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Purpose: Quantitative cone-beam CT (CBCT) imaging is on increasing demand for high-performance

image guided radiation therapy (IGRT). However, the current CBCT has poor image qualities mainly

due to scatter contamination. Its current clinical application is therefore limited to patient setup based

on only bony structures. To improve CBCT imaging for quantitative use, we recently proposed a cor-

rection method using planning CT (pCT) as the prior knowledge. Promising phantom results

have been obtained on a tabletop CBCT system, using a correction scheme with rigid registration and

without iterations. More challenges arise in clinical implementations of our method, especially because

patients have large organ deformation in different scans. In this paper, we propose an improved frame-

work to extend our method from bench to bedside by including several new components.

Methods: The basic principle of our correction algorithm is to estimate the primary signals of

CBCT projections via forward projection on the pCT image, and then to obtain the low-frequency

errors in CBCT raw projections by subtracting the estimated primary signals and low-pass filtering.

We improve the algorithm by using deformable registration to minimize the geometry difference

between the pCT and the CBCT images. Since the registration performance relies on the accuracy

of the CBCT image, we design an optional iterative scheme to update the CBCT image used in the

registration. Large correction errors result from the mismatched objects in the pCT and the CBCT

scans. Another optional step of gas pocket and couch matching is added into the framework to

reduce these effects.

Results: The proposed method is evaluated on four prostate patients, of which two cases are presented

in detail to investigate the method performance for a large variety of patient geometry in clinical

practice. The first patient has small anatomical changes from the planning to the treatment room. Our

algorithm works well even without the optional iterations and the gas pocket and couch matching. The

image correction on the second patient is more challenging due to the effects of gas pockets and

attenuating couch. The improved framework with all new components is used to fully evaluate the

correction performance. The enhanced image quality has been evaluated using mean CT number and

spatial nonuniformity (SNU) error as well as contrast improvement factor. If the pCT image is consid-

ered as the ground truth, on the four patients, the overall mean CT number error is reduced from over

300 HU to below 16 HU in the selected regions of interest (ROIs), and the SNU error is suppressed

from over 18% to below 2%. The average soft-tissue contrast is improved by an average factor of 2.6.

Conclusions: We further improve our pCT-based CBCT correction algorithm for clinical use.

Superior correction performance has been demonstrated on four patient studies. By providing quan-

titative CBCT images, our approach significantly increases the accuracy of advanced CBCT-based

clinical applications for IGRT. VC 2012 American Association of Physicists in Medicine. [http://

dx.doi.org/10.1118/1.3693050]
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I. INTRODUCTION

Quantitative cone-beam CT (CBCT) imaging is on increasing

demand for high-performance image guided radiation therapy

(IGRT) since it provides a foundation for advanced image-

guidance techniques, including online tumor delineation1,2 and

patient dose calculation.3–5 With more precise treatment moni-

toring from accurate CBCT images, dose delivery errors can
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be significantly reduced in each fraction6,7 and further com-

pensated for in subsequent fractions using adaptive radiation

therapy.8,9 However, the current CBCT imaging has severe

shading artifacts mainly due to scatter contamination,10–14 and

its current clinical application is therefore limited to patient

setup based on only bony structures. To improve CBCT imag-

ing for quantitative use, we recently proposed a shading cor-

rection method using planning CT (pCT) as the prior

knowledge.15 Promising results were shown on phantoms,

with reconstruction errors reduced from 348 Hounsfield unit

(HU) to below 10 HU by the proposed correction. In this pa-

per, we develop an improved framework to extend our method

from bench to bedside by adding several new components into

our previous algorithm to enhance the performance in the real

clinical environment.

In modern radiation therapy, patients are routinely

scanned by conventional CT scanners for planning purposes

before treatment. These scanners provide accurate pCT

images because of small inherent scatter signals, as well as

more linear detectors and sophisticated correction algorithms

that have been developed over the past 30 years.16 We pro-

pose to use pCT images as “free” prior information to

improve the CBCT image quality. Primary signals in the

CBCT scan are first estimated via forward projection on the

pCT image of the same object. If the pCT image is registered

well to the object geometry in the CBCT scan, the difference

between these estimated primary signals and the raw CBCT

projections contain dominant low-frequency scatter,17–20

which can be efficiently obtained and corrected for using

low-pass filtering. The accuracy of the registration step

determines the performance of our method. However, as

shown in our previous phantom studies,15 the method obtains

effective scatter correction as long as the high-contrast

objects are well aligned in the pCT and CBCT images. Small

low-contrast discrepancy is not carried over from the pCT to

the corrected CBCT. The improved CBCT images therefore

retain faithful patient information at treatment time.

