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Abstract

Background: There are few clinical tools that assess decision-making under risk. Tests that characterize sensitivity and bias
in decisions between prospects varying in magnitude and probability of gain may provide insights in conditions with
anomalous reward-related behaviour.

Objective: We designed a simple test of how subjects integrate information about the magnitude and the probability of
reward, which can determine discriminative thresholds and choice bias in decisions under risk.

Design/Methods: Twenty subjects were required to choose between two explicitly described prospects, one with higher
probability but lower magnitude of reward than the other, with the difference in expected value between the two
prospects varying from 3 to 23%.

Results: Subjects showed a mean threshold sensitivity of 43% difference in expected value. Regarding choice bias, there
was a ‘risk premium’ of 38%, indicating a tendency to choose higher probability over higher reward. An analysis using
prospect theory showed that this risk premium is the predicted outcome of hypothesized non-linearities in the subjective
perception of reward value and probability.

Conclusions: This simple test provides a robust measure of discriminative value thresholds and biases in decisions under
risk. Prospect theory can also make predictions about decisions when subjective perception of reward or probability is
anomalous, as may occur in populations with dopaminergic or striatal dysfunction, such as Parkinson’s disease and
schizophrenia.
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Introduction

How humans make decisions is an important question in the

study of human behavior and cognition. The manner in which

options are weighed and different forms of information incorpo-

rated remain poorly understood, as are the systematic biases or

misperceptions that lead to decisions that deviate from rational

behavior. However, progress has been made in the study of

decisions involving risks [1] , and the neural circuitry underlying

the influences of reward on behavior are being elucidated,

particularly in regard to the role of dopaminergic systems and

the basal ganglia [2,3,4]. Ultimately, our understanding of

decision-making in such situations may clarify some important

aspects of cognitive dysfunction in conditions with disorders of

these systems, such as Parkinson’s disease, iatrogenic pathologic

gambling, and schizophrenia [5,6].

While many reports on motivation have examined how reward

modulates responses, resulting for example in faster or more

accurate saccades [7,8,9,10,11], it is also important to understand

how subjects make decisions when choices involve rewards, and

what factors guide those decisions. Decision-making has been

defined by a few key parameters: the likelihood of an outcome

(probability), the size of the outcome (magnitude) and the variance

of the outcomes [12]. The context of the decision-making exercise

is also an important parameter, particularly whether the choice is

presented under ‘risk’, when the probabilities of gains or loss are

explicitly defined, or ‘ambiguity’, when the probabilities of

outcomes are not known to the subject [1,13].

Much research has focused on creating models that examine the

different variables involved in decision-making. However, few of

the tasks used in these studies have been described in terms of their

internal validity with the purpose of developing them for use in the
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clinical setting. There are currently only a few clinical tools to

assess decisions involving rewards or penalties. The most widely

used is the Iowa Gambling Task [14,15]. On this test, subjects

begin without knowledge of the probabilities of gains or losses

involved and must discover these on their own over the course of

the test – hence it assesses decisions under ambiguity and subsequent

learning. While the Iowa Gambling Task has had success

predicting naturalistic risk-taking behaviours, others have pointed

out that this test does not lend itself well to decomposition - that is,

the isolation of the specific cognitive components involved: i.e. ‘‘it

is almost impossible to determine the degree to which individual

differences in behavior in the Iowa Gambling Task reflect

differences in learning, risk attitudes, and/or sensitivity to gain

and/or loss magnitude’’ (p. 14) [16]. Similar criticisms have been

levied against the Balloon Analogue Risk Task [17]. As a

consequence, there is a need for new experimental paradigms

that have external validity for natural behaviour, are emotionally

engaging, and can decompose performance into variables related

to risk-taking [16].

In this experiment, our main goal was to create a simple

economic scenario to model decision-making under risk. It is not

clear whether risk and ambiguity lie at two extremes of a

continuum or whether they involve distinct neural processes

[13,18,19]. Given the latter possibility, a clinical test of decision-

making under risk may be a useful complement to evaluations

of decision-making under ambiguity. In addition, one advantage

of tests of decision-making under risk is that the use of

explicitly defined probabilities allows for mathematical decompo-

sition of the decision-making process into its different cognitive

constructs.

