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Abstract

Background:
Although altered metabolism has long been known to affect human breath, generating clinically usable 
metabolic tests from exhaled compounds has proven challenging. If developed, a breath-based lipid test 
would greatly simplify management of diabetes and serious pathological conditions (e.g., obesity, familial 
hyperlipidemia, and coronary artery disease), in which systemic lipid levels are a critical risk factor for onset 
and development of future cardiovascular events.

Methods:
We, therefore, induced controlled fluctuations of plasma lipids (insulin-induced lipid suppression or intravenous 
infusion of Intralipid) during 4-h in vivo experiments on 23 healthy volunteers (12 males/11 females, 
28.0 ± 0.3 years) to find correlations between exhaled volatile organic compounds and plasma lipids. In each 
subject, plasma triglycerides (TG) and free fatty acids (FFA) concentrations were both directly measured and 
calculated via individualized prediction equations based on the multiple linear regression analysis of a cluster 
of 4 gases. In the lipid infusion protocol, we also generated common prediction equations using a maximum 
of 10 gases.

Results:
This analysis yielded strong correlations between measured and predicted values during both lipid suppression  
(r = 0.97 for TG; r = 0.90 for FFA) and lipid infusion (r = 0.97 for TG; r = 0.94 for FFA) studies. In our most 
accurate common prediction model, measured and predicted TG and FFA values also displayed very strong 
statistical agreement (r = 0.86 and r = 0.81, respectively).

continued 

ORIGINAL ARTICLE



87

Noninvasive Measurement of Plasma Triglycerides and Free Fatty Acids from Exhaled Breath Minh

www.journalofdst.orgJ Diabetes Sci Technol Vol 6, Issue 1, January 2012

Introduction

Human breath contains several hundred different 
compounds, of which many are direct or indirect products 
of the metabolism of carbohydrates, lipids, and other 
energy substrates.1 Some are spontaneously present in gas 
form [volatile organic compounds (VOCs)], while others 
enter the exhaled gas mixture as aerosolized particles.2,3 
As breath sampling is a painless, noninvasive procedure 
easily accepted by patients, these components of exhaled 
breath, therefore, represent potentially ideal biomarkers.4,5 
In fact, attempts to correlate specific breath VOCs with 
endogenous metabolic processes indeed date back more 
than a century.6 Yet despite an exponential increase since 
the 1990s of published associations between exhaled 
VOCs and various physiological events or pathologies,7–13 
translating these findings into clinically useful applications  
has still proven challenging. However, one of the fields in 
which rapid progress appears possible is in the develop-
ment of breath-based testing devices for diabetes-related  
variables. Among these, plasma glucose and insulin are 
obvious candidates and are currently explored by several  
research groups. Significant potential benefits also exist 
for breath testing of plasma lipids, as evidenced by the  
number of research projects in the area that are 
producing excellent papers on the subject. This technology 
may be especially relevant to diabetes patients because 
prevention of cardiovascular disease, through the control 
of key risk factors such as elevated plasma lipid 
concentrations, is a crucial component to their long-term 
survival and quality of life. Facilitating plasma lipid 
measurement through a breath-based test, possibly 
performed simultaneously with a breath test for plasma 
glucose, could therefore substantially improve prevention 
and management of these conditions.

While some previous studies have addressed multiple 
aspects of the interaction between endogenous lipid 
metabolism and composition of exhaled breath,14–22 very 

few studies have attempted to specifically quantify 
systemic levels of triglycerides (TG), free fatty acids (FFA), 
or other lipids. In this article, we propose a noninvasive 
methodology to estimate lipidemia indirectly through the 
analysis of breath VOCs. Previously, our group reported 
the possibility of deriving accurate estimates of plasma 
glucose and insulin concentrations by integrating the 
simultaneous kinetic profiles of several exhaled VOCs 
in carefully controlled metabolic conditions.23–26 Because of 
the close biochemical ties found between these VOCs 
and systemic metabolism, plasma lipid concentrations 
also appeared amenable to estimation via parallel VOC 
analyses. Because our prior work also indicated that 
exhaled VOC profiles constantly change in response to 
the extreme variability of the endogenous plasma milieu, 
we decided to focus on exhaled VOC patterns observed 
during sizable and prolonged metabolic perturbations 
rather than at individual time points so that we could better 
capture the “breath equivalent” of simultaneous systemic 
metabolic processes. This consideration is especially 
important for defining and monitoring the time course 
of evolving, complex metabolic conditions, including 
diabetes and dyslipidemia.

Our overall hypothesis was that by integrating measure- 
ments of multiple exhaled VOCs at several consecutive 
time points, it is possible to estimate plasma concentrations 
of a given variable through multivariate regression 
analysis. In this study, we have designed a repeated-
measure approach to VOC analysis, which, in the present 
study, was applied to the prediction of plasma TG 
and FFA. Fluctuations of plasma lipid concentrations  
were induced in a group of healthy young adults via 
intravenous (IV) insulin-mediated suppression of lipolysis 
or lipid infusion, and simultaneous plasma and exhaled 
breath samples were collected at multiple time points 
over 4 h.

Abstract cont.

Conclusions:
Our results demonstrate the feasibility of measuring plasma lipids through breath analysis. Optimization of 
this technology may ultimately lead to the development of portable breath analyzers for plasma lipids, replacing  
blood-based bioassays.

J Diabetes Sci Technol 2012;6(1):86-101
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Methods
All procedures were approved by the University of 
California, Irvine (UCI), Institutional Review Board and 
conducted by specialized personnel at the UCI Institute for 
Clinical and Translational Science (ICTS). Volatile organic 
compound analysis was conducted in the Rowland–Blake 
Atmospheric Chemistry Laboratory.

Subjects
Twenty-three healthy volunteers [12 males (M) and 
11 females (F), 28.0 ± 0.3 years] were enrolled in our 
study. Of these, 17 (8 M/9 F) participated in study 1,  
as described later, and 15 (9 M/6 F) in study 2 [with 9  
(5 M/4 F) participating in both]. All volunteers signed 
informed consent forms prior to participation, did not 
smoke, had no evidence or record of recent or chronic 
illness, were not taking medications, and had no known 
allergies in general or in particular to soy products 
(contained in some of the study infusates).

Study Procedures
For both studies, subjects reported to the ICTS at 7:30 a.m. 
after an overnight fast. Intravenous catheters were placed 
in the antecubital veins of both arms for subsequent blood 
drawing and IV glucose/insulin/lipid infusions. (We chose 
to induce acute hyperglycemia and hyperlipidemia in 
our subjects by IV infusion to avoid confounding effects 
from metabolism and absorption in the gastrointestinal 
tract.) Matched breath, room air, and blood samples were 
collected at 12 time points: baseline (8 a.m., t = 0 min) 
and then at t = 60, 90, 110, 130, 140, 150, 180, 200, 220, 230, 
240 min). For breath collection, after two tidal volume  
ventilations and a deep inspiration, subjects slowly exhaled 
for ~10 s through a three-way valve mouthpiece into 
custom-made 1.9 liter stainless steel canisters that had 
been sterilized before use at 150 °C, pumped to 10−5 atm, 
flushed with purified helium, and repumped to 10−5 atm. 
The first 3 s (~500 ml) of exhaled breath was vented to 
the room to clear anatomic dead space. As subjects had 
practiced the maneuver several times, the full canister  
volume was collected in all instances. A room air sample 
was simultaneously collected in an identical canister. 
Blood was collected in 10 ml samples drawn in Vacutainer 
ethylene diamine tetraacetic acid-treated tubes (BD 
Biosciences, Franklin Lakes, NJ); additional 0.5 ml blood 
aliquots were collected every 5 min throughout the study 
for the monitoring of plasma glucose.

Study 1 (Glucose Infusion)
After a baseline euglycemic period (t = 0–60 min), 
plasma glucose was gradually increased over 30 min 

(t = 60–90 min) via IV administration of 20% dextrose to 
a target level of ~220 mg/dl. For each subject, the infusion 
rate of glucose was adjusted every 5 min based on 
a negative feedback principle. If the measured blood 
glucose concentration was lower than desired (i.e., because 
of the glucose-lowering effects of spontaneous insulin), 
the dextrose infusion rate would be raised. On the other  
hand, if the blood glucose concentration was too high, the 
infusion rate would be reduced. While this procedure can 
be difficult if subjects are exceptionally insulin-sensitive 
or if the target glycemia is ≥300 mg/dl, requiring amounts 
of IV dextrose so high that it may cause complications at 
the IV site, it was performed successfully in all studies 
with our experimental protocol. Hyperglycemia was 
then maintained for 1 h (t = 90–150 min), allowing for 
natural hyperinsulinemia to occur. At t = 150 min, the 
glucose infusion was reduced and a 1.5 mU/kg/min 
IV infusion of fast-acting insulin (Novolin R, Novo 
Nordisk, Princeton, NJ) was started so that plasma 
glucose was back to basal levels by t = 180 min. A stable 
hyperinsulinemia of ~10-fold basal levels was then 
established and maintained for the last hour of the study 
(t = 180–240 min).

Study 2 (Lipid Infusion)
Baseline lipidemia was maintained for 1 h (t = 0–60 min), 
and then IV administration of a 20% fat emulsion 
(Intralipid, Baxter, Deerfield, IL) was started. The major 
component fatty acids of the emulsion are linoleic (44–62%), 
oleic (19–30%), palmitic (7–14%), linolenic (4–11%), and 
stearic (1.4–5.5%) acids. To test for possible allergic hyper-
sensitivity to the emulsion, the infusion was performed 
at the reduced rate of 10 ml/h for the first 10 min. In the 
absence of signs of an allergic reaction (none was ever 
detected in any of the participants), the infusion rate was 
increased to 1.1 ml/kg/h, for induction of hyperlipidemia 
over the following 170 min (t = 70–240 min), which allowed 
plasma FFA and TG concentrations to increase ~2.5-fold 
over basal levels. During these studies, plasma glucose 
concentrations never significantly changed as compared 
to baseline values.

Blood Analysis
Blood samples were centrifuged immediately following each 
draw, and plasma glucose concentrations were determined 
with a Beckman Glucose Analyzer II (Beckman Ltd., 
Fullerton, CA); remaining plasma was stored at −80 °C 
until assays were performed. Triglycerides concentrations 
were measured with Triglyceride-SL Reagent System 
Kit (Equal Diagnostics, Exton, PA). Free fatty acid  
concentrations were measured with a NEFA-ACS-ACOD 
Reagent System Kit (Equal Diagnostics, Exton, PA).
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Analysis of Breath and Room Air
The canisters containing study breath and room samples 
were taken to the Rowland–Blake Atmospheric Chemistry 
Laboratory, stored at room temperature, and analyzed 
within 1 week. Stability of VOC concentrations within 
the canisters has been tested in dozens of prior studies; 
specific VOC mixtures were transferred from large high-
pressure cylinders into our collection canisters and 
compared at multiple time points up to over 1 year.  
By this technique, VOCs identified as having changing 
concentrations over time are systematically excluded 
from data analysis.

On assay day, a 275 cm3 sample aliquot (at standard 
temperature and pressure) was introduced in the system 
manifold and passed over glass beads chilled by liquid 
nitrogen (−196 °C) with flow kept below 500 cm3/min 
to ensure complete trapping of the relevant components. 
This procedure preconcentrated the relatively less-volatile 
sample components (halocarbons, hydrocarbons) while 
allowing volatile components (nitrogen, oxygen, and argon) 
to be pumped away. The less volatile compounds were 
then revolatilized by immersing the loop containing the 
beads in hot water (80 °C) and flushed into a helium 
carrier flow (head pressure 48 psi). The sample flow 
was split into five streams at an eight-port union (Valco 
Instruments, 1/16″ manifold, 1–8 ports, 0.75-mm inlet 
bore, 0.25-mm outlet bore, with three outlet port capped 
off). Each stream was chromatographically separated on 
different column/detector combinations.

Three HP 6890 gas chromatographs (GCs, Hewlett-
Packard, Sunnyvale, CA) form the core of the analytical 
system, utilizing various combinations of electron-capture 
detectors (ECD, sensitive to halocarbons and alkyl nitrates), 
flame-ionization detectors (FID, sensitive to hydrocarbons), 
sulfur chemiluminiscence detector (SCD, sensitive to 
sulfur-containing compounds), and quadrupole mass 
spectrometer detector (MSD, for unambiguous compound 
identification and selected ion monitoring). The oven  
parameters for the three instruments are given in Table 1. 
The first HP 6890 (GC 1) contains two columns: one is 
a J&W DB-5 (30 m; i.d., 0.25 mm; film, 1 μm) connected 
in series to a RESTEK 1701 (5 m; i.d., 0.25 mm; film,  
0.5 μm), which is then output to an ECD. The J&W 
DB-5/RESTEK 1701 union helps resolve halocarbon and  
organic nitrate species that have similar polarity through 
higher retention of the nitrate species. The second column 
is a J&W DB-5ms (60 m; i.d., 0.25 mm; film, 0.5 μm), 
which is output to a MSD detector (HP 5973). The J&W 
DB-5/RESTEK 1701 received 6.84% and the J&W DB-5ms/
MSD received 10.1% of the total carrier flow, respectively. 

Table 1.
Gas Chromatograph Oven Temperature Parameters

Starting temperature (°C) −60 −60 −20

Time at starting temperature (min) 1.5 1.5 1.5

Temperature ramp 1 (°C/min) 15 10 30

Temperature 1 (°C) 110 0 60

Time at temperature 1 (min) 0 0 0

GC 1 GC 2 GC 3

Temperature ramp 2 (°C/min) 29 17 14

Temperature 2 (°C) 220 145 200

Time at temperature 2 (min) 1.88 0 4.7

Temperature ramp 3 (°C/min) – 65 –

Temperature 3 (°C) – 220 –

Time at temperature 3 (min) – 1.3 –

The second HP 6890 (GC 2) contains a J&W DB-1 column 
(60 m; i.d., 0.32 mm; film, 1 μm) output to a FID and 
SCD in series. This column received 15.1% of the flow. 
The third HP 6890 (GC 3) contains a J&W GS-Alumina 
PLOT column (30 m; i.d., 0.53 mm) connected in series 
to a J&W DB-1 column (5 m; i.d., 0.53 mm; film, 1 μm), 
which is output to a FID, and a RESTEK 1701 (60 m; 
i.d., 0.25 mm; film, 0.50 μm), which is output to a ECD. 
The PLOT/DB-1 union helps to reduce signal spikes 
from PLOT column bleed and tightens up the carbon  
dioxide (CO2) peak width. The GS-Alumina PLOT column 
received 60.8% of the flow, and the RESTEK 1701 
received the remaining 7.16% of the flow. The signal from 
each FID, ECD, and SCD was recorded digitally using 
Chromeleon software (Dionex Corporation, San Jose, CA). 
The output of each MSD was digitally recorded using 
Chemstation software (Hewlett-Packard). Representative 
chromatograms are shown in Figures 1 and 2. All VOCs 
are individually quantified through integration of the 
area under each peak on the chromatogram. Area limits 
are initially identified by our analytical software, and 
correct placement is confirmed by at least two team 
members. The area under each peak is then compared to 
whole air standards containing the same compound at a 
known concentration. During this process, any coelution 
is detected by comparing measurements for the same 
compound from different column/detector combinations. 
Only when clear agreement across quantifications is 
obtained, a compound is included in subsequent data 
analysis. This built-in redundancy ensures that reported 
VOCs we report are not affected by coelution.

Because our analytical protocols were originally designed 
for atmospheric air measurements, as detailed in 
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Figure 1. Representative J&W DB-1/FID chromatogram of a breath sample. This representative chromatogram was obtained from a HP-6890 
chromatograph containing a J&W DB-1 column (60 m; i.d., 0.32 mm; film, 1 μm) with output to a FID. Minutes 12.00–13.75 have been enlarged to 
illustrate the resolution of our instruments.

Figure 2. Representative RESTEK 1701/ECD chromatogram of a breath sample. This chromatogram was obtained from a HP 6890 chromatograph 
utilizing a RESTEK 1701 column (60 m; i.d., 0.25 mm; film, 0.50 μm), which was output to an ECD.
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previous studies,27,28 we incorporated some minor 
procedural changes to take into account the higher  
CO2 concentrations present in breath as compared to 
ambient air. This process included running whole air 
standards enriched with 5% CO2 (to mimic breath 
concentrations) and trapping/injecting only about 15%  
(<300 ml) of the volume used for remote ambient air 
analysis (2000 ml) because greater volumes can be negatively  
affected by higher CO2 concentrations. Our breath 
analysis technique has now been successfully used in 
numerous studies.10,23–26,29

In total, concentrations of ~100 VOCs were quantified 
and utilized for analyses pertinent to this study. As our 
system, originally developed for atmospheric gas analysis, 
is progressively optimized for samples of human origin as 
our studies advance, a number of additional VOCs that 
had not been available for study 1 could be included in 
study 2’s calculations.

Degassing of Substrates
To avoid including exhaled VOCs that had potentially 
been introduced in the body via study infusates in 
our data analysis, 18 ml aliquots of dextrose and lipid 
infusates were introduced into a custom-designed sealed 
bioreactor and exposed to a constant flow of helium micro-
bubbles, capturing all VOCs suspended in the fluid sample. 
Extracted compounds were then collected and analyzed 
similarly to other VOC samples. By this technique, we 
have identified a number of VOCs (heptane, hexane,  
methyl- and cycloheptane/hexane, butanal, heptanal) that 
had clearly been introduced into the body through the 
infusate during the study; these VOCs were excluded 
from our analysis.

