brain health, including lower 

cardiovascular risk and mood improvements [85]. Higher 

levels of adiposity are associated with higher circulating 

levels of inflammatory factors [86], and predict temporal 

lobe and global brain tissue atrophy, a reduced integrity 

of white matter tracts, cognitive decline, and even 

incident dementia [87-91]. Corroborating these human 

epidemiological findings, experimental and animal 

studies further demonstrate that obesity predicts deficits 

in hippocampal-dependent learning and memory [92-94]. 

We have shown [95, 96] that greater percent body fat is 

associated with poorer cognitive function, and lower 

hippocampal grey matter volume among relatively 

healthy mid-life adults , 30-54 years of age,  suggesting 

that the cognitive decline associated with adiposity 

begins well before clinically significant deficits. It is 

plausible that long-term exposure to adiposity could 

presage accelerated brain and cognitive aging. In 

addition to adiposity, atherogenic diet has been 

associated with higher levels of brain inflammation in 

animal models [97]. 

Several lines of evidence suggest that level of social 

engagement and other social behaviors related to 

lifestyle predict cognitive aging, independently of other 

known risk factors (e.g., depressive symptoms, frailty, 

and cardiovascular and cerebrovascular health status). 

For example, higher scores on a social engagement scale 

(assessing membership in diverse social groups and 

frequency of social interactions) predicted less of a 12-

year decline in global mental status among 2,812 

community dwelling adults older than 65 yrs [98]. Such 

findings have been corroborated and extended in studies 

of social participation [99-101] and social-network size 

in particular, as well as in studies of social engagement 

and working memory and related executive control 
functions [102].   

Recent studies indicate that interventions that decrease 

cardiometabolic risk in older adults [75, 103-108] and 

improve lifestyle parameters such as diet, social 

engagement, and exercise [109, 103, 110, 111] can delay 

cognitive decline and slow the progression of structural 

brain abnormalities, specifically signs of subclinical 

cerebral disease [75], white matter hyperintensities 

[112], and brain tissue atrophy. Critically, there is also 

evidence that human brains retain substantial plasticity, 

or the potential to change in function and structure, and 

several reserve capacities even in their late eighties [85]. 

Therefore, it is very important to understand the 

mechanisms underlying the relationship between these 

factors and brain health.  

 

1.3. Association of cardiometabolic and lifestyle factors 

with inflammation 

Many of the risk factors for brain health decline, 

including higher homocysteine, oxidized lipids, free 

radicals, and Angiotensin II are directly toxic to blood-

brain barrier permeability, and can trigger vascular 

inflammatory events [19, 71]. Of relevance to the current 

review, activated immune cells involved in the 

inflammatory response are a primary source of oxidative 

stress [113, 114]. Indeed, evidence shows a positive 

association of systemic markers of inflammation with 

oxidative burden [115-117], which may play a role in the 

pathogenesis of neurodegeneration. Additionally, small 

vessel abnormalities, occlusions and/or lower blood flow 

can cause an inflammatory response in the vascular 

districts via poor oxygenation and lower glucose delivery 

to neurons, which in turn trigger subsequent cellular 

modifications and changes in beta protein metabolism. 

Specifically, higher levels of beta fragments, due either 

to a genetic predisposition (APO-e4) and/or to 

neurodegeneration following vascular insults, can 

function as “irritants” and trigger an inflammatory 

response [118, 119]. These findings suggest that a main 

mechanism linking cardiometabolic factors with 

inflammation may be localized to the vascular district, 

specifically, an induced state of vascular inflammation 

with release of cytokines and chemokines locally and 

systemically across the blood brain barrier.  

 It is well established that adipose tissue is a potent 

source of peripheral inflammatory mediators, with 

adipocytes producing 10-35% of circulating IL-6 levels 

[92]. Further, mononuclear cells of obese people are 

“primed” to express pro-inflammatory cytokines [92]. 