Our paradigm required subjects to choose between two

prospects differing in the size and probability of reward, to

maximize their financial gain. On each trial we varied the

difference in value of the two prospects to create a spectrum of

choices. We then analyzed the decisions of subjects in this two-

alternative forced-choice paradigm by using traditional concepts

from the field of psychophysics to determine two key summary

variables: the discriminative threshold, which reflects the differ-

ence in value between the two prospects that is required to

cause subjects to choose one prospect reliably more than the other,

and the choice bias, which is the difference in value at which a

subject is equally likely to choose either prospect. Choice bias may

be an important clinical parameter, as it can show whether

behaviour is risk-averse or risk-seeking, by revealing whether

subjects are more likely to choose the high-probability but low-

yield prospect or the low-probability but high-yield one. Thus we

anticipate that such summary variables may prove to be useful

characterizations of group performance in future studies of clinical

populations.

Our initial analyses used the framework of expected value theory,

which posits that subjects decide rationally by computing

the objective worth of the prospects, expected value being the

product of reward magnitude times reward probability. However,

although many studies use expected value to characterize

prospects [7,20,21], human decisions are not always marked

by rationality. A second goal of our work was to evaluate

our results using prospect theory, which holds that decisions are

made on the basis of perceived value rather than objective

worth, and that perceived magnitude and perceived probability

of reward have non-linear relationships with their objective

counterparts [22]. Our results show that some of the irrational

anomalies we discovered using expected value terms can be

explained by the non-linear functions developed by others using

prospect theory.

Materials and Methods

Subjects
Nineteen subjects (10 female, 9 male; 28–45 years of age, all

right-handed) participated, all healthy with no prior psychiatric or

neurological illness, not on medication other than the oral

contraceptive, and with normal or corrected-to-normal vision.

Subjects were surveyed for their caffeine intake (mean 1.0 cups,

s.d. 1.1) and the number of hours of sleep obtained the previous

night (mean 6.9 h, s.d. 1.2). Subjects were also screened for

pathological gambling using the South Oaks Gambling Screen

[23] and none were found to be gamblers (mean score 0.53, s.d.

1.01).

Ethics
The institutional review boards of Vancouver General Hospital

and the University of British Columbia approved the protocol, and

all subjects gave written informed consent in accordance with the

declaration of Helsinki. Subjects were paid $10.00 for participa-

tion and received additional payment for rewards gained during

the experiment ($0.20 per coin won), with payments ranging from

$36.40 to 56.20.

Apparatus and protocol
Subjects sat in dim illumination 57 cm away from 220 CRT

screen, with their head position maintained by a chin-rest and

viewing with both eyes. Screen resolution was 1024 by 768 pixels,

which covered 39u and 30u of visual field, respectively. Eye

movements were recorded by a video-based system using the pupil

and the corneal infrared-light reflex to estimate gaze position

(Eyelink 1000 from SR Research Ltd, Mississauga, Canada).

Stimuli, trials and experimental blocks were created using SR

Research Experiment Builder 1.1.2.

Our strategy was to have subjects choose between two

prospects, one on the left and one on the right side of the screen,

each of which had a certain magnitude and probability of reward,

differing from each other and differing from trial to trial. At the

beginning of the experiment, subjects were instructed that the task

was similar to a game show in which they were to maximize their

gain by choosing between two ‘mystery boxes’. Each trial (Figure 1)