Our preliminary phantom results were obtained on a tab-

letop CBCT system, using a correction scheme with rigid regis-

tration. More challenges arise as we translate this technique to

clinical use, especially because patients have large organ defor-

mation from the pCT scanner to the treatment room. Here, we

propose to improve our method using deformable registration

to minimize the geometry difference between the pCT and the

CBCT images. The registration performance relies on the accu-

racy of the CBCT image. As such, we design an iterative

scheme to update the CBCT image used in the registration with

the corrected image generated in the previous iteration.

Deformable registration cannot guarantee a perfect geom-

etry match when the pCT and the CBCT images do not have

the exact one-to-one correspondence.21,22 Although our

method can tolerate geometry mismatch of low-contrast

objects,15 its performance will be degraded by unmatched

high-contrast objects. In our method, we need to calculate

the projection data on the registered pCT image and compare

with the raw CBCT projections. These unmatched objects

may generate large signals in the differences of raw CBCT

projections and estimated primaries, which cannot be sepa-

rated from scatters using smoothing techniques due to the

overlapped low-frequency components. Such a situation is

commonly seen on images of human torsos. For example,

the rectum may have different gas filling status in the pCT

and the CBCT scans. Furthermore, the x-ray beam of a

CBCT system covers the patient couch, which has a different

geometry from that of a pCT scan. To tackle the difficulties

of geometry mismatch, we further improve our method by

including a step of gas pocket and couch matching to reduce

the errors in the primary estimation.

In this paper, we evaluate the improved shading correc-

tion scheme on four prostate patients, who are scheduled for

radiation therapy treatments. Two cases are presented in

detail to investigate the method performance for a large vari-

ety of patient geometry in clinical practice. With the optional

features (iterations, gas pocket, and couch matching) dis-

abled, our algorithm works well for patients with small ana-

tomical changes from the planning to the treatment room, as

shown on the first patient. The image correction on the sec-

ond patient is more challenging due to the effects of gas

pockets and attenuating couch. The improved framework

with all new components is used to fully evaluate the correc-

tion performance. The stability of the proposed framework is

tested on two more patients.

II. METHOD

Figure 1 shows the general workflow of the improved algo-

rithm. The shading correction on CBCT images is carried out

as the following steps: (Details of the implementations are

shown in later Secs. II A, II B, and II C as indicated in the

parentheses.)

(1) Reconstruct a first-pass CBCT image using raw cone-

beam projections without correction.

(2) Calibrate the pCT of the same patient from CT number

(HU) to linear attenuation coefficient (mm�1).

(3) Iterate the pCT-based correction on CBCT until the

image quality is satisfactory (Sec. II C).

(a) Register the calibrated pCT to the corrected

CBCT (or the first-pass CBCT in the first itera-

tion) (Sec. II A).

(b) Starting from the second iteration, create artificial

gas pockets or fill gas pockets with soft tissues on

the pCT image to match the gas pocket geometry

on the CBCT image (Sec. II B).

(c) Segment the patient couch from the corrected

CBCT image (or the first-pass CBCT in the first

iteration) and add it on the pCT image.

(d) Correct for artifacts of CBCT images using the

pCT-based correction algorithm (see Fig. 2).

(e) If the residual error is large, go back to step 3(a).

Otherwise, output the corrected CBCT as the final

result.

Similar to our previous phantom study, the standard FDK

algorithm is used in the CBCT reconstruction.23 In the pCT

calibration step (2), we convert CT numbers of the pCT to

linear attenuation coefficients based on the linear attenuation

1992 Niu, Al-Basheer, and Zhu: Planning CT based quantitative cone-beam CT imaging 1992
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coefficients of known tissue composition according to the

ICRT report 46.24 In step 3(d), the CBCT correction based

on a registered and well-calibrated pCT image is imple-

mented exactly as published in our recent paper, except that

a penalized weighted least-square (PWLS) algorithm is

applied on the corrected CBCT projections to suppress

image noise. The implementation of step 3(d) is illustrated

in Fig. 2 and the readers are referred to our previous publica-

tion for more details.15 A brief summary of these procedures

is included below for readers’ convenience.

Using the pCT image as “scatter-free” images, we first

estimate the primary projections in the CBCT scan via

forward projection of the spatially registered pCT data.