Thus, obesity can reasonably be viewed as an 

inflammatory condition, with circulating levels of IL-6 

and other inflammatory mediators covarying positively 

with adiposity. Conversely, greater social engagement 
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and related social factors (e.g., social support) are 

inversely related to expression of inflammatory markers 

[24]. Animal evidence indicates that manipulation of the 

social environment, particularly social isolation, 

increases pro-inflammatory cytokine expression 

(specifically IL-1beta) in the hippocampus, and 

decreases brain-derived neurotrophic factor (BDNF) 

expression [120]. Moreover, social isolation impairs 

hippocampal-dependent memory, and this effect is 

blocked by intra-hippocampal injection of an IL-1 

receptor antagonist, which also prevents BDNF 

decreases [120].  However, we are unaware of studies 

linking social engagement with indicators of brain 

morphology and related aspects of cognition that co-vary 

with inflammation, as would be predicted by converging 

lines of epidemiological, animal, and neuroimaging 

work.  

 

1.4. Potential mechanisms underlying decline in brain 

health  

The pathways linking pro-inflammatory levels in the 

circulating blood with brain health have been examined 

in detail in many excellent reviews and are only briefly 

summarized here (Figure 2) [15-17, 21-24, 105, 121-

125]. Direct pathways include: a) active passage across 

the blood brain barrier; and b) passive diffusion from the 

plexus choriodeus and other blood brain barrier-nude 

regions into other brain regions. Cytokines can also 

affect the CNS through indirect pathways that include: a) 

stimulation of the vagal nerve, and b) inflammation of 

the endothelial cells, which in turn produce 

inflammatory factors.  

Regardless of the nature and location of the 

originating trigger, increased levels of inflammatory 

factors cause loss of vascular anti-adhesive and 

impermeability properties of the blood brain barrier —

thus allowing adherence and entrance of inflammatory 

cells into the CNS parenchyma, oxidation of LDL and 

accumulation of an inflammatory locus within the 

vascular wall. Furthermore, inflammatory factors in the 

CNS and peripheral pro-inflammatory factors stimulate the 

production of central pro-inflammatory factors by 

microglial cells in discrete brain regions (Figure 2).  The 

production and release of pro-inflammatory factors from 

the microglia ultimately contribute to neurotoxicity and 

brain parenchyma abnormalities. These in turn can 

sustain the inflammatory reaction, thus maintaining a 

vicious cycle.           

It has been suggested that increases in low-grade 

systemic inflammation, such as those that accompany 

cardiometabolic risk and aging as described above, 

sensitize the brain response to inflammatory factors. 

Specifically, in vivo and in vitro animal studies, as well 

as post-mortem human studies, indicate that older brains 

are in a native heightened inflammatory state even in the 

absence of overt disease [16, 17, 22-24, 97, 121, 126]. In 

addition to the chronic exposure to low-grade systemic 

inflammation, this state has also been attributed to an 

age-related change in microglia to a phenotype that 

release inflammatory factors and respond excessively to 

stimulation.  Another possible cause of this primed state 

is the life-time exposure to cellular debris from pruning 

and remodeling as well as neuronal senescence processes 

that act as local “irritants” and trigger inflammatory 

reactions. It has been shown that there is a relative 

increase in expression of pro-inflammatory genes in 

older mice brains [21]. Since peripheral pro-

inflammatory cytokines stimulate the production of 

central pro-inflammatory cytokines by microglial cells, a 

sensitization of neuroinflammatory responses may play a 

role in the premature brain and cognitive aging that 

accompany increased systemic inflammation. 