Data Analysis and Statistics
Matched exhaled breath, room air, and peripheral blood 
samples were collected at 12 time points for each subject 
enrolled in our clamp protocols. Changes in VOC values 
(differences between room air and breath concentrations) 
from each collection point were compared to their 
corresponding plasma TG and FFA concentrations, and 
prediction models for each lipid variables were generated 
using multivariate regression analysis. Agreement between 
measured and predicted TG and FFA concentrations was 
quantified with Pearson’s product-moment correlation 
coefficients.

Individualized Predictions
For study 1, we first performed a best subset regression 
analysis with SAS software, version 9.2 (SAS Institute, 

Cary, NC), to calculate the set of 4 VOCs out of 
~100 VOCs that could estimate plasma TG and FFA 
concentrations with the highest accuracy. We then used 
multivariate regression analysis on these 4 VOCs to 
generate prediction models for TG and FFA that were 
individualized to each subject via JMP software, version 8 
(SAS Institute). Every model included the same set of 
4 VOCs as covariates, but each VOC was weighted 
differently for each subject. We arbitrarily defined the set 
of four compounds included in each prediction model  
as a 4-VOC “cluster” and will refer to each as such 
throughout the article. In some instances, individual VOC 
measurements were technically unavailable; in these 
cases, the whole data point was dropped from the 
analysis. Of the 204 possible total data points in study 1, 
only 198 were used for TG analysis and 186 for FFA analysis.

To identify additional 4-VOC clusters usable in alternative 
prediction models, we repeated the aforementioned process 
by alternatively eliminating each of the 4 VOCs included 
in the “best subset.” In this way, we identified several 
clusters allowing predictions with slightly lower, but still 
strong, correlations with measured values (r > 0.90 for 
TGs, and r > 0.85 for FFAs).

In study 2, the original set of 4 VOCs obtained from 
study 1 was used again to generate individualized prediction 
models of TG and FFA in this new data set. Again, of  
180 possible total data points, 174 were usable for TG 
and 161 for FFA predictions due to occasional missing 
VOC readings.

Common Predictions
In the attempt to derive a common prediction model 
applicable to the whole group of subjects, we then 
performed best subset regression analysis using SAS 
software on ~100 VOCs. Given the much greater complexity 
of this predictive approach, a maximum of 10 VOCs per 
model was allowed to be incorporated in the analysis. 
Each common prediction model included a set of VOCs 
that were weighted the same for all subjects. To check 
their validity of each model, 10% of all data points were 
randomly withheld from the model-building set for 
cross-validation.

Results

Plasma Concentrations
In study 1 (glucose infusion), 204 matched plasma and VOC 
samples were collected from each of our 17 subjects at  
12 time points during 4 h of glucose/insulin fluctuations 
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that induced an average drop of 6 mg/dl (or 7% below 
basal level) in TGs and of 289 mmol/liter (or 72% below  
basal levels) in FFAs. In study 2 (lipid infusion), we 
induced an average increase of 119 mg/dl (or 167% above 
basal level) for TGs and 831 mmol/liter (or 168% above  
basal levels) for FFAs in 15 subjects (9 of whom also  
participated in the first study). Mean plasma concentrations 
across all subjects are listed in Table 2.

VOC Concentrations 
All VOC were measured in parts per trillion by volume 
(pptv) concentrations and varied across compounds.  
The measured concentration range of each VOC included 
in our prediction models can be found in the Appendix. 
Mean concentration deltas for the VOCs selected for the 
individualized prediction models are listed in Table 3. 
Some VOCs displayed considerable stability, in terms of 
both quantity and direction of observed changes, while 
others showed greater variability. For each subject in 
study 2, the net change in VOC concentrations (difference 
between study beginning and end) for all compounds 

Table 2.
Mean Plasma Concentrations with Individualized Predictions

Study time (min) TG (mg/dl) Predicted TG (mg/dl) FFA (mM) Predicted FFA (mM) Glucose (mg/dl) Insulin (mU/ml)

Study 1: glucose infusion (n = 17)

30–60 89.9 ± 13.6 83.8 ± 10.9 406 ± 26 360 ± 20 92.0 ± 1.2 3.7 ± 0.5

130–150 65.0 ± 6.6 70.1 ± 6.7 133 ± 9 163 ± 10 199.1 ± 2.9 60.6 ± 7.4

220–240 65.7 ± 7.7 62.9 ± 7.5 94 ± 8 80 ± 9 89.4 ± 1.4 86.0 ± 5.3

Study 2: lipid infusion (n = 15)

30–60 76.1 ± 10.4 88.7 ± 13.1 477 ± 31 678 ± 55 92.4 ± 1.4 4.5 ± 0.5

130–150 179.4 ± 14.4 174.7 ± 14.2 1045 ± 82 975 ± 69 88.4 ± 1.0 4.7 ± 0.3

220–240 204.1 ± 19.4 205.3 ± 17.2 1295 ± 113 1252 ± 104 89.6 ± 1.1 4.6 ± 0.4

selected for our individualized prediction models is 
listed in Table 4.

Individualized Predictions
Several individualized lipid prediction models were 
generated in this standard format: TG or FFA = X0 + X1 
[VOC 1] + X2 [VOC 2] + X3 [VOC 3] + X4 [VOC 4], where 
X0, X1, X2, X 3, and X4 represent the expected difference in 
TG or FFA when the concentration of each corresponding 
VOC is increased by one unit while other VOCs are  
kept constant.

For study 1, the 4-VOC cluster that yielded the highest 
overall correlation between our breath-based estimates of 
plasma TGs and measured plasma values was 2-pentyl 
nitrate (2-PeONO2), CO2, methyl nitrate (CH3ONO2), 
and toluene; the overall correlation coefficient was 0.97 
(Figure 3, left top). Similarly for FFAs, the set of 4 VOCs 
yielding the highest overall correlation of predicted and 
measured values was 2-pentanone, 2-PeONO2, butanone, 
and methyl tert-butyl ether (MTBE) with an overall 

Table 3.
Mean VOC Concentrations (Deltas)

Study time (min) CO2 (%) CH3ONO2 (pptv) Toluene (pptv) 2-PeONO2 (pptv) Butanone (pptv) 2-Pentanone (pptv) MTBE (pptv)

Study 1: glucose infusion (n = 17)

30–60 4.81 ± 0.08 13.9 ± 3.1 −99±272 −2.09 ± 0.20 7573 ± 3274 6234 ± 1457 5562 ± 1302

130–150 4.62 ± 0.09 10.0 ± 1.8 −101 ± 168 −3.40 ± 0.32 8608 ± 3083 3993 ± 846 1975 ± 414

220–240 4.78 ± 0.08 7.7 ± 1.5 96 ± 191 −4.39 ± 0.38 13,762 ± 3525 2584 ± 869 2341 ± 561

Study 2: lipid infusion (n = 15)

30–60 4.45 ± 0.12 9.0 ± 1.9 −257 ± 64 −1.95 ± 0.39 13,871 ± 5903 6769 ± 1214 1855 ± 363

130–150 4.62 ± 0.11 7.3 ± 1.3 −123 ± 73 −2.78 ± 0.44 18,916 ± 2966 10,882 ± 1443 1083 ± 175

220–240 4.41 ± 0.11 5.7 ± 1.1 20 ± 49 −2.58 ± 0.54 32,391 ± 8103 16,964 ± 2272 877 ± 135

http://www.journalofdst.org/January2012/PDF/
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Table 4.
Change in Reported VOCs from Baseline to Study End for All Subjects in Study 2

Subject 2-PeONO2 2-Pentanone CO2 (%) Butanone CH3ONO2 MTBE Toluene

1 −1.18 11,655 0.09 9630 −3.98 −610 170

2 2.23 2841 0.60 −7969 −11.98 −3276 428

3 −1.55 21,956 0.35 90,632 −9.78 −4157 146

4 −3.71 1659 0.09 −7707 −2.66 −6864 205

5 −3.03 2036 −0.71 −2122 −3.82 −208 422

6 0.39 10,230 −0.18 10,541 −1.30 −391 161

7 −0.87 661 1.09 4431 −9.00 −251 −7

8 −0.75 1962 0.78 3139 −1.74 −804 302

9 −0.59 29,536 −1.07 32,094 −1.02 −891 147

10 −2.07 29,232 −0.35 −30,709 −11.32 −2982 713

11 4.99 6859 −0.05 20,366 −1.82 −1657 210

12 −0.69 14,125 0.47 21,484 −2.26 −682 266

13 −1.19 −285 −0.39 16,673 −1.12 −964 188

14 0.05 4520 0.18 5644 −2.27 400 612

15 0.20 12,611 0.30 14,541 −1.81 −3525 657

Mean −0.52 9973 0.08 12,045 −4.39 −1791 308

SE 0.54 2585 0.15 6821 1.02 510 55

Mean % change 24% 277% 2% 417% −55% −62% 22%

# Increased 5 (33%) 14 (93%) 9 (60%) 11 (73%) 0 (0%) 1 (7%) 14 (93%)

correlation coefficient of 0.90 (Figure 3, right top). 
For study 2, estimates of plasma TGs and FFA using the 
same 4-VOC cluster also resulted in high concordance. 
The strength of the correlations between measured and 
predicted values was very similar to those observed 
in study 1 (0.97 for TGs and 0.94 for FFA; Figure 4). 
As an example of the flexibility of our methodology, a 
summary of the overall correlation between measured 
and predicted TG using five alternative clusters is also 
reported in Table 5.

The strong correlation between measured and predicted 
values was maintained when data was compared 
separately for each subject, by overlaying the individual 

time courses of measured and predicted lipid 
concentrations during the 4 h of the study (Figures 3 
and 4, bottom panels). Of course, providing the best 
overall correlation does not automatically translate into 
the best prediction model for each subject. For example, 
at least some of the tested subjects displayed a better 
correlation when using some of the four alternative 
clusters than using our best overall model. However, our 
reported model always yielded a higher correlation in 
the majority of the subjects as well as the highest mean 
correlation (Table 5). As noted earlier, while the profiles 
of the same four VOCs were used in all subjects to 
predict TG and FFA, the actual prediction models were 
unique to each subject.

Table 5.
Comparison of Alternative VOC Clusters for Individualized TG Predictions

All subjects:
(studies 1 and 2; n = 32)

2-PeONO2, 
CH3ONO2, CO2, 

toluene

2-PeONO2, 
CH3ONO2, 

isoprene, toluene

2-PeONO2, CO2, 
isoprene, toluene

CH3ONO2, CO2, 
isoprene, toluene

2-PeONO2, 
2-BuONO2, 

CH3ONO2, CO2

Overall correlation coefficient 0.97 0.97 0.97 0.97 0.96

Mean correlation coefficient 0.83 0.82 0.80 0.80 0.81

# Subjects that selected cluster is stronger – 18 (56%) 23 (72%) 18 (56%) 23 (72%)



94

Noninvasive Measurement of Plasma Triglycerides and Free Fatty Acids from Exhaled Breath Minh

www.journalofdst.orgJ Diabetes Sci Technol Vol 6, Issue 1, January 2012

Figure 3. Individualized prediction models of TG and FFAs during glucose/insulin infusion. (A) Plots of directly measured vs predicted plasma 
TG and FFA concentrations in 17 healthy young adults. A total of 12 breath and room air samples were taken for each subject during a 4 h clamp study 
with broad fluctuations of plasma glucose and insulin. Individualized prediction models based on multilinear regression analyses of 4-VOC clusters  
(2-PeONO2, CO2, CH3ONO2, and toluene for TGs, left; 2-pentanone, 2-PeONO2, butanone, MTBE for FFAs, right) demonstrated the highest overall 
correlation with directly measured lipid concentrations. (B) Time course of measured and predicted lipid values in two representative subjects.

Common Predictions
In study 1, attempts to generate a common prediction 
model for TG and FFA, applicable to the whole set of 
subjects, using combinations of up to 10 VOCs, were 
relatively unsuccessful. Correlations between measured 
and predicted lipid values, initially weak with only a few 
VOCs in the model, grew somewhat stronger as more 
VOC covariates were added. As expected, these increases 
were larger with addition of the first few covariates, but 
as the model neared 10 covariates, only negligible albeit 
measurable improvements with additional covariates 
were noted; the overall predictive ability of the model 
remained weak.

In study 2, on the other hand, we successfully developed 
several common prediction models to predict lipidemia. 
We believe this improved ability was due to both the 
availability of a greater number of usable exhaled VOCs 

in study 2 as well as the much broader range of TG and 
FFA values induced by study procedures.

Our most accurate prediction model for TG utilized 
10 VOCs and resulted in a correlation coefficient of 
0.86 from 174 observations across all the lipid infusion 
subjects (Figure 5, left top): 

TG (mg/dl) = 241.4 + 0.012 [β-pinene] + 1.06 [bromomethane 
(CH3Br)] − 5.44 [CH3ONO2] − 0.0034 [CO2

 (in ppmv)] − 
0.00049 [d‑Limonene] + 0.0024 [dimethyl disulfide] + 0.042 
[ethane] + 0.0016 [methacrolein] + 3.16 [methane (CH4) 
(in ppmv)] + 0.12 [tetrachloroethylene (C2Cl4)].

A separate combination of 10 VOCs was used to construct 
a common prediction model for FFA with a correlation 
coefficient of 0.81 from 161 observations on the same 
cohort (Figure 5, right top):
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FFA (mM) = 404.9 + 15.46 [2-butyl nitrate (2-BuONO2)] − 
46.87 [bromoform (CHBr3)] + 0.76 [C2Cl4] + 15.65 [CH3Br] + 
0.16 [ethane] − 203.56 [ethyl nitrate (EtONO2)] − 1.08 [hydro-
cholorofluorocarbon-22] − 251.89 [methyl iodide (CH3I)] + 
0.66 [toluene] − 4.50 [trichloroethylene (C2HCl3)]. 

The p values for two-tailed tests of the significance of 
each regression coefficient ranged from <0.0001 to 0.0279 
(Table 6). 

Strong predictive accuracy was maintained in a cross-
validation step, in which predictive equations were 
developed on a randomly selected 90% subset of the data 
and tested on the remaining 10% of the data. Correlation 
coefficients and root mean square errors (RMSE) for the 
model-building set and validation set were comparable (TG: 
r = 0.85 and RMSE = 53.6 mg/dl for the training set, r = 0.92 
and RMSE = 58.6 mg/dl for the validation set; FFA: r = 0.82 

and RMSE = 365 μM for the training set, r = 0.72 and 
RMSE = 360 μM for the validation set; Figure 6).

Discussion
Our main finding is that plasma concentrations of TGs and 
FFAs were estimated accurately via integrated analysis 
of exhaled VOCs in a group of healthy young adults. 
These estimates for plasma lipid concentrations were 
calculated for each subject using the same 4-VOC cluster, 
albeit with individualized calibrations of the coefficients 
in each prediction model. Our results were achieved 
first during relatively small fluctuations of plasma lipids  
(~50% drop below basal levels during insulin infusion) 
and then confirmed during much greater lipid fluctu-
ations (>150% increase over baseline via lipid infusion).  
For study 2, a common prediction model was also derived 
from the collective data of all subjects and utilized 

Figure 4. Individualized prediction models of TG and FFAs during lipid infusion. (A) Plots of directly measured vs predicted plasma TG and 
FFA concentrations in 15 healthy young adults. A total of 12 breath and room air samples were taken for each subject during a 4-h lipid infusion 
study, which resulted in a ~2.5-fold increase of plasma lipids above basal levels. Individualized prediction models based on multilinear regression 
analyses of 4-VOC clusters (2-PeONO2, CO2, CH3ONO2, and toluene for TGs, left; 2-pentanone, 2-PeONO2, butanone, MTBE for FFAs, right) 
demonstrated the highest overall correlation with directly measured lipid concentrations. (B) Time course of measured and predicted lipid values 
in two representative subjects.
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to estimate TG and FFA for each individual subject.  
This model, which integrates 10 exhaled VOCs into a single 
equation, retained considerable accuracy when compared 
to the individualized prediction models. As some of the 
VOCs examined in study 2 were technically not available 
at the time of study 1, the common prediction equation 
could not be extended to our earlier data set.

To facilitate the transition from proof-of-concept of this 
methodology to future clinical applications, it is important 
that the number of VOCs used for plasma lipid prediction 
is kept as low as possible and that the selected VOCs are 
relatively uncomplicated to quantify. In this regard, our 
methodology offers considerable flexibility. In fact, we 
initially restricted the number of covariates in our model  
on the notion that 4 VOCs is an acceptably small number 
to be included in a portable device from an engineering  
perspective. In our reported individualized lipid prediction 

model, we, therefore, selected the 4-VOC clusters with 
the best predictive ability for TGs and FFAs across both 
protocols. Several alternative VOC clusters yielded lipid 
estimates with a level of accuracy often only marginally 
inferior to those selected (Table 5). If, at the stage of 
product development, some of the VOCs included 
in our reported models were to prove unpractical to 
measure, numerous viable 4-VOC clusters retaining 
clinically relevant predictive accuracy would be available 
with VOCs that are easier to measure or exist at higher 
concentrations. (Even with our sophisticated equipment, 
in fact, many VOCs are more challenging than others to 
quantify accurately.)

It is important to note that we were only able to effectively 
use 4-VOC models with individualized prediction models. 
This means that while the same 4 VOCs were used in all 
participants, a separate equation was generated for each 

Figure 5. Common prediction model for TG and FFAs during lipid infusion. (A) Plots of directly measured vs predicted plasma TG and FFA 
concentrations in 15 healthy young adults. A total of 12 breath and room air samples were taken for each subject during a 4 h lipid infusion 
study, which resulted in a ~2.5-fold increase of plasma lipids above basal levels. Common prediction models for TG and FFA were derived 
from the multilinear regression analyses of 10-VOC clusters. The models that demonstrated the highest correlation with directly measured lipid 
concentrations are shown (TG, left; FFA, right). (B) Time course of measured and predicted lipid values in two representative subjects.
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subject. Accordingly, the coefficients for each VOC were 
adjusted separately for each subject so that the subject’s 
plasma lipid values could be calculated from the exhaled 
profiles of those VOCs. We also attempted to develop an 

“exploratory” common prediction model (i.e., testing the 
overall feasibility of this concept) that could be used for 
all our subjects in study 2. Of course, we are aware that, 
in its present form, this model was less than ideal for at 
least two reasons. First, compared to the individualized 
model, there was a loss of correlation (dropping to 0.86 
and 0.81 for TGs and FFAs, respectively, which is still 
relatively strong but undeniably weaker); second, this 
model required integration of the profiles of 10 different 
VOCs, a number probably too high to be reasonably 
included in a portable breath analyzer, especially a device 
monitoring multiple plasma metabolites.

Nonetheless, the fact that we were able to generate 
similarly strong individualized prediction models when 
using the same 4-VOC cluster as study 1 (even though 
the earlier protocol included much narrower lipid 
fluctuations) highlights the flexibility of our methodology 
and bodes well for its potential future applicability to  
clinical settings. We are very much aware that the practical 
usefulness of a model for monitoring plasma lipids is 
closely linked to the model’s accuracy in the context of 
different and rapidly changing metabolic conditions. 
In real life, the same lipid concentrations or their 
changes may occur in the presence of very different  
attending metabolic milieus. Acutely, this can be caused by 
ingestion of large meals with different percentage of 
carbohydrate and lipid composition and, chronically, 
by the presence of specific conditions. For example, 
hyperlipidemia can be accompanied by both hyperglycemia 
and hyperinsulinemia in the obese patient with early-
stage type 2 diabetes; however, those with familial hyper-
lipidemic syndromes can have normal plasma glucose 
and insulin. We, therefore, incorporated some of this 
variability in the different arms of our experimental 
design, fully expecting that some (possibly many) of the 
measured exhaled compounds would display markedly 
different exhaled profiles, while others would maintain 
a consistent relationship with lipidemia (leading to stronger 
predictions) across the two conditions.

Several general observations are probably in order 
regarding the origins, pathways, and selection of VOCs  
reported in our models. As the changes in VOC 
concentrations were often many orders of magnitude 
smaller than the changes in lipids they appear to reflect, 
it seems logical that complex intermediate biochemical 
events are involved in these changes. Given the number 

Table 6.
Parameter Estimates for the Common Prediction 
Models

Term Estimate Standard 
error t ratio Prob. 

> |t|

Common prediction model for triglyerides (mg/dl)

Intercept 241.4117 37.98443 6.36 <.0001

β-Pinene 0.011504 0.002906 3.96 .0001

CH3Br 1.0607384 0.164033 6.47 <.0001

CH3ONO2 −5.440771 0.633954 −8.58 <.0001

CO2 (in ppmv) −0.003369 0.000732 −4.6 <.0001

d-Limonene −0.00049 0.000132 −3.71 .0003

DMDS 0.002399 0.000311 7.72 <.0001

Ethane 0.0420142 0.005481 7.66 <.0001

Methacrolein 0.001608 0.00032 5.03 <.0001

CH4 (in ppmv) 3.1552289 0.435703 7.24 <.0001

C2Cl4 0.1151845 0.015501 7.43 <.0001

Common prediction model for free fatty acids (μM)

Intercept 404.94404 57.28307 7.07 <.0001

2-BuONO2 15.458042 3.525271 4.38 <.0001

CHBr3 −46.86606 16.02472 −2.92 .0040

C2Cl4 0.7575156 0.083584 9.06 <.0001

CH3Br 15.65419 1.357382 11.53 <.0001

Ethane 0.1576478 0.04068 3.88 .0002

EtONO2 −203.5591 28.63184 −7.11 <.0001

Hydrochloro- 
fluorocarbon-22 −1.078886 0.415386 −2.6 .0103

CH3I −251.8913 40.53543 −6.21 <.0001

Toluene 0.6567578 0.127792 5.14 <.0001

C2HCl3 −4.500372 2.026429 −2.22 .0279

and variety of VOCs involved, addressing these issues 
in detail for each compound would clearly be beyond 
the scope of this study. Additionally, as the dynamics 
of gas exchange across the lungs are so complex, 
estimated partition coefficients between fluid and gas 
phase of many VOCs often defy estimates by Henry’s Law. 
Complete explanation of these discrepancies will require  
considerable future experimental efforts. However, initial 
experiments by our group have found that the VOCs 
described in this article have stable levels across subjects, 
both in blood and breath, i.e., with very stable blood/breath 
ratios. A schematic summary of chemical characteristics of 
our selected VOCs, possibly relevant to endogenous lipid 
metabolism, as well as related literature, can be found in 
the Appendix.

http://www.journalofdst.org/January2012/PDF/
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It is also indeed possible that some of the reported VOCs 
were simply inhaled from ambient sources. While at 
first sight, this may appear to provide strong grounds 
to remove that compound from analysis, we believe 
that correlation with systemic levels of lipids (or other 
variables) may not be just coincidental in many cases. 
Some inhaled VOCs, while not part of human origin, can 
be absorbed and partly degraded via various enzymatic 
activities, resulting in exhaled levels lower than inhaled. 
Intervening metabolic changes can modify the ratio 
between inhaled and exhaled concentrations, linking the 
exhaled levels to specific metabolic events. We identified 
a similar situation during an earlier experiment on 
plasma glucose prediction. Some aromatic VOCs normally 

present in the atmosphere (ethylbenzene, o-xylene, 
mp-xylene) are metabolized by the liver30 and were 
among the strongest covariates for glucose prediction. 
These VOCs were exhaled at ~20% of inhaled concentrations 
initially but increased two- to three-fold during hyper-
glycemia.24 A likely explanation is hyperglycemia alters 
glucose load and blood flow to the liver, which in turn 
shifts hepatic metabolism away from the VOCs and 
results in their increased exhalation. The VOCs thereby 
are indirect markers of glucose metabolism. Similar 
pathways may be in place for VOCs involved in lipid 
prediction analysis. Only VOCs present in ambient air 
at relatively constant and reproducible concentrations, 
of course, can be used in this context. All compounds 

Figure 6. Cross-validation of common prediction model for TG and FFAs during lipid infusion. For cross-validation of TG and FFA common 
prediction models, data were randomly separated into a training set (90% of data points, top panels), on which predictive algorithms were built, 
and a validation set (remaining 10% of data points, bottom panels), on which algorithms were applied. Correlation coefficients and root mean 
square errors (RMSE) were comparable between the training sets (A) and validation sets (B).
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used for our calculations with uncertain biological origin 
have demonstrably stable and measurable concentrations 
throughout the earth atmosphere (including several 
man-made substances whose number, incidentally, is 
unfortunately increasing). Further, several of our selected 
VOCs (e.g., trichloroethene, toluene, tetrachloroethene) 
can be systematically extracted at measurable levels 
from blood samples of nonoccupationally exposed adult  
U.S. populations.31

The variability of the VOCs selected across our models 
may seem contrary to the expectation that TGs and FFAs 
should have similar metabolism and kinetics. In fact, most 
of the VOCs selected as covariates for the individualized  
prediction models from our study were also not utilized as 
covariates for the common prediction models. While one 
might initially expect a direct one-to-one relationship 
between plasma metabolites and breath components and 
therefore the same VOCs in both models, it is important 
to realize that we are only reporting the combinations 
of VOCs with the highest correlation for each proposed 
condition; an additional 10–20 VOCs were also showing 
some level of correlation with the lipid variables. Each of  
these VOCs can possibly account for a different component 
of a variable’s plasma concentrations, i.e., in addition to 
absolute value, an upward or downward shift, a time 
lag, reaching a certain threshold, and having remained 
elevated or suppressed for a certain period. Furthermore, 
multiple VOCs were likely generated during intracellular 
intermediate metabolism of FFAs or TGs, and therefore, 
combinations of VOCs in the common predictions models 
may jointly account for different steps of the same 
biological pathways as some of the VOCs from the 
individualized models. Possible partial clarification of 
their sources may derive from ongoing studies in our 
group; we have developed a technique to capture VOC 
emissions from human cells cultured in custom-made 
glass bioreactors during both resting culture conditions 
and exposure to metabolic stimuli. We have applied this 
technique to isolated immune cells32 and plan to extend 
these studies to a number of other tissues.

Yet, several VOCs did appear in multiple models: CH3Br, 
ethane, and C2Cl4 were found to be significant covariates 
for both the TG and FFA common equations, and two 
VOCs in the common TG predictions (CH3ONO2, CO2) 
were also important covariates in the 4-VOC individual 
TG models. On the other hand, no VOCs were used in 
both the common and individualized FFA prediction 
models. It should be noted, however, that to be able 
to compare the predictive accuracy of individualized 
models from studies 1 and 2, we used sets of VOCs that 

were available for both studies. It is likely that if the 
technology to quantify all the VOCs used in study 2 had 
been available in study 1, other VOC combinations may 
have been chosen for individualized models, possibly 
utilizing several of the VOCs from the common 10-VOC 
prediction models.

In its current incomplete phase of development, we openly 
acknowledge that our methodology presents several areas 
of concern. Lag times between changes in plasma variables 
and their corresponding changes in breath VOC 
concentrations are also potential confounders. Lag times 
might vary across different VOCs, and mathematically 
correcting this problem is paramount for the breath-based 
measurement of rapidly changing variables that require 
frequent testing, such as plasma glucose in patients with 
diabetes. This should, however, be less of a problem for 
lipid measurements because they are typically measured 
only every few months in clinical settings. Additionally, 
these tests are primarily performed in fasting, metabolically 
stable conditions, effectively rendering such lag times 
irrelevant. Lastly, other limitations of our current work 
is the lack of a full independent cohort to validate our 
common predictions and the ratio between number of 
samples collected per subject in comparison with the 
terms in our individualized models. There is no question 
that the optimal way to definitively validate our models 
would be to repeat at least part of the study on a separate 
cohort and to increase the sampling frequency; we are 
indeed planning to incorporate such changes in future 
studies. Still, cross-validation via splitting our data set 
demonstrated comparable results between training and 
prediction sets.

Conclusions
In conclusion, our data shows that prediction of plasma 
TG and FFA from the exhaled breath is feasible in 
controlled experimental conditions. Although the project 
is still at a relatively early phase, results appear very 
encouraging; further, marked improvements in predictive 
ability (ideally above r > 0.90) and a reduced number 
of VOCs in our common prediction models are possible 
after more extensive studies. Validation with additional 
subjects under a broader range of experimental conditions 
(e.g., subjects with type 1 and type 2 diabetes, history  
of smoking, acute illness) will also be necessary before 
the translation of this technology into practical clinical 
applications for diabetes mellitus and other related 
conditions, such as dyslipidemia, obesity, and cardio-
vascular disease.
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