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Purpose: To evaluate Hotelling’s T2 statistic and the input variable squared prediction error (Q(X))

for detecting large respiratory surrogate-based tumor displacement prediction errors without

directly measuring the tumor’s position.

Methods: Tumor and external marker positions from a database of 188 Cyberknife SynchronyTM

lung, liver, and pancreas treatment fractions were analyzed. The first ten measurements of tumor

position in each fraction were used to create fraction-specific models of tumor displacement using

external surrogates as input; the models were used to predict tumor position from subsequent exter-

nal marker measurements. A partial least squares (PLS) model with four scores was developed for

each fraction to determine T2 and Q(X) confidence limits based on the first ten measurements in a

fraction. The T2 and Q(X) statistics were then calculated for every set of external marker measure-

ments. Correlations between model error and both T2 and Q(X) were determined. Receiver operating

characteristic analysis was applied to evaluate sensitivities and specificities of T2, Q(X), and

T2|Q(X) for predicting real-time tumor localization errors >3 mm over a range of T2 and Q(X) con-

fidence limits.

Results: Sensitivity and specificity of detecting errors >3 mm varied with confidence limit selec-

tion. At 95% sensitivity, T2|Q(X) specificity was 15%, 2% higher than either T2 or Q(X) alone. The

mean time to alarm for T2|Q(X) at 95% sensitivity was 5.3 min but varied with a standard devia-

tion of 8.2 min. Results did not differ significantly by tumor site.

Conclusions: The results of this study establish the feasibility of respiratory surrogate-based online

monitoring of real-time respiration-induced tumor motion model accuracy for lung, liver, and pancreas

tumors. The T2 and Q(X) statistics were able to indicate whether inferential model errors exceeded 3

mm with high sensitivity. Modest improvements in specificity were achieved by combining T2 and

Q(X) results. VC 2012 American Association of Physicists in Medicine. [DOI: 10.1118/1.3676690]
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surrogates

I. INTRODUCTION

Radiation beam gating and tumor tracking technologies are

designed to manage tumor motion in real-time during radio-

therapy. The performance of these devices rests heavily on

their ability to rapidly and accurately localize the tumor.1–4

Direct tumor tracking systems are limited to electromagnetic

tracking5 and continuous x-ray imaging systems.6 Electro-

magnetic tracking systems are approved for use in the pros-

tate exclusively at the time of this writing, and x-ray

imaging systems continuously impart ionizing radiation over

the duration of the treatment. Thus, many systems correcting
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for respiration-induced tumor motion instead infer the posi-

tion of the tumor from surrogates of respiration.1,2

Methods for estimating tumor position from respiratory

surrogates range from simple respiratory surrogate signal

scaling to mathematically complex, multi-input models.

Regardless of its form, the model only remains valid while

there is a constant relationship between the tumor position

and the respiratory surrogate signal(s).7 However, the tumor-

surrogate relationship can change during the treatment

fraction,7–11 causing the surrogate-based model to degrade

over time.11–13

Berbeco et al. observed that tumor motion inferred from

an external marker block during gated radiation treatments

varies beam-to-beam and day-to-day with no apparent exter-

nal warning.2 To our knowledge, no prospective method for
detecting inferential model breakdown from surrogate sig-
nals has been developed. Instead, systems must frequently

interrupt treatment to validate a model through additional

ground-truth measurements of tumor position. The Cyber-

knife SynchronyTM system, for instance, validates its model

at a user-selected rate of about once per minute by localizing

tumor-implanted fiducials with stereoscopic radiographs.13

This technique of prescheduled intermittent data collection

for model validation has at least three shortcomings:

(1) If changes to the tumor-surrogate relationship occur

shortly after one tumor localization, then the model can

have large localization errors until the changes are

detected at the next tumor localization minutes later;

(2) Added and unnecessary tumor localizations not leading

to model updates result in unnecessary exposure to ioniz-

ing radiation; and

(3) Pausing for image-based tumor localization extends the

duration of the treatment fraction.

In this study, we propose a novel method for continuously

monitoring a respiratory surrogate model of tumor motion

through exclusive analysis of respiratory surrogate measure-

ments (Fig. 1). The purpose of this study was to describe and

evaluate Hotelling’s T2 statistic and the input variable

squared prediction error, Q(X), for predicting the accuracy of

tumor localization models in lung, liver and pancreas cases.