 

1.5. Implications for mechanisms linking inflammation 

and brain health 

In summary, risk factors for declining brain health in older 

adults include numerous cardiometabolic conditions and 

lifestyle factors that each relate to inflammation. Prolonged 

exposure to these conditions and risk factors might 

trigger and then sustain a systemic inflammatory 

response as well as a focal response in the brain. The 

increasing levels of pro-inflammatory factors in the 

blood may in turn affect the inflammatory state of the 

CNS through direct and/or indirect pathways as 

described above. Since the CNS and the immune system 

are in constant communication, a heightened 

inflammatory state in the periphery can plausibly occur 

concurrently with a heightened inflammatory state in the 

brain and vice versa. For example, cardiometabolic risk 

factors may trigger vascular inflammation in multiple 

vascular districts concurrently, including the peripheral 

and cerebral districts. Once these factors cause vascular 

inflammation in the cerebro-vascular district, then 

endothelial cells of the blood brain barrier may produce 

and release cytokines within the CNS.  The preferential 

genetic expression of pro- versus anti-inflammatory 

factors in older age might also facilitate either the start 

and/or the maintenance of an inflammatory state. In 

addition to the biological plausibility of an association 

between inflammation and brain health, there is recent 

consistent evidence of associations between peripheral 

cytokines and brain health as described in the next 

section. 
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2. Contribution of peripheral inflammatory markers 

to declining brain health 

 

A number of peripheral blood markers of inflammation 

have been examined in studies of brain aging. Key 

markers include interleukin (IL)-6, IL-1β, and tumor 

necrosis factor (TNF)-α, and chemokines, such as IL-8 

[127].  In contrast to IL-1β and TNF-α, which decay 

rapidly, levels of IL-6 and C-Reactive Protein can be 

reliably detected in peripheral circulation and are widely 

assumed to reflect systemic levels of inflammation. 

Consistent evidence from animal studies and disease 

models indicates that peripheral inflammatory mediators, 

such as interleukin (IL)-6, modulate central inflammatory 

processes that affect cognitive function [24, 128-130]. 

Notably, receptors for IL-6 are concentrated in the 

hippocampus and prefrontal cortex [130-132]. We have 

recently shown that higher IL-6 levels are associated with 

smaller hippocampal and prefrontal gray matter volume 

and with lower executive function and memory 

performance in otherwise healthy middle-aged 

community dwelling adults [95, 96].   It is likely that other 

peripheral proinflammatory mediators, such as IL-1 beta 

and TNF-alpha, also play a role in the induction of central 

neuroinflammation; however it is harder to reliably assess 

these factors due to their low circulating levels and short 

half-lives. Research suggests that IL-1, IL-6, and TNF 

are involved in neurophysiological processes that 

subserve cognitive function and brain health [133]. 

Animal studies indicate that IL-1 affects long-term 

potentiation and possibly neurogenesis, IL-6 is an 

important regulator of neurogenesis, and TNF 

influences cognitive function through direct effects on 

long term potentiation and synaptic scaling [133]. 

Experimental studies using animal models demonstrate 

that long-term exposure to IL-6, as seen in normal aging 

and certain neurodegenerative diseases, can interfere 

with neurocognitive functioning by impairing adult 

neurogenesis [21, 134]. 

 

2.1. Evidence from patients with primary 

neurodegenerative disorders 

Studies in patients with ischemia and stroke indicate that 

peripheral levels of the inflammatory markers IL-6 and 

TNF- provide markers of the severity of the underlying 

lesions as well as predict patient prognosis [135-140]. One 

study showed that patients with recurrent chronic brain 

infarctions had higher levels of monocyte chemoattractant 

proteins and C-reactive protein [141]. 

Studies of patients with  Alzheimer’ and Parkinson’s 

diseases show an association between blood levels of 

inflammatory markers and severity of brain functional 

impairment  [142-144]. Still unknown is whether higher 

levels of peripheral inflammatory markers indicate 

underlying declining brain health in community-dwelling 

older adults. The majority of longitudinal studies 

examining the relationship of inflammation with brain 

health in older adults have focused on dementia 

populations, with comparatively few examining 

community-dwelling older adults [145].  