Since most of the CBCT shading artifacts stem from low-

frequency errors in the projections such as scatter, these

errors can be accurately estimated by low-pass filtering the

difference between the estimated and the raw CBCT projec-

tions. The error estimates are then subtracted from the raw

CBCT projections and scatter-corrected CBCT images are

generated using a standard FDK algorithm.23

Scatter noise remains in the projections after the proposed

correction, since it is mainly high-frequency. We have

recently published an effective scatter noise suppression

method using a PWLS algorithm in Ref. 25. The PWLS

method is a statistics-based algorithm that aims to estimate

the linear integrals from noisy x-ray projections by minimiz-

ing the PWLS objective function. The PWLS objective func-

tion models the first and second moments of the projection

data, which is defined as

U q̂cð Þ ¼ qc � q̂cð ÞTR�1 qc � q̂cð Þ þ bR q̂cð Þ; (1)

where q̂c is the vector of noise-suppressed line integral data

to be estimated, qc is the vector of scatter-corrected line inte-

gral data,
P

is a diagonal matrix of which the ith element is

the variance of qc at detector pixel i and R is the smoothness

penalty function. The variance of qc is approximated based

on Poisson statistics as

var qcð Þ �
pm

pm � seð Þ2
; (2)

where pm is the measured projection data before scatter

correction and logarithm operation and se is the estimated

scatter. The smoothness of the result is determined by a

smoothing parameter b which controls the degree of agree-

ment between the estimated and measured data. In this

paper, we use relatively strong noise suppression for a better

CBCT image quality with a spatial resolution comparable to

that of the pCT. The b values are in the range from 1500 to

2000.

In the following Secs. II A, II B, and II C, we focus on

the new components [all procedures in step 3, except for

step 3(d)] in the improved workflow, which are highlighted

in bold in Fig. 1.

II.A. Image registration

The registration of the pCT image to the CBCT image is

implemented as the following three steps:

(1) Background clearing: The backgrounds of the pCT and

the CBCT images are removed by filling zeros to the

regions outside of the patient volume.

(2) Rigid registration: These “clean” images are registered

rigidly to obtain an approximate alignment.

FIG. 1. Improved workflow of the quantitative CBCT imaging scheme with

the new components. The new components are highlighted in bold. The

label of each step corresponds to the description in text.

FIG. 2. One iteration of scatter correction [mainly step 3(d) in Fig. 1].

1993 Niu, Al-Basheer, and Zhu: Planning CT based quantitative cone-beam CT imaging 1993
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(3) Deformable registration: A deformable registration is

applied to further improve the geometry match of the

two images.

Step (3) takes the majority of the computation. We model

the deformable registration as an optimization problem using

a conventional framework. The deformation vector field of

the pCT image is iteratively updated to maximize the simi-

larity between the deformed pCT and the CBCT images. The

intensity of CBCT image may be inaccurate during the cor-

rection process. Therefore, we choose mutual information

(MI) as the similarity metric in the registration since it does

not rely on the absolute intensities of the two images.26 The

vector field is generated using B-spline interpolation over

the volume of interest, driven by points on a cubic control

grid. B-spline coefficients are defined at regular intervals

along the grid, and the deformation field is a smooth interpo-

lation of the coefficients. The coefficients are obtained by

minimizing the MI-based metric of the two images. A gradi-

ent descent search algorithm is implemented to update the

solution in the optimization. Note that deformable registra-

tion is still an active research area. Many other successful

deformable registration algorithms can also be employed in

our method.27,28

II.B. Gas pocket and couch matching

Since scatter is dominantly low-frequency, we obtain

only low-frequency signals as CBCT projection errors. As a

result, our algorithm is able to suppress small high-

frequency errors in the estimated projections stemming from

the mismatched low-contrast objects in the pCT and the

CBCT images. This feature has been demonstrated in both

the studies of our previous publication15 and the patient stud-

ies shown later in this paper. When the geometry difference

becomes significant (i.e., misalignment of high-contrast

objects), however, correction errors in our algorithm are not

negligible. In clinical studies, we find that bones in the pCT

and the CBCT images can always be registered well. The

high-contrast geometry mismatching mainly comes from gas

pockets inside the patient and the patient couch of the CBCT

system. These problems can be substantially alleviated by

modifying the pCT image to match the CBCT geometry in

the following steps.

(1) Identify gas pockets in the pCT and the CBCT images.

From the registered pCT and the CBCT images with

background removed, generate binary masks by setting

the voxel value to 1 or 0 if it is below or above a certain

threshold. The thresholds are empirically chosen. In the

studies presented in this paper, we use 0.015 mm�1 for

pCT and 0.01 mm�1 for CBCT. Remove small islands in

the binary masks due to image noise by image erosion

and then image dilation.

(2) Fill and create gas pockets in the pCT based on the

CBCT geometry. First, identify the volume where the

pCT has gas pockets but the CBCT does not, by compar-

ing the binary masks generated in step (1). Fill these

voxels with the linear attenuation coefficient of soft tis-

sues (0.02 mm�1 in our implementations). Then, identify

the volume where the pCT has no gas pockets but the

CBCT does, again, by comparing the binary masks gen-

erated in step (1). Set these voxels to zeros.

(3) Segment the couch of CBCT and add it to the registered

pCT.

It is worth emphasizing that these steps are optional in the

proposed algorithm, depending on whether the high-contrast

geometry mismatch results in large low-frequency errors in

the estimated primary signals. From the clinical studies, we

find that small gas pockets (with a volume below 1 cm3)

cause negligible errors in our correction. On a Varian radia-

tion therapy machine, the couch top, which is made of car-

bon fiber, has low attenuation. The correction errors mainly

come from the attenuating metal frame of the couch. We can

skip the step of couch matching, if the CBCT projection field

does not cover the metal frame.

II.C. Iteration

Calculations inside each iteration are exactly the same

except that the CBCT image is updated with the new correc-

tion before the registration step. The iteration should stop

when the errors of the reconstructed CBCT images converge

to stable values. We find that very few iterations (at most

five) are needed for acceptable correction performance. In

this study, the total iteration number is empirically chosen

based on inspections of the corrected CBCT images.

II.D. Evaluation

We evaluated our method on four prostate patients, who

were scheduled for radiation therapy treatments at Georgia

Radiation Therapy Center, Georgia Health Sciences Univer-

sity. The pCT scans were taken on a 16-slice Philips Bril-

liance Big Bore CT simulator (Philips Healthcare Systems,

Andover, MA) with the helix scan mode. The reconstructed

pCT image had a size of 512-by-512-by-114, with the voxel

size of 1.17 mm in the axial plane and 3 mm in the longitudi-

nal direction. The CBCT scans were performed on the

patients at treatment time using the on-board imager system

installed on the Varian Clinac 23IX radiation therapy

machine (Varian Medical System, Palo Alto, CA). The sys-

tem operated in the half-fan scan mode, with a bow-tie filter

mounted on the outside of the x-ray collimator and a data

acquisition of about 668 projections in a 360� scan. The

reconstruction volume had a size of 512-by-512-by-190 with

the voxel size of 0.977 mm in all directions.

In the implementation of the proposed method, we used

3D SLICER, an open-source software package,39 in the registra-

tion step. The grid size used in the B-spline deformable

registration was set as 15 voxels in all directions of the

whole image volume. The optimization goal was typically

reached after approximately 35 iterations. On a 3.0 GHz

workstation, each registration took about 20 min. All other

steps were implemented in MATLAB (version 7.8.0, Math-

works). After registration, the data processing (including

forward projection, scatter estimation, noise suppression,

1994 Niu, Al-Basheer, and Zhu: Planning CT based quantitative cone-beam CT imaging 1994
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and FDK reconstruction) for one projection took about

1 min. Note that the purpose of the presented work is to dem-

onstrate the potential of our approach on the improvement of

CBCT image quality. The data processing time can be

greatly reduced after standard optimizations, including C

implementation and graphics processing units (GPU) accel-

eration, as addressed in Sec. IV.

In our implementations, a 2D median filter, with a width

of 51-by-51 pixels (19.9-by-19.9 mm on the detector), is

used to suppress the boundary discrepancy in the difference

images of the raw and the estimated CBCT projections.

A low-pass 2D Gaussian filter, with a window size of

91-by-91 pixels (35.3-by-35.3 mm) and a standard devia-

tion of 21 pixels (8.1 mm), is then applied to further reduce

the high-frequency primary difference without affecting

the low-frequency scatter signals. The parameters of these

filters are estimated from the sampling period of scatter

measurement using both Monte Carlo simulation and beam

blocker experiment in our previous publications.15,18,29

With these parameters, we successfully suppress the dis-

crepancy in the difference image due to misregistered low-

contrast objects. Note that the performance of the proposed

algorithm is not sensitive to the parameters of low-pass fil-

ters when the filter width is in a large range (e.g., from 51

to 111 pixels).

The proposed method is evaluated on four prostate

patients. The first patient had very few gas pockets inside the

pelvis area. The most attenuating parts of the patient couch

(e.g., metal frame) happened not to be inside the projection

field during the CBCT scan. We found that the corrected

CBCT image had a good quality even if the correction was

carried out with no iterations and no gas pocket and couch

matching. The correction of the second patient image was

more challenging due to the large volume of gas pockets and

attenuating metal frame of the couch. All the optional com-

ponents were turned on in the proposed correction to further

reduce any potential correction errors. With the established

framework, we then proceeded with the study on two more

patients to test the stability of the proposed approach.

We used mean CT number values, spatial nonuniformity

(SNU) and image contrasts in selected regions of interest

(ROIs) on the reconstructed images as image quality metrics.

The registered pCT image used in our correction was consid-

ered as the ground truth in the comparisons.

Low-frequency errors in the projection data, mostly scat-

ter signals, cause nonuniformity in the reconstructed image.

We measured the SNU using a similar definition as in the

literature30

SNU ¼ HUmax � HUmin

1000
� 100% or;

SNU ¼ HUmax � HUmin: (3)

Different ROIs were selected in the CBCT image at both the

center and the periphery. HUmax and HUmin in Eq. (3) are the

maximum and the minimum of the mean CT number values

of these ROIs, respectively. Note that the true SNU may not

be zero. Therefore, the image quality was quantified by the

SNU error, which is defined as the difference of SNUs on

the CBCT and the ground truth.

Scatter-induced artifacts cause image contrast loss. The

image contrast was calculated as

contrast ¼ lr � lbj j; (4)

where lr is the mean reconstructed value inside the ROI and

lb is the mean reconstructed value in the surrounding area.

III. RESULTS

III.A. First patient study

This patient has a large size, which results in high scatter

signals in the cone-beam projections.31,32 The calculated scat-

ter-to-primary ratio (SPR) around the patient center varies

from about 1.5 in the AP views to about 4.5 in the lateral

views based on the estimated scatter signals using our method.

An example of a raw CBCT projection without correction and

the estimated low-frequency errors is shown in Fig. 3.

Figure 4 shows the axial views of the registered pCT

image and the CBCT images without correction, with uni-

form scatter correction, and with the proposed correction.

Figure 5 compares the 1D profiles passing through the cen-

tral horizontal line indicated in Fig. 4(a). Large errors in

CBCT projections result in severe shading artifacts up to

338 HU, as shown in Fig. 4(a). Though scatter is dominantly

low frequency, its distribution still contains relatively high-

frequency components and cannot be estimated as a con-

stant. The challenges of scatter correction are well seen in

the corrected image by assuming uniform and constant scat-

ter across the projection field [Fig. 4(b)]. The scatter constant

is estimated by averaging the scatter signals inside the

patient obtained in our proposed framework. The uniform

correction works well in the peripheral soft-tissue region of

the reconstructed image. Nevertheless, severe streaking and

shading artifacts have been observed around the central bony

structures and the proximity of the patient back. Using pCT

image as the ground truth, the SNU error calculated from the

five ROIs as indicated in Fig. 4(a) is decreased to 11.9%, a

slight reduction from 25.9% in the image with no correction.

Note that our selection of ROIs has avoided the area of

strong streaking artifacts.

Our approach achieves a superior image quality, as shown

in Fig. 4(c). The deformable registration obtains good geom-

etry match on this patient. No iterations and no gas pocket

FIG. 3. Raw cone-beam projection and the corresponding estimate of low-

frequency errors using the proposed method. (a) cone-beam projection with-

out correction and (b) estimated low-frequency errors (mainly scatter). The

display windows are set to be (in detector units) (a) [0 2500] and (b) [0 300].

1995 Niu, Al-Basheer, and Zhu: Planning CT based quantitative cone-beam CT imaging 1995
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and couch matching are implemented in this patient case.

The proposed method not only reduces the mean CT number

error to 16 HU in the solid white square as indicated in

Fig. 4(a) but also further decreases the SNU error to 1.6%.

Besides the improvement of image uniformity, our method

is also effective on increasing soft-tissue contrast. The con-

trasts for the pCT image and the CBCT images without and

with correction are summarized in Table I. The selected

ROIs for the calculation are indicated in Fig. 4(d). With the

proposed correction, the CBCT image contrast becomes

comparable to that of the pCT image, with an average

increase factor of about 2.3. The streaking artifacts around

the left and right edges of the patient body are caused by

truncation errors in the projection data (i.e., the detector is

not large enough to cover the whole patient) instead of resid-

ual scatter, due to the large volume of this patient. We may

further suppress these errors by conventional truncation

correction on the projections.33 Note that some other streak

artifacts are present in the images, especially around and

between bones, possibly due to residual scatter or increased

noise level after scatter correction. These artifacts could be

suppressed by more advanced reconstruction algorithms,

such as iterative reconstruction with total-variation

regularization.34

The improved image quality can also be observed in the

comparisons of 1D profiles (Fig. 5), sagittal and coronal

views (Fig. 6). It is worth noting that our method faithfully

maintains the anatomical structures in the CBCT image. On

the same patient, the pCT and the CBCT images show quite

different anatomical structures. Although our correction is

based on pCT images, the algorithm does not carry over the

anatomical details from the pCT image to the CBCT image.

For example, the gas pocket (about 0.8 cm3), which does

not exist in the pCT image [Fig. 6(d)], is retained in the cor-

rected image [Fig 6(c)].

III.B. Second patient study

This patient has lower scatter signals due to a relatively

smaller volume size. The calculated SPR around the patient

center varies from about 1.6 in the AP views to about 3.0 in

the lateral views based on the estimated scatter signals using

FIG. 4. Axial images of the first prostate patient. Display window: [�300

200] HU. (a) CBCT without correction; (b) CBCT with uniform scatter cor-

rection; (c) CBCT with the proposed correction; and (d) registered pCT. In

the selected uniform soft-tissue ROI [marked with a solid white square in

(a)], the average CT numbers from (a) to (d) are �300, �10, 22, and 38 HU,

respectively. The SNUs calculated on the selected five ROIs [marked with

solid and dashed white squares in (a)] from (a) to (d) are 27%, 13%, 2.7%,

and 1.1%, respectively. The dashed line in (a) indicates where the 1D pro-

files in Fig. 5 are taken. The thick and thin white square pairs in (d) indicate

where the contrasts in Table I are calculated.

FIG. 5. Comparison of 1D profiles taken at the central horizontal line indi-

cated in Fig. 4(a).

TABLE I. Comparison of the image contrasts measured on the selected ROI

pairs marked in Fig. 4(d). All units are in HU.

No correction Proposed correction pCT

Left pair 44 125 110

Middle pair 44 67 84

Right pair 40 95 90

Mean 42 96 95

FIG. 6. Coronal (left) and sagittal views (right) of the reconstructed prostate

patient. Display window: [�300 200] HU. Row (a) no correction; (b) with

uniform correction; (c) with the proposed correction; and (d) registered

pCT.

1996 Niu, Al-Basheer, and Zhu: Planning CT based quantitative cone-beam CT imaging 1996
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our method. Nevertheless, large geometry changes are

observed on the pCT and CBCT images, which lead to errors

in our correction if the scatter correction scheme without

iterations is used. For example, the CBCT image has a rec-

tum gas pocket with a volume of several cubic centimeters,

which is not seen in the pCT image. Besides the anatomical

change, the CBCT image includes two metal bars of the

couch, which cause primary estimation errors in our algo-

rithm and potentially degrade the image quality inside the

patient.

To tackle the challenges, we apply the general correction

method with all the components enabled, including itera-

tions, and the step of gas pockets and couch matching.

Fig. 7(c) shows the pCT image used in our correction after

the gas pocket and couch matching. After five iterations, we

obtain a high-quality CBCT image as shown in Fig. 7(b).

Severe shading artifacts in the uncorrected image [Fig. 7(a)]

have been greatly suppressed. The mean CT number error is

reduced from 277 to 12 HU in the solid white square as indi-

cated in Fig. 7(a), and the SNU error is decreased from

14.1% to 0.9%. Similar to the first patient study, our method

is also effective on increasing soft-tissue contrast. The

average contrasts for the pCT image and the CBCT image

without and with correction are summarized in Table II

together with the results on the other three patients. Three

ROI pairs shown in Fig. 7(c) are used in the calculation. The

proposed correction improves the image contrast by an aver-

age factor of about 2.9 to a value comparable to that in the

pCT image. The superior performance of our method is

also demonstrated in the sagittal and coronal views of the

reconstructed image (Fig. 8). Note that gas pockets may not

have sharp edges. The gas pocket matching step as discussed

in detail in Sec. II B is based on a single thresholding

technique. Therefore, it cannot achieve precise geometry

match between the CBCT and the pCT images, which results

in residual streaking artifacts around the gas pockets due to

scatter estimation errors. These artifacts can be further sup-

pressed by creating the gas pocket in the pCT with the inten-

sity distribution of CBCT in the whole gas pocket region,

instead of setting a single value.

The quality of the corrected CBCT image improves as the

deformable registration becomes more accurate after the

CBCT image to be registered is updated in each iteration.

The left column of Fig. 9 [Fig. 9(a)] shows the corrected

images in different iterations, and the right column [Fig.

9(b)] shows the corresponding difference images compared

to the image obtained in the fifth iteration [Fig. 7(b)]. The

corrected image converges as the iteration proceeds. In order

to demonstrate the convergence of the iterative scheme, we

repeat the iteration process for several more times (a total of

nine in this study) and plot the CT number and contrast in

Fig. 10. Note that the image of the first iteration is generated

using the proposed correction with the pCT registered to a

first-pass uncorrected CBCT image, i.e., the correction

scheme shown in Fig. 2. It is seen that the most significant

image improvement occurs in the second iteration when we

update the CBCT in the deformable registration step and

include gas pocket and couch matching. Both the image met-

rics (CT number and contrast) reach the stable values after

the first two or three iterations, indicating that only a few

iterations are needed for acceptable correction performance.

To investigate the image improvements from the gas

pocket and couch matching as well as the iterative

scheme, we show in Fig. 11 the CBCT image after the 1st

iteration, using a correction scheme the same as in the first

patient study. In the corrected image, streaking artifacts

FIG. 7. Axial images of the second prostate patient. Display window is [�300 200] HU. (a) CBCT without correction; (b) CBCT with the proposed correction

after five iterations; and (c) registered pCT with matched gas pocket and couch. In the selected uniform soft-tissue ROI [marked with a solid white square in

(a)], the average CT numbers from (a) to (c) are �236, 53, and 41 HU, respectively. The SNUs calculated on the selected five ROIs [marked with solid and

dashed white squares in (a)] from (a) to (c) are 16%, 2.8%, and 1.9%, respectively. The thick and thin white square pairs in (c) indicate where the average con-

trasts in Table II are calculated.

TABLE II. Comparison of the CT numbers, SNUs and image contrasts of the four patients, measured on the similar selected ROIs shown in Figs. 4 and 7. Here,

“SC” stands for “the proposed shading correction.”

1 2 3 4

Patient # No SC SC pCT No SC SC pCT No SC SC pCT No SC SC pCT

CT # (HU) �300 22 38 �236 53 41 �215 59 51 �247 65 60

Contrast (HU) 42 96 95 48 140 138 60 134 128 42 121 129

SNU(%) 27 2.7 1.1 16 2.8 1.9 17.6 4.6 3.4 23.9 4.3 3.4

1997 Niu, Al-Basheer, and Zhu: Planning CT based quantitative cone-beam CT imaging 1997

Medical Physics, Vol. 39, No. 4, April 2012



are very severe around the periphery of the gas pocket

[see Fig. 11(a)]. The shading artifacts around the metal

bars, however, lead to small artifacts inside the patient.

One reason is that the bars are outside of the patient and

the artifacts diminish quickly toward inside. Another pos-

sible reason is that the thin metal bars cause relatively

small scatter estimation errors due to the large SPR of the

pelvis volume.

Our previous study as well as the first patient results has

shown that the proposed algorithm suppresses small high-

frequency errors stemming from the mismatched low-

contrast objects in the pCT and the CBCT images.15 To fur-

ther support our argument, we study the bladder region of

patient images, where the deformable registration error is

large (around 1 cm) due to its different filling status as

shown in Fig. 12(d). Our approach still preserves the contour

of bladder in CBCT image well without carrying over the in-

formation from the pCT image [compare Figs. 12(b0) and

12(c0)]. The error of average CT number inside the bladder

is reduced from 87 HU with no correction to 11 HU, and the

object contrast has been increased by a factor of 1.6.

III.C. Overall performance of four patient studies

To test the stability of the proposed framework, we proceed

with two more patient studies using the proposed shading cor-

rection and similar ROIs for image quality evaluation as those

in the previous studies. On average, the overall CT number

error is reduced from 300 HU to less than 16 HU, and the SNU

error is decreased from 18.7% to within 1.6 %. The image con-

trast is increased by a factor of 2–3. The image improvements

of the four patient studies are summarized in Table II.

IV. DISCUSSION

Using pCT images as prior information, we previously

developed a preliminary correction method for CBCT

FIG. 8. Coronal (left) and sagittal views (right) of the reconstructed prostate

patient. Display window: [�300 200] HU. Row (a) no correction; (b) with

the proposed correction after the fifth iteration; and (c) registered pCT with

gas pocket and couch matching.

FIG. 9. Effects of iterations in the proposed correction on the image quality.

Display window: (a) [�300 200] HU and (b) [�80 120] HU. Column (a)

corrected CBCT at different iterations (the iteration numbers are labeled at

the upper-left corner) and (b) corresponding difference compared to the fifth

iteration [Fig. 7(b)].

FIG. 10. Demonstration of the convergence of the iterative scheme using the

2nd patient study as an example. The values of CT number and contrast are

taken in the same ROIs indicated in Fig. 7. The numbers of the horizontal

axis indicate the image of each iteration, in which the image of the first iter-

ation is generated using the proposed correction with the pCT registered to a

first-pass uncorrected CBCT image, i.e., the correction scheme shown in

Fig. 2. The term “raw” means the CBCT image without correction.

FIG. 11. Effects of the optional steps in the proposed correction (i.e. itera-

tions, gas pocket, and couch matching) on the image quality. (a) CBCT

image of the 1st iteration, without the optional steps. The arrow points to the

severe streaking artifacts due to mismatched gas pocket and (b) registered

pCT without gas pocket and couch matching. In the same ROIs indicated in

Fig. 7a), the average CT number is 19 HU, and the SNU is 4.7%.
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images. The algorithm works well on phantoms. To further

improve the method performance in the presence of large

patient deformation from the planning to the treatment room,

in this paper, we propose a general framework of pCT-based

CBCT correction for clinical applications. The method

requires no modifications of hardware or imaging protocols

on current radiation therapy machines, and can be used as a

“plug-and-play” component attachable to the existing image

processing chain. CBCT images contain artifacts due to

different sources, of which scatter is dominant. Our algo-

rithm aims to suppress low-frequency errors in CBCT pro-

jections (mainly scatter signals). Correction for other

artifacts, including errors stemming from organ motion and

metal implants, is considered beyond the scope of this paper.

Existing algorithms can be implemented together with the

proposed method to enhance the CBCT image quality.35,36

Our CBCT correction does not totally rely on the

pCT image for providing the patient geometrical details at

treatment time. Only low-frequency projection errors are

generated in the proposed correction. The method can there-

fore tolerate small registration errors in the pCT images.

Anatomical information is not carried over from the pCT to

the CBCT image, an important feature which makes our

method distinct from other prior image based correction

methods.37,38

The geometry mismatch makes the registration errors

large and severely degrades the image quality. As seen in the

previous Sec. II B, the resultant artifacts are mainly around

the unmatched objects. The gas pocket matching step in our

algorithm effectively suppresses these artifacts inside the

patient. The objects outside the patient (e.g., patient couch)

cause relatively smaller artifacts. However, the errors from

these objects may become relatively more significant when

the scatter artifacts in the uncorrected image are small (e.g.,

head imaging). We will study more disease sites and fully

evaluate the performance of our algorithm.

In the current studies, most of the algorithm steps are

implemented in MATLAB and the calculation speed is not opti-

mized. We will improve the computational efficiency by

converting MATLAB code into more efficient languages (e.g.,

C). Several computationally expensive steps in our algo-

rithm, including forward projection and FDK reconstruction,

have a structure compatible with parallel computation. We

will further speed up our algorithm using GPU based techni-

ques. After coding optimization and hardware acceleration,

the computation speed of our algorithm is expected to be

improved by a factor of over 100.34

Due to the limited registration accuracy, pCT may not the

best ground truth for comparison purposes. A more appropri-

ate ground truth should be a fan-beam scan right after the

routine cone-beam scan,15,29 where a narrowly opened colli-

mator (e.g., a width of �10 mm on the detector) is used to

inherently suppress scatter. Such a ground truth acquisition

changes the scanning protocol in hospital and introduces an

extra exposure to the patient, though not significantly. We

will acquire the fan-beam data as the ground truth in the

future patient studies for a more comprehensive evaluation

of our method.

Despite promising results on four prostate patients, more

studies are needed to fully evaluate the stability of our

method. Many of the algorithm parameters, such as the

thresholds in the gas pocket and couch matching and the

total iteration number, are empirically chosen in the current

implementations. These parameters will be further optimized

based on more patient data. We will also investigate the

algorithm performance on other imaging regions besides

prostate (e.g., head), and suggest corresponding parameters.

V. CONCLUSIONS

A pCT-based correction algorithm was previously devel-

oped in our group for high-quality CBCT imaging. In this

paper, we further improve the method for clinical use. Quan-

titative CBCT images have been obtained on four patient

studies. The proposed correction reduces the overall CBCT

error from over 300 HU to below 16 HU in the selected

ROIs, and the SNU error from over 18% to below 2%. With

improved CBCT accuracy, our approach significantly pro-

motes the performance of advanced CBCT-based clinical

applications for IGRT.
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