The impact of this monitoring method on clinical workflow

was also evaluated.

II. METHODS

II.A. Data

A database of Cyberknife SynchronyTM system log files

consisting of 130 fractions from 63 lung cancer patients, 10

fractions from 5 liver cancer patients, and 48 fractions from

23 pancreas cancer patients was analyzed. The Cyberknife

SynchronyTM log files included independently measured but

concurrent 3D tumor and external marker localizations cap-

tured once every three beams (or an average of 63 s apart).

Tumors were localized as the centroid of a set of implanted

fiducial markers measured in stereoscopic radiographs.

Three LED surrogate markers affixed to the torso were local-

ized optically by a camera system. The position of the tumor

was aligned in time with those of the external markers

according to the timestamps in the system log files. Each

treatment fraction dataset consisted of at least 40 (ranging

from 40 to 112, median of 61) concurrent tumor and external

sensor localizations. The data were truncated to include only

the longest period of uninterrupted treatment in each fraction

and to exclude both pretreatment image acquisitions and

unplanned radiographs acquired during treatment for the pur-

pose of repositioning the patient.

II.B. Partial least squares (PLS) regression for
predicting tumor positions

A PLS model for inferring tumor position from the surro-

gate marker displacements was developed for each treatment

fraction. The accuracy of PLS for determining tumor posi-

tion from surrogate marker displacements has been reported

previously.11,12,14 PLS is one of a class of methods for mod-

eling relationships between an input matrix, X, and an output

matrix, Y, by means of scores, which may also be called

latent variables. The input matrix is composed of m respira-

tory surrogate signals, xi for i¼ 1 to m, such that X¼ [x1 x2

… xm]. The input matrix can also be represented as n rows,

each consisting of a set of respiratory surrogate measure-

ments, zi for i¼ 1 to n, captured at one point in time such

that X¼ [z1 z2 … zn]T. The n� 3 output, Y, consists of three

tumor displacement dimensions and n samples. Each column

of the input and output matrices was mean-centered and

scaled to unit-variance.

In this study, the iterative SIMPLS15 algorithm was used

to decompose X and Y into X ¼ T �WT and Y ¼ U � QT , for

n�m matrix T of input scores, n�m matrix U of output

scores, m�m matrix W of input weights, and p�m matrix Q
of output weights. The first column of T, t1, was given by

t1 ¼ X � XT � Y=normðX � XT � YÞ. The elements of the first

column of W, w1, and the first X basis, v1, were each equal to

one. The following iterative regression process was then

repeated for i¼ 1 to m. First, the Y loadings and scores were

calculated as qi ¼ YT � ti and ui ¼ YT � qi, respectively. Next,

the X basis was updated with each iteration as vi ¼ vi�1

�Vi�1 � ðVT
i�1 � ðtT

i � XÞ
TÞ, where Vi� 1¼ [v1, v2, …, vi� 1].

Finally, subsequent X weights and scores were calculated as

wi ¼ ðSi�1 � vi � ðvT
i
� Si�1ÞÞ � qi and ti ¼ X � wi.

Because the PLS algorithm determines scores in order of

decreasing contribution to the PLS model, utilizing only the
FIG. 1. Schematic of proposed improvement to respiratory surrogate-based

model monitoring.
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first A of m factors serves to select the input information

most relevant to the outputs. Thus, the score and loading

matrices were compressed as X ¼ T̂ � Ŵ þ E and Y
¼ Û � Q̂þ F, where T̂ was the n�A matrix T̂
¼ ½t1; t2; :::; tA�, Ŵ was the m�A matrix Ŵ ¼
½w1; w2; :::;wA�, Û was the n�A matrix Û ¼ ½u1; u2; :::; uA�,
and Q̂ was the p�A matrix Q̂ ¼ ½q1; q2; :::; qA�. The residual

matrices were E and F. Cross-validation was used to select

the appropriate number of factors, A, for each training data-

set. The regression coefficient matrix, B, was given by

B̂ ¼ R̂ � Q̂T , where R̂ ¼ ½r1; r2; :::; rA� and Q̂ ¼ ½q1; q2;
:::; qA�.