 

2.2 Evidence from patients with primary chronic 

peripheral inflammatory diseases 

Studies of rheumatoid arthritis and lupus strongly support 

the presence of immune-to-brain communication pathways 

[146-148]. Pioneering neuroimaging studies in humans 

report brain metabolic alterations and volumetric reductions 

in patients relative to controls, suggestive of underlying 

brain degeneration [147, 149-151]. It is not clear whether 

these inflammatory diseases affect the brain via increased 

levels of peripheral inflammatory factors (e.g., via the 

mechanisms described in 1.3 and illustrated in Figure 2) or 

by  pain-mediated mechanisms, which have also been 

suggested [152]. One recent study of patients with 

rheumatoid arthritis suggests an association between TNF 

alpha blocking agents and worse micro-structural brain 

characteristics [153].  

A review of seven studies of patients with arthritis 

taking anti-inflammatory medications (NSAIDs and 

steroids) found strong evidence for decreased risk for 

Alzheimer disease [154]. However, a similar association 

was not observed in patients with rheumatoid arthritis 

taking corticosteroids [71], raising the possibility that the 

effects are specific to  NSAIDs.  In this regard, two 

reviews of observational studies of non-demented 

populations [155, 156] concluded that NSAIDs intake is 

associated with higher cognitive function, slower 

progression of cognitive decline and lower risk of 

developing Alzheimer’s disease. However, NSAID 

intake in demented adults appears to have no or little 

effect on progression of cognitive decline. These 

preliminary results should spur further research to test 

the hypothesis that NSAID intake is most beneficial 

early, rather than late in the course of the 

neurodegenerative process. The mechanisms underlying 

the effects of NSAIDs have not been examined. It is not 

clear whether NSAIDs’ neuroprotective effects result 

from the dampening of inflammatory processes or from 

the direct lowering of A levels. Mediating effects on 

pain have also been suggested as potential mechanisms. 

2.3. Evidence from experimental studies 

Experimental studies inducing higher blood levels of 

pro-inflammatory markers via peripheral immune stimuli 
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in young adults have shown a slowing of information 

processing and negative mood changes within 12 hours 

[157-159]. Related functional neuroimaging data 

obtained within this timeframe show concurrent changes 

in patterns of neuronal activation and heightened 

response to emotional-related stressors. This is consistent 

with the loop linking peripheral stressors with adaptive 

neuronal responses (Figure 1). Initial experimental 

studies using peripheral administration of cytokine-

blocking agents also show rapid and short-term changes 

in the CNS [160-162]. The work by Hess et al [161], 

suggests  that TNF neutralization in a mouse model of 

rheumatoid arthritis has rapid effects on neuronal activity 

in regions related to pain perception six hours after drug 

intake, without detectable changes in peripheral 

cytokines levels.   Another study of rheumatoid arthritis 

patients taking naproxen [162] found a reduced 

hypothalamic-pituitary-adrenal (HPA) axis response in 

the short, though not long term. These initial findings 

suggest that inflammatory factors may affect the CNS 

directly.  

While we take stock of the mounting evidence that 

cytokines are associated with brain function and 

structure, we also notice that most studies are cross-

sectional, leaving open the debate as to whether raised 

peripheral inflammatory markers’ levels are the cause or 

consequence of brain health decline [163]. Initial 

evidence indicates that early interventions on factors that 

initiate inflammatory processes may also decrease risk 

for brain health decline. Future work is needed to 

understand the exact mechanisms of the relationship 

between peripheral inflammation and brain health 

decline (see Implications for future studies, below).   

 

3.  Opportunities for preventative and therapeutic 

intervention.    

 

The central notions that the aging brain becomes 

increasingly subject to systemic inflammation in later 

life, and retains a remarkable level of plasticity well into 

late life, each provide a basis for understanding how 

several lifestyle factors and interventions can have 

preventative and therapeutic benefits.  

Perhaps the most salient lifestyle factor amenable to 

intervention is physical activity. It is well established 

that a sedentary lifestyle confers risk for several 

syndromes associated with heightened levels of 

inflammation—including obesity, diabetes, cardio-

vascular disease, depression, and dementia. Even 

moderate levels of physical activity are associated with 

decreased levels of inflammation [84, 164-168], which 

could plausibly slow the progression of functional and 

cognitive decline in aging [169, 170]. For example, 

aerobic exercise regimens involving regular and brisk 

walking among older adults (approximately 30 minutes 

per day/most days of the week) have been associated 

with improvements in cognitive performance and with 

changes in patterns of brain activation in prefrontal and 

parietal cortices that more closely resemble those seen in 

younger individuals [171, 172]. Moreover, regular 

physical activity has been associated with an increase in 

the volume of gray matter and related cognitive 

functions [111, 173, 174]. An open research question is 

whether physical activity may improve or maintain 

aspects of brain health in aging by directly down-

regulating inflammatory processes. The ongoing 

intervention trials SMART [175] and LIFE-Main [176] 

may provide answers to these questions because they 

will monitor longitudinal changes in physical activity 

and in brain function, and are also collecting and storing 

sera that might be employed to quantify levels of 

peripheral inflammation.  

Weight gain in mid- and later life (possibly related to 

low levels of physical activity), is associated with 

reduced brain tissue volume and associated cognitive 

changes ([177], also see above). One recent study also 

reports that weight loss is associated with decreased 

levels of systemic inflammation and concurrent increases 

in brain activity within memory-related regions [178].  

Most of these studies have focused on adults in their 

sixties or younger. Weight changes in very old adults 

follow differential patterns and are linked with frailty 

and other co-morbidities; their role in improving brain 

health requires further investigation.  

It is noteworthy that particular dietary aspects of 

energy balance and food choices throughout life could 

plausibly affect brain aging and be targeted by 

intervention. In their recent review, Jang and Johnson 

[179] suggest that a diet rich in flavonoids- that is fruits 

and vegetables- might reduce the age-related priming of 

microglia and/or the magnitude of peripheral 

inflammatory reactions and consequently assuage the 

severity of cognitive decline. Additionally, there is 

emerging evidence that higher intake of key ω-3 fatty 

acids – eicosapentaenoic and docosahexaenoic acids 

(EPA, DHA), found primarily in cold water fatty fish 

and in fish oil supplements –is associated with a 

reduction in systemic inflammation, decreased risk for 

premature cognitive impairments, and higher cognitive 

function and regional brain tissue volumes.  

Interestingly, whereas EPA and DHA comprise about 

4% of the fatty acids in plasma and red blood cells, 14-

30% of the fatty acids in the phospholipids of human 
brain tissue, particularly gray matter tissue, are either 

EPA or DHA [180, 181]. Hence, the types and relative 
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concentrations of fatty acids in the diet may, over time, 

affect brain tissue composition and integrity—

specifically through known diffusion or active transport 

pathways [182, 183]. Finally, it is notable here that ω-3 

and ω-6 polyunsaturated fatty acids are precursors to 

prostaglandins and leukotrienes. EPA is a substrate for 

anti-inflammatory prostaglandins and leukotrienes, 

whereas the principal ω-6 fatty acid, arachidonic acid, is 

a substrate for pro-inflammatory mediators [184]. 

Viewed as inflammatory precursors, it has been 

recommended that dietary intake of fatty acids be 

regarded as preventative strategy to decrease levels of  

systemic inflammation and thereby promote physical and 

mental health [185]. 

In addition to the functions described above, EPA 

and DHA have functional and morphological roles in the 

brain, being associated with complexity of dendritic 

branching, synaptic plasticity, and long-term potentiation 

within the hippocampus; ω-3 fatty acid deficiency also 

simplifies dendritic arborization in the cortex [186, 187]. 

Moreover, increasing ω-3 fatty acid intake by oral DHA 

or EPA administration increases dendritic spine 

expression [188, 189]. Finally, ω-3 fatty acid deprivation 

has been shown to reduce brain-derived neurotrophic 

factor and neuron size in the hippocampus, 

hypothalamus, and parietal cortex [186, 190-192]. 

Consistent with work in animals, we found that self-

reported dietary intake of EPA and DHA was associated 

with greater gray matter volumes in the prefrontal and 

medial temporal lobes [193]. The recent OmegAD Study 

indicates that treatment with ω-3FAs in AD patients did 

not substantially modify inflammatory markers’ levels in 

the blood or spinal fluid, suggesting that fatty acids 

protective effects might be more evident among non-

demented adults [194].   

In the aggregate, promising evidence regarding habits 

of lifestyle amendable to intervention, namely physical 

activity, weight maintenance, and intake of flavonoids 

and ω-3 fatty acids, suggests that brain aging and brain 

health could be preserved and positively affected by 

preventative behavioral changes and programs. 

However, it remains unclear precisely how much 

flavonoids or fatty acid individuals should consume on a 

daily or weekly basis, over what period of time, in what 

form (e.g., from food or supplement), and beginning at 

what age to achieve improvements or maintenance of 

brain and cognitive health in later life. Also unclear is 

how EPA and DHA consumption interacts with other 

factors, such as physical activity or use of NSAIDs, in 

affecting inflammatory processes linked to aging.  In this 

regard, epidemiological studies in ethnic groups with 
life-time exposure to high levels of fatty acids, 

specifically Japanese, Icelandic and Norwegian cohorts 

may provide insights into the effectiveness of diet in 

different genetic populations [195]. 

 

4. Implications for future studies 

 

It is possible that low-grade chronic inflammatory and 

neurodegenerative conditions contribute to a recursive 

cycle of damage that may worsen brain health over time.  

The greatest challenge in efforts to maintain brain health 

is to identify how to interrupt this inflammatory cycle.  

While we have described several targets for low cost 

interventions, we propose that advancements in this field 

require the integrated application of novel methods, 

longitudinal designs and unique populations that move 

beyond maintenance of a favorable profile of 

cardiometabolic and lifestyle factors.  

First, the rapid advances in neuroimaging technology 

can now provide direct measures of brain inflammation 

and blood brain barrier permeability which were not 

available until only a few years ago. (see references in 

Section one). Multimodal neuroimaging measures of the 

blood brain barrier, concurrent with brain micro-

structure and quantification of amyloid deposition can 

quantify early abnormalities at the micro-structural and 

metabolic level. Addressing these abnormalities before 

they build into brain macro-structural damage, disease 

and overt inflammation may have a substantial impact on 

maintaining cognitive function in older persons.  There is 

also the need to conduct studies in community dwelling 

older adults to relate markers inflammation in the blood 

to markers of inflammation in the cerebrospinal fluid 

(CSF). Values of inflammatory markers in the CSF of 

older adults in the absence of overt disease are unknown.  

To date, only few reports have documented levels of 

inflammatory factors concurrently in the blood and the 

CSF. Most of these studies have examined patients 

populations [194, 196-198] and report a significant 

correlation between cytokines’ levels in the blood and in 

the CSF. Overall, these results suggest that plasma levels 

of inflammatory factors might be candidate biomarkers 

of underlying neuroinflammatory processes in patients’ 

population.  We are aware of one normative study in 

healthy volunteers [199] 20-90 years old, without history 

of acute or chronic inflammatory disease. The study 

showed that IL-6, IL-8, IL-10 and the soluble TNF 

receptor are detectable both in the blood and CSF, and 

that age did not significantly affect the plasma to CSF 

ratio of inflammatory markers. However, this study did 

not report the strength of the correlation between 

markers in the two compartments.  Longitudinal study 

designs with repeated CSF and blood levels 

measurement of inflammatory factors are warranted to 
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quantify the repeatability and reliability of blood levels 

of inflammatory markers in predicting CSF markers. 

These studies could also clarify whether inflammatory 

levels increase concurrently in the blood and spinal fluid 

or are independent of each other. Specifically, studies 

applying serial and integrated measurements of levels of 

inflammatory markers in these two compartments, 

together with multimodal neuroimaging and cognitive 

testing can help clarify whether there is a causal pathway 

between peripheral inflammatory factors and declining 

brain health and higher brain inflammation. 

It is not clear whether inflammatory levels increase 

concurrently in the blood and spinal fluid or are 

independently of each other and values in the absence of 

overt disease are also unknown. Studies applying serial 

and integrated measurements of levels of inflammatory 

markers in these two compartments, together with 

multimodal neuroimaging and cognitive testing can help 

clarify whether there is a causal pathway between 

peripheral inflammatory factors and declining brain 

health and higher brain inflammation. Novel study 

designs applying international epidemiological 

collaborative approaches would be particularly helpful to 

understand the impact of ethnicity, lifestyle and 

ecological variations on the interplay between 

inflammation and brain health.  

Secondly, there are new drugs with potent anti-

inflammatory effects that appear to have an effect on the 

brain. The application of cytokine blocking agents has 

revolutionized the treatment of peripheral inflammatory 

diseases, specifically of patients with rheumatoid 

arthritis. However, with the exception of one study, the 

effect on the brain has not been directly quantified 

concurrently with symptomatology of the main disease. 

Ongoing trials to test TNFα receptor antagonists in 

patients with rheumatoid arthritis should include the 

measurements described above to quantify CNS changes 

related to drug intake. If these drugs do affect the brain 

and slow the progression of cognitive decline among 

patients with chronic inflammatory conditions, then there 

will be new avenues for exploration of their application 

in the prevention of brain declines that accompany 

normal aging.   

A unique opportunity to study the course of 

inflammatory diseases and cognitive decline in aging 

adults is presented by the cohort of patients with multiple 

sclerosis and HIV who are now living into older age.  

Studies applying the measurements described above can 

clarify the interaction between disease- and age-related 

brain changes, and can provide biomarkers to quantify 

the effects of pharmacologic interventions on either 

and/or both processes. These findings can be particularly 

important among those who convert to dementia. 

Further, the application of advanced neuroimaging 

methods can model personalized medicine approaches. 

Neuroimaging may assist in identifying the optimal 

window of time for administration of NSAIDs. 

Preliminary evidence suggests that NSAIDs may be most 

useful in delaying cognitive decline if taken before the 

onset of dementia. However, it is not clear how “early” 

would be too early. NSAIDs lowering effects of the 

inflammatory response even when clinically indicated 

may cause harm, because the inflammatory response is at 

its core an adaptive response aimed at restoring health.  

Specifically, preliminary studies indicate that NSAIDs 

might harm the inflammatory response to A amyloid 

depositions [155]. Thus, neuroimaging markers of brain 

inflammation, structure, and metabolism may serve to 

identify the window of time to maximize the therapeutic 

effects of NSAIDs. 

In conclusion, addressing the existing empirical gaps 

and pursuing the lines of basic and clinical inquiry 

discussed in this review will help to better characterize 

the complex interplay between the central nervous and 

immune systems in the context of brain and cognitive 

aging.  Understanding the mechanisms and causal 

pathways linking peripheral inflammatory markers with 

brain health and neuroinflammation will help understand 

whether inflammatory markers can serve as surrogate 

markers of declining brain health.   To date, the 

application of these markers to quantify risk of recurrent 

brain vascular events has been shown in patient 

populations. While it is biologically plausible that 

peripheral inflammatory markers reflect underlying brain 

health, the validity of peripheral inflammatory factors as 

prognostic/diagnostic markers of brain health will need to 

be tested in community-dwelling adults using advanced 

neuroimaging methods.  
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