began with a 1-second view of a white screen with a dark fixation

cross at screen center. This was followed by an information screen

that showed the reward magnitude and probability for the

prospect on the right and that for the prospect on the left. This

remained visible for 4 seconds, during which time subjects were

free to move their gaze as they deliberated on their choice. After

4 seconds the information screen was replaced by another central

fixation cross, and after subjects had achieved fixation within 4u of

the center, this screen was followed by a display showing two

boxes, which were squares of 8u width, one centered 6u left of

fixation and the other centered 6u right of fixation, each with a

fixation cross at the center of the square. Subjects were instructed

to make a saccade to the centre of the box corresponding to their

choice. (Our experimental paradigm yielded similar data when a

manual response was used instead in an older cohort – see

Appendix S2). If no saccade was performed into one of the choice

boxes within 4 seconds, then the trial was terminated and recycled

to reappear later during the experiment. If a response into a choice

box was made, the computer used the probability and magnitude

information of the choice made by the subject to determine if they

received a reward or not. This information was conveyed to the

subject by a feedback screen with a message stating ‘‘Sorry! Better

luck next time’’ if no reward was given or ‘‘You just won x coins’’ if

they won the gain at stake. After 1.5 seconds this disappeared and
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the fixation cross appeared for the next trial. Though subjects were

not required to learn any contingencies during the task, we

attempted to minimize any learning effect induced by providing

trial-by-trail feedback by explicitly telling subjects prior to starting

the experiment that the probabilities depicted were, in fact, true

probabilities and that their decision on one trial would not affect

the outcome on a subsequent trial.

A rational decision-maker would calculate expected value (EV),

which is simply the magnitude of reward multiplied by the

probability of reward, and choose the prospect with the higher

expected value. In humans, though, there is some stochastic

variability in choice [24], and how this is reflected in discrimina-

tive sensitivity to expected value is one of the goals of this study.

Thus the key factor in each trial is the balance between the

expected value of one prospect versus that of the other. In our

experimental conditions, we required subjects to trade off between

one prospect with higher reward probability (which we arbitrarily

designated as Prospect 1) and a second prospect with higher

reward magnitude (Prospect 2). We expressed the difference in

expected value (EV) between the two prospects as (EV1–EV2)/

[(EV1+EV2)/2], which we called the EV-ratio. By our arbitrary

convention a positive EV-ratio indicates that the more favorable

prospect is the one with higher reward probability, whereas a

negative EV-ratio indicates that a rational subject should choose

the prospect with the larger size of reward. We created 14 different

combinations, with the sizes of EV-ratio ranged from 10%, a

difficult discrimination in which the odds are 1.11:1, to 90%, an

easy discrimination corresponding to odds of 2.7:1 (Table 1).

We also added 3 control combinations in which a) one prospect

had both greater magnitude and greater probability of reward

than the other, b) probability differed between the two but

magnitude was equal, or c) magnitude differed but probability was

equal (Table). In these control trials it is obvious which prospect is

the better choice, as there is no need to trade off probability

against magnitude. Control trials verified that subjects understood

the task and were attempting to maximize gain.

As each information screen has to convey simultaneously the

magnitude and probability of reward at risk, to avoid confusion we

depicted one pictorially and the other numerically. Two versions

of the experiment were created. In the first, reward magnitude was

depicted as a stack of one to five rectangular tokens, with each

token worth $0.20, and reward probability by a percentage

number (20 to 80). In the second, reward magnitude was

represented by a number and reward probability by a stack of

two to eight rectangles, to indicate probabilities ranging from 20 to

80%. Ten subjects were assigned to the first version and ten to the

second.

The experiment consisted of 5 blocks separated by a rest break.

Each block consisted of the same set of 34 trials. Each of the 17

different trials (14 experimental combinations and 3 control

combinations) was shown twice in a block, once with the higher

expected value on the right and once with it on the left. The order

of the trials was randomized within each block. At the end of each

block subjects were told how much money they had won. After the

end of the experiment, subjects were paid the gains they had

accrued.

Figure 1. Two examples of trial sequences. Each panel shows a screen display, with the series of screens in a trial progressing from top left to
bottom right. A). First version. A cross at screen center appears, which the subject must fixate first. The next screen is an information screen showing
the outcomes of the left and the right prospects. Here probability is represented as a number (in this example, 30% chance of reward on the left, 70%
chance on the right) and magnitude of reward is shown pictorially (4 tokens on the left, 3 tokens on the right, each token worth $0.20). After 4 sec,
this is replaced by another central cross, once subjects fixate this, a choice screen appears for up to 4 sec, and subjects make a saccade into one of
the boxes to indicate their choice. The computer then determines with the probability of the prospect chosen whether the subject gets a reward. In
this example the subject received 3 tokens. This is then replaced by the fixation cross for the next trial. B). Second version. This is similar except that
probability is represented pictorially (3 rectangles for 30% versus 7 for 70%) and magnitude numerically (5 tokens on the left, 3 tokens on the right).
In this example, the subject did not get a reward.
doi:10.1371/journal.pone.0033460.g001
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Data Analysis
The main variable was the choice made by the subject, which

we operationalized as the frequency of choosing the prospect

with higher probability. This was plotted as a function of the

EV-ratio. We first analyzed choice with repeated-measures

ANOVA with main factors of EV-ratio and experiment version

(pictorial magnitude/numerical probability, numerical magni-

tude/pictorial probability), and subject as a random effect.

Second, we fit curves to the data, using least-squares linear

regression of normalized (z-transformed) frequency-of-response

data [25]. This was done for individual subject data for statistical

purposes, and on average group data for illustrative purposes in

Figure 2. From these curves we first obtained the point of

equivalence for each subject, the EV-ratio at which a subject is

equally likely to choose either prospect (i.e. 50% likelihood of

choosing the side with higher probability). We then tested the

hypothesis that the point of equivalence was significantly different

from an EV-ratio of zero, which would indicate a systematic bias

in choice. Second, we obtained estimates for the EV-ratios at

which subjects had a 25% and a 75% likelihood of choosing the

side with higher probability. Half of the difference between these

two EV-ratios is equivalent to a 75% discriminative threshold for

choice, or ‘just noticeable difference’ in EV-ratio, which is midway

between random guessing (50% likelihood) and certainty (0% or

100% likelihood).

Results

On the 30 control trials, 18 of the 19 subjects reliably chose the

side with higher expected value, with 2 subjects making 2 errors, 3

subjects making 1 error and 13 subjects making no errors. One

subject only chose the correct side 60% of the time, which was no

better than chance. Her data are excluded from the following

analysis, because we cannot be certain that her decisions are

guided by a desire to maximize reward.

In the experimental trials, the ANOVA showed a main effect of

EV-ratio (F(13,221) = 65.7, p,.0001), confirming a robust and

consistent effect of EV-ratio on choice. The curve fit to group data

showed a bias towards choosing the side with higher probability

rather than higher reward (Figure 2A). The point of equivalence

for these group-averaged data occurred at an EV-ratio of 20.25.

Analyzing the individual subject data, the mean point of

equivalence was 20.38 (s.d. 0.67), which was significantly different

from an EV-ratio of 0 (t(18) = 2.40, p,.028), with 95% confidence

interval of [20.71, 20.05]. Thus, the side with greater reward had

to have a 38% larger expected value than the side with higher

probability for subjects to be indifferent in their decision. This

indicates a statistically significant degree of risk aversion in this

group of subjects.

There was an interaction between session and EV-ratio

(F(13,221) = 2.05, p,.02). Subjects were more likely to choose

Table 1. Probabilities and magnitudes of reward for the two prospects in each trial, for the 14 experimental conditions and the 3
control conditions.

Experimental Conditions

Reward Magnitude (coins) Reward Probability (%) EV EV EV Ratio

Prospect 1 Prospect 2 Prospect 1 Prospect 2 Prospect 1 Prospect 2

1 4 60 40 0.6 1.6 20.909

1 5 70 30 0.7 1.5 20.727

1 4 70 30 0.7 1.2 20.526

2 5 60 40 1.2 2.0 20.500

1 3 70 30 0.7 0.9 20.250

1 5 80 20 0.8 1.0 20.222

3 5 60 40 1.8 2.0 20.105

3 4 60 40 1.8 1.6 0.117

4 5 60 40 2.4 2.0 0.182

1 3 80 20 0.8 0.6 0.286

2 3 70 30 1.4 0.9 0.435

3 4 70 30 2.1 1.2 0.545

1 2 80 20 0.8 0.4 0.667

2 3 80 20 1.6 0.6 0.909

Control conditions

Reward Magnitude (coins) Reward Probability (%) EV EV EV Ratio

Prospect 1 Prospect 2 Prospect 1 Prospect 2 Prospect 1 Prospect 2

2 4 50 50 1.0 2.0 20.667

3 3 70 30 2.1 0.9 0.800

5 2 60 40 3.0 0.8 1.158

Prospect 1 was arbitrarily designated as having the higher reward probability (EV = expected value = probability X magnitude).
doi:10.1371/journal.pone.0033460.t001
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the side with larger reward when reward magnitude was depicted

pictorially and reward probability numerically (Figures 1A, 2B),

with an equivalence point of 20.13, than when the reverse was

true, where the equivalence point was 20.65 (Figures 1B, 2C).

Thus the pictorial symbol has a 26% advantage over Arabic

numbers in biasing choice. The slopes of the curves fitted to the

two sessions did not differ, indicating that sensitivity to expected

value did not differ by which property was indicated pictorially

and which numerically.

For the curve fit to group data, the discriminative threshold for

EV-ratio, was 0.36. Analyzing the individual subject data, the

mean of individual discriminative thresholds was 0.43 (s.d. 0.34),

giving a 95% confidence interval of [0.27, 0.59].

The above analysis in the traditional framework of expected value

theory assumes that subjects have veridical estimates of value and

probability. Prospect theory holds that neither is true, and that

subjective perception of reward magnitude and probability are

non-linear functions. Recent work has summarized much

normative data focused on finding the functions that best fit

human observers and the parameters of the constants of these

functions [26]. To compare our results to predictions from prospect

theory in the literature, we re-plotted our data with the methods in

these reports, which use a logit function to fit curves to the

difference in perceived value V(x,p) (see Appendix S1). Logit

functions give similar results to linear regression of normalized

data [25]. To avoid circularity in the results, we used parameters

for these non-linear functions estimated from an independent

sample of healthy observers in another study, which were also

shown to be comparable to the results from a substantial number

of other reports from healthy subjects [26].

One of the byproducts of these non-linear functions is that the

predicted point of equivalence for perceived value, a subjective

judgment, does not coincide with the point of equivalence for

(objective) expected value, but rather occurs to its left. Figure 3

shows that when we re-plotted our data in terms of the difference

in perceived value, using logit functions, these curves now pass

close to zero. Hence, prospect theory can explain why subjects tend to

favour prospects with higher probability over prospects with larger

rewards, as seen in Figure 2.

Discussion

Our paradigm examined decision-making under risk by

requiring subjects to select between one prospect with higher

probability of gain and another with higher magnitude of gain.

First, we found that a change of 43% in the expected value ratio

was required to shift responses from the point of equanimity,

where subjects were equally likely to choose either option, to a

75% likelihood of selecting the prospect with higher expected

value: this can be considered a ‘‘value-threshold’’ for decision-

making. Second, our results showed a choice bias: the point of

equanimity occurred not when both prospects had equal expected

value, but when the prospect with the higher magnitude of gain

had 38% more expected value than the prospect with higher

Figure 2. Results. The frequency of choosing Prospect 1 (the prospect with higher reward probability) is plotted as a function of the EV-ratio for
(graph A) all subjects, (graph B) subjects in Version 1, in which probability is represented numerically – see Figure 1A, and (graph C) subjects in
Version 2 in which probability is represented pictorially – see Figure 1B. EV-ratio.0 indicates that Prospect 1 with the higher reward probability also
has the higher EV-ratio; EV-ratio,0 indicates that Prospect 2 with the larger reward is the better choice. The point of equivalence (when frequency of
choosing higher probability is equal to frequency of choosing larger reward, i.e. the dotted horizontal line showing frequency = 0.5) should occur
when the EV-ratio = 0 (dotted vertical line) in a rational decision-maker, but this is shifted in our subjects to the left, indicating greater tendency to
choose Prospect 1, which has the higher reward probability. This is more so in Version 2 than Version 1 (graph A vs. B), indicating that there is an
additional bias in favour of the property depicted pictorially. In (A), the solid grey lines indicate thresholds for 25% and 75% frequency of choice: half
the distance on the x-axis covered by the fitted curve between these two frequencies is taken as our discriminative threshold. Error bars are one
standard error.
doi:10.1371/journal.pone.0033460.g002
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probability. In other words, there was a tendency for subjects to

choose the ‘safer’ (i.e. higher probability) prospect, which was

outweighed only when the less likely proposition had an expected

value of 38% or more than that of the safer prospect.

A number of studies have used a similar paradigm that requires

subjects to choose between prospects varying in probability and

magnitude of reward. This has been done to compare the validity

of different decision-making models [27], to derive parameters for

fitting and evaluating different functions in prospect theory (see [26]

for review), to compare the predictions of prospect theory using

different levels of incentives [28], or to examine effects that occur

at the stage of input and selection [26,29]. Others have used this

type of experimental design to investigate the correlates of the

different choice variables with neuroimaging. For example,

functional MRI studies have suggested that there are distinct

neural representations for the value of a prospect and for its

uncertainty [19,20], as well as an aggregate signal that encodes

both [30]. Different regions are activated depending on whether a

subject is making a decision under ambiguity or under risk [18],

though the value of a reward is represented by a common signal in

both cases [13]. Other studies have found a neural correlate for

subjective risk - that is, the degree of risk-aversion [12]. Distinct

neural substrates for different decision-making factors has also

been shown with sequential choice versions [31], and in

understanding the ‘exploration-exploitation’ dilemma relevant to

learning [32,33].

Thus, our simple experimental design has an extensive history

and acceptance as a valid and valuable method of exploring

decisions under risk. Our results show that this type of paradigm

can also be used to behaviourally characterize and quantify

sensitivity and bias in choice in a sample of human subjects.

Sensitivity and bias are common summary variables in studies of

perceptual processing: here we show that they may also be useful

measures of a cognitive evaluation of risk, and potentially

applicable to the study of decision-making in clinical populations.

In our group of unselected healthy young subjects, our parameters

were fairly robust and consistent across subjects, with 95%

confidence intervals of [0.27, 0.59] for discriminative threshold

and [20.71, 20.05]. for decision bias. Hence it should be feasible

to employ this design to study disordered patient groups.

Our chief goal was to characterize human decisions under risk

as a function of the objective values of choices presented. As such,

this employs the framework of expected value theory, which holds that

the expected value of a choice is the product of the magnitude and

probability of reward for that choice. A thoroughly rational ‘ideal

evaluator’ in this situation would simply select the prospect with

the largest expected value: in place of the sigmoid-shaped curve in

Figures 2 and 3, there would be a step-function at an EV-ratio of

zero: the infinite slope of a step function would correspond to a

discriminative threshold of zero (i.e. an ‘ideal evaluator’ would be

exquisitely sensitive to any change in EV), and its occurrence at an

EV-ratio of zero would indicate no bias toward magnitude or

probability in the decision, in other words, a neutral risk attitude

that is neither avoiding nor seeking risk. Our finding that the

discriminative threshold is 43% - i.e. that there is a sigmoid-shaped

curve - reflects limits in our subjects’ ability to estimate small

differences in expected value, which in some models is represented

as deriving from a stochastic choice variable [24]. The existence of

a choice bias showing a risk-premium of 38% of expected value

indicates that human behaviour deviates from an ideal evaluation

of the objective value of prospects and is not risk-neutral but

rather, risk-averse.

Figure 3. Results plotted in prospect theory terms. The frequency of choosing Prospect 1 is plotted as function of the difference in perceived
value (V(x,p), see Appendix S1) rather than objective value, for all subjects (graph A), subjects in Version 1 (graph B), and subjects in Version 2 (graph
C). Values greater than zero indicate that Prospect 1, with the higher reward probability, has the greater perceived value. Compared to Figure 2, the
fitted logit function for all subjects now passes through the line of equivalence (frequency = 0.5) close to where V(x,p) = 0. This is because V(x,p) = 0 at
a negative value of EV-ratio, due to the non-linearites in perceived utility and perceived probability (see Appendix S1, Image I-right graph). Error bars
are one standard error.
doi:10.1371/journal.pone.0033460.g003
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Expected value theory remains a widely used decision-making

model, in part because of its simplicity. Experiments performed in

primates largely base their analysis of reward processing on its

predictions [4,8,34], it is used to model probabilistic decision-

making in human behavioral studies [7,9,35,36] and human

imaging work [20,21] and it forms the implied basis of the widely

used Iowa gambling task [14]. However, the fact that humans

deviate from rationality in decision-making under risk has been

known for some time, and was the impetus for the development of

models superseding expected-value theory. Two limitations of

expected-value theory have been highlighted in particular. First, it

does not take into account the utility of the outcome or the effect of

decreasing marginal sensitivity. That is, it assumes that all subjects

value outcomes (gains or losses) uniformly, irrespective of factors

like their pre-existing wealth or the gains already accumulated: for

example, a gain of $1000 is probably more meaningful to someone

with nothing than to someone who has already won $1,000,000.

Expected utility theory corrected this with a non-linear utility function

for outcomes [26,37]. The second limitation of expected value theory is

that individual risk-aversion or risk-seeking tendencies may affect

how subjects weigh probability information in their decision: mean

variance theory handles this by weighting the payoff by their

susceptibility to risk [38]. Prospect theory is the most recent model

and it uses a different, more integrated approach to risk behaviour

to address these limitations [22,39]. The basic tenet of prospect theory

is that subjects evaluate choice not on the basis of objective

estimates of expected value, but by their subjective perception of

value, which has inherent systematic biases. The perception of

reward magnitude is characterized by an exponential function in

which increments in reward are valued more at low than at high

levels of reward (thus the difference between four and five dollars is

less meaningful than the difference between one and two dollars).

The perception of probability is characterized by a non-linear S-

shaped weighting function that adjusts for our tendency to

overweight low probabilities and underweight high probabilities.

Such adjustments were motivated by anomalous human behaviour

at these extremes, as manifest in decisions to buy insurance against

low-probability losses or to buy lottery tickets for low-probability

wins, for example [40]. Individual risk behaviour thus depends on

both the probability weighting function and the non-linearity of

the utility function [41] such that, according to prospect theory,

people tend to be risk-averse for high probability gains and risk-

seeking for low probability gains [39]. This differs from the mean-

variance approach to decision-making, which takes into account

individual risk susceptibility by adjusting risk (the variance of

outcomes) for an individual’s subjective sense of risk [42].

In our study, the anomalous behavior is the choice bias of 38%,

indicating a tendency to favor a prospect with slightly higher

probability over one with slightly higher reward. This bias can be

viewed as another way of expressing ‘‘risk premium’’. Risk

premium is considered the amount of expected value that subjects

are willing to forego to avoid risk, and is often operationally

defined as the difference in expected value between the gain a

subject is willing to take with 100% certainty and a gamble with

uncertainty [43]. Therefore, if a subject is willing to take $45 with

100% certainty as opposed to a bet for $100 with 50% probability,

the risk premium is $5 = $50(0.5)2$45(1.0). This has also been

termed the ‘certainty equivalent’ [22] and has been calculated to

compare risk behaviours across groups [44]. One possible

limitation of this measure is that it is often derived from

hypothetical choices [12] that do not necessarily reflect real

choices with consequences (e.g.. monetary pay-outs) [28]. In our

study, we quantified risk premium as a proportion of the expected

value of the prospect under consideration: as such it is a relative

value and can transfer to other choice currencies. In addition, it

derived from real choices the subjects faced, which confers an

important element of affective engagement, as well as real-life

validity. Risk premium is not explained by expected value theory since

it defies its basic axiom of rationality. However, using indepen-

dently obtained estimates of parameters from other studies of

healthy subjects, we could show that this risk premium is predicted

as the product, not of objective measures of probability and size of

gain, but of subjective measures of perceived probability and

perceived utility of gain. Hence prospect theory may account not only

for irrational human choices at the extremes of the probability

spectrum, but also for anomalous choices with more typically

encountered levels of probability.

An important feature of our experimental design is that the

probabilities and magnitudes of reward associated with each

choice were explicitly provided in each trial. As pointed out, this

created a situation of risk, but importantly, this also eliminated the

need for subjects to learn these parameters. This differs from

several studies assessing behavior as a function of expected value

[7,21] and current clinical paradigms such as the Iowa gambling

task [14,45] and the Balloon Analogue Risk-Taking task [17]. For

example, in the Iowa Gambling Task, subjects choose cards from

one of four decks. There is a gain with every card, which is

identical for all cards in a specific deck; however, the two decks

with the higher gains also have the risk of occasional high losses, so

that in the long run it is more advantageous to select from the

decks with modest gains. Healthy participants quickly discover

that the decks with lower gains are most advantageous, but certain

disease populations fail to do this [46,47,48]. As subjects do not

start with information about the gains and losses of each deck, they

must learn the ‘tortoise-and-hare’ moralistic dimension of this

paradigm over the course of the test. As a result, whether poor

performance on the Iowa gambling task reflects a deficit in

reward-related decision-making or impaired learning remains

contentious [15]. This could be an important confound as patient

populations suspected of having impaired decision-making under

risk may have cognitive dysfunction that also impacts their

learning and/or their reaction to uncertainty.

Given the prominence of the Iowa Gambling Test, it is worth

highlighting other important differences between this test and our

paradigm. There are only two expected values operating in the

Iowa Gambling Test, a higher one for the two decks with lower

gains and a lower one for the two with higher gains. Thus it cannot

quantify the sensitivity of subjects to differences in expected value.

Second, although the decks differ in the probability of losses, the

decks with higher probability of loss have the same expected value

as those with lower probability. Hence the test cannot assess how

subjects incorporate probability information in their decision-

making. In contrast, our paradigm was designed to study how

subjects balance explicit information about the probability of gain

against the magnitude of gain, and by doing so over a range of

values, provides an estimation of the sensitivity of the subject to

expected value.

It has been stated that new tests that specifically examine

decisions under risk are needed to complement the assessment of

how subjects learn loss-aversive strategies in the Iowa Gambling

Task [16]. Also, though widely accepted, prospect theory has seldom

been used as a framework for evaluating decisions in clinical

populations, even in those with established anomalies in reward

processing. For example, patients with Parkinson’s disease have

been shown to be less sensitive to reward (positive feedback) as a

result of their dopamine-depleted state [49,50,51] but become less

sensitive to penalty (negative feedback) when treated with

dopamine agonists [47,52,53]. Dopamine agonist treatment can
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also turn some patients with Parkinson’s disease into pathologic

gamblers [54]. Studies using functional MRI have demonstrated

that patients with an impulse control disorder while on dopamine

agonists show both a behavioural bias towards risky choices and

reduced neural activation by risk, compared to controls with

Parkinson’s disease but no impulse control problems [55]. At this

point, however, it is not known whether these patients are

compelled to bet by an altered perception of risk as would be

suggested by the mean-variance approach to risk behaviour [55]

or if their deficit can be attributed to one of the decision-making

variables described by prospect theory: either an inflated perception

of gains or an over-estimation of small probabilities of winning. As

seen in the Appendix S1, prospect theory makes very different

predictions about the effects on discriminative thresholds from

these two different manipulations.

In conclusion, we showed that this simple test provides a robust

measure of discriminative value thresholds and biases in decision-

making under risk, in a design that eliminates confounds of

decisional ambiguity and learning. We show that healthy subjects

show a choice bias that favours probability over magnitude, which

can be explained by non-linearities in the subjective perception of

the value of a choice, as predicted by prospect theory. Prospect theory

makes predictions about the effect of changing parameters in these

non-linear functions, which may generate useful insights when

used to evaluate the decisions under risk of populations with

anomalous reward-processing, such as Parkinson’s disease and

schizophrenia.
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