Tumor position was predicted as Ŷ ¼ X � B̂ or, from a

single new set of measurements, znew, as ŷnew ¼ znew � B̂. The

inferential model error, e, was calculated as e

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðŷnew � ynewÞ2

q
, the Euclidean distance between PLS-

predicted tumor positions (ŷnew) and radiographically meas-

ured tumor predictions (ynew).

II.C. Tumor motion models and model monitoring

Two PLS models were created for each training dataset:

one for prediction and a second for monitoring. In our previ-

ous work,12 we have shown that the input projection process

leads to models that can more accurately predict tumor dis-

placement from surrogate marker motion. However, we

found that projecting the inputs degrades the ability to moni-

tor the model for tumor-surrogate relationship changes. The

PLS models for prediction and for monitoring differed in

their input matrix, X.

In either case, the first 10 samples (n¼ 10) of concurrent

surrogate marker and tumor localizations in the treatment

fraction dataset were used as training data for the model. For

the monitoring model, X was a 10� 9 matrix describing the

3D positions of three surrogate markers at ten samples. For

the tumor displacement prediction model, X was a 10� 3

matrix in which each column was a one-dimensional (1D)

representation of the three-dimensional (3D) motion of one

of the surrogate markers. These 1D surrogate signals were

created by orthogonally projecting the surrogate marker

displacements captured during the training data acquisition

period onto a line. This line was defined by the displace-

ments’ 3D mean, M, and first principal component vector

(Fig. 2). The 1D representation for each sample was defined

as the distance between the projected point and M.

II.D. Respiratory surrogate-based monitoring metrics

Respiratory surrogate data captured during the initial

model development period were compared to respiratory sur-

rogate data captured over the course of a treatment fraction.

Using this technique, whether the real-time tumor displace-

ment prediction is occurring under conditions described by

the model could be determined. Thus, the quality of the

model can be monitored without stopping treatment to ex-

plicitly measure the tumor position.

For each 1� 3 vector of inputs, zi, an associated score

vector, t̂i, was calculated as t̂Ti ¼ zi � Ŵ, where Ŵ was the

compressed weight vector calculated as part of the PLS

regression process. The scores were then used to calculate

the associated Hotelling statistic, T2, and input variable

squared prediction error, Q(X), for each surrogate marker dis-

placement dataset. The T2 and Q(X) statistics rely on meas-

urements of the surrogate markers exclusively and do not

utilize gold-standard tumor position measurements.

Hotelling’s T2 statistic characterizes the amount of varia-

tion in the inputs to the model. Aberrant T2 values indicate

that the relationship between inputs has changed and that the

model must be extrapolated to fit the new input data. T2 was

calculated as T2 ¼ tT
new � S�1 � tnew from the estimated train-

ing data score covariance matrix, S ¼ T̂T �T̂
n�1

.16

The input variable squared prediction error, Q(X), meas-

ures the data in a row of the residual matrix, E, in the com-

pression step X ¼ T̂ � Ŵ þ E described above. This metric

describes the amount of variance not captured by the scores,

T̂, used to predict the tumor position. An increase in Q(X)

over time indicates that less of the information in the respira-

tory surrogate inputs is being used by the model. Q(X) was

given by QðXÞ ¼
Pm

i¼Aþ1 ðẑi � ziÞ2 for sample i, where

FIG. 2. The surrogate marker projection process. (a) Example of 3D surrogate marker motion data, including its mean and first principal component vector

(dot and arrow, respectively) and its projection line (dashed). (b) The 1D representation of the 3D data in (a).
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ẑi ¼ ti � Ŵ and represents the surrogate marker measurement

vector, zi, compressed to 1 score (A¼ 1).17

II.E. Performance of respiratory surrogate-based
monitoring

II.E.1. Large error detection

Treatment fraction-specific limits on T2 and Q(X) were

calculated and tested for ð1� aÞ percentile confidence limits

for 0 < a < 1. The confidence limits were used as control

limits for T2 and Q(X). For T2, confidence limits were deter-

mined from T2
a ¼

ðn2�1ÞA
nðn�AÞ FaðA; n� AÞ, where n¼ 10 was the

quantity of training samples used to generate the model, one

score was used in the PLS model created to monitor the tu-

mor localization model (A¼ 1), and FaðA; n� AÞ was the

upper ð100%Þ � ðaÞ critical point of the F distribution with

(A, n – A) degrees of freedom. Confidence limits on Q(X)

were calculated through the Jackson-Mudholkar18 formula,

Qa ¼ h1 1� h2h0ð1� h0Þ
h2

1

þ za

ffiffiffiffiffiffiffiffiffiffiffiffi
2h2h2

0

p
h1

" #1=h0

;

in which za is the upper ð100%Þ � ðaÞ critical point of the nor-

mal distribution, hj ¼
Pm

i¼Aþ1 kj
i, n¼ 10, h0 ¼ 1� 2h1h3

3h2
2

, and

ki is the ith eigenvalue of ðẑnew;i � znew;iÞTðẑnew;i � znew;iÞ.
The ability of T2 and Q(X) to predict whether a tumor dis-

placement prediction is accurate to within 3 mm was eval-

uated for each a. Prediction of large (>3 mm) errors was

based on whether T2 or Q(X) exceeded the treatment fraction-

specific confidence limits and was validated against radio-

graphic measurements. To evaluate the performance of the

method, sensitivity and specificity were explored under vari-

ous conditions. Sensitivity measured the proportion of errors

>3 mm that was detected. Specificity represents the propor-

tion of errors <3 mm that was identified as likely to be <3

mm. Sensitivity and specificity were determined for: (1) T2

confidence limit; (2) Q(X) confidence limit; and (3) the union

of results from T2 confidence limit and Q(X) confidence limit,

in which the method predicts large error if either T2 or Q(X)

exceeds its respective confidence limit threshold. Receiver

operating characteristic (ROC) analysis was performed to

evaluate sensitivity versus specificity at any confidence limit

between 0% and 100%.

In addition to the surrogate marker measurements concur-

rent with the tumor displacement, the utility of past surrogate

marker measurements was evaluated for data up to 10 s prior

to the surrogate marker-based tumor localization. For this

multiple measurement method, the proportion of T2, Q(X), or

T2|Q(X) values in the testing period that exceeded the confi-

dence limit(s) was calculated. A threshold value for predicting

large inferential model errors (for example, at least 10% of the

measurements during the 5 s prior to the tumor localization)

was selected to maximize specificity at the target sensitivity.

II.E.2. Time to error and time to alarm

For each treatment fraction and monitoring method, the

times from the end of the training dataset to the first large

error (time to error) and to the first confidence limit-based in-

dication of large error (time to alarm) were determined.

Results were compared to the timing of images captured by

the Cyberknife SynchronyTM system to validate its own

model during the treatment.

II.E.3. Effect of tumor site

Results were stratified by tumor site for lung (130 frac-

tions) and pancreas (48 fractions) cases, using 2 s of surro-

gate marker data preceding the tumor localization.

III. RESULTS

III.A. Large error detection

The T2 and Q(X) statistics were able to indicate such phe-

nomena as large errors associated with gradual decreases in

inferential model accuracy and transient surrogate marker

tracking errors. All three confidence limit tests, T2, Q(X), and

T2|Q(X), were predictive of large errors. Sensitivity and

specificity varied with confidence limit selection, with

increasing sensitivity associated with decreased specificity

(Fig. 3). T2|Q(X) was associated with specificity 1%–2%

higher than either T2 or Q(X) alone at 90%–95% sensitivity

(Table I).

FIG. 3. ROC curves showing ability to predict localization errors exceeding

3 mm for various confidence levels.

TABLE I. Summary of monitoring performance for all tumor sites at 90%

and 95% sensitivity.

Time to alarm

Method Sensitivity (%) Specificity (%) Mean (min) st. dev. (min)

T2 90 23 6.0 8.8

Q(X) 90 24 7.6 9.9

T2|Q(X) 90 24 7.2 9.8

T2 95 13 4.0 8.1

Q(X) 95 14 4.6 8.1

T2|Q(X) 95 15 5.3 8.2
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Neither T2 nor Q(X) increased monotonically, and T2 in

particular varied cyclically with phase of respiration (Fig. 4).

Incorporating past measurements of surrogate marker dis-

placements improved model monitoring performance for

Q(X) and T2|Q(X). For 95% sensitivity, the best specificity

for T2|Q(X) was achieved by requiring that 5% of T2|Q(X)

values acquired over the past 3 s exceed the confidence limit

threshold.

III.B. Time to error and time to alarm

For the inferential modeling method used in this study,

the mean (6 standard deviation) time from the last tumor

localization to an error >3 mm was 12 6 12 min for those

fractions in which errors >3 mm occurred. This mean time

excludes the 6% of fractions in which no tumor position pre-

diction error was >3 mm.

For this dataset, the mean time to alarm for the Cyber-

knife Synchrony system was 1.1 min. For T2 and Q(X) values

giving the highest specificity at 90% sensitivity (Table I),

the mean times from training data to indication of large

errors (mean time to alarm) for T2, Q(X), and T2|Q(X) were

6.0, 7.6, and 7.2 min, respectively. In 5% of fractions, the

error never exceeded 3 mm. However, there were no frac-

tions for which neither T2 nor Q(X) did not exceed the confi-

dence limit threshold for at least one set of surrogate marker

measurements.

III.C. Effect of tumor site

There was no significant difference between lung and

pancreas cases in time to alarm (Fig. 5). The specificities for

each site were equal to the specificities for the pooled lung,

liver, and pancreas results at 90%–95% sensitivity given in

Table I.

IV. DISCUSSION

The results of this study establish the feasibility of using

confidence limits on T2 and Q(X) statistics of respiratory sur-

rogate measurements in online monitoring of the accuracy of

real-time respiration-induced tumor motion models. The T2

and Q(X) statistics were able to indicate whether inferential

model errors exceeded 3 mm with high sensitivity. For 95%

error prediction sensitivity, specificity was 15%, and the

mean time to alarm was 5.3 min. Modest improvements in

specificity were achieved by combining T2 and Q(X) results

and by expanding the input to include the previous 3 s of re-

spiratory surrogate data.

Real-time motion management systems rely on rapid,

accurate tumor localization. For respiratory surrogate-based

systems, current clinical practice is to establish a model

before beginning treatment and then either to assume that

the model will remain valid or to periodically validate the

model according to some pre-established schedule. If the

gold-standard radiographic tumor localizations are too

FIG. 4. Example of (a) T2, (b) Q(X), and (c) tumor local-

ization error versus time elapsed since the training

data. In (a) and (b), horizontal dashed lines represent

control limits, and times in which the control limit is

exceeded are shaded. In (c), the horizontal dashed line

represents a 3 mm error limit, and radiographic tumor

localizations errors are indicated at t¼ 0.8 min and

t¼ 1.8 min by circled x’s (�). It is likely that localiza-

tion errors exceed 3 mm from 0.3 to 0.5 min and after

0.9 min, but radiographic validation is only possible at

two moments over this 2 min period.

FIG. 5. Comparison of mean time to alarm for lung and pancreas results

using 2 s of data.
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sparse, large targeting errors may occur in the interim. Con-

versely, radiographic images captured while the model

remains accurate result in exposure to unnecessary ionizing

radiation and extend the duration of the treatment fraction.

Seppenwoolde et al. found that the timing of gold-standard

image-based tumor localizations determines the accuracy of

the model but that the patient-specific benefit of increasing

the imaging frequency varies widely.13 The method

described by this study is a novel, knowledge-based tech-

nique for timing image acquisitions used to update respira-

tory surrogate tumor motion models by relying exclusively

on surrogate measurements.

Applying a confidence limit-based threshold made it pos-

sible to detect errors >3 mm with a high degree of sensitiv-

ity (>90%). As shown in the ROC curves of Fig. 4, varying

a led to a tradeoff between sensitivity and specificity. In the

context of this application, sensitivity refers to the probabil-

ity that a large error will be detected by the confidence limit

method. Thus, in this manuscript, we have focused on pa-

rameters leading to high (90%–95%) sensitivity and

decreased (13%–24%) specificity. Low specificity indicates

an increased rate of false positives. In this application, false

positives correspond to unnecessary image acquisitions. To

investigate the impact of this relatively low specificity on

clinical workflow, we have described the time to alarm for

90%–95% sensitivity.

The mean time to alarm for 90%–95% sensitivity was

4–8 min, representing a four- to eight-fold decrease in image

acquisition frequency over the Cyberknife SynchronyTM

method. Because there was considerable variability in the

time to errors >3 mm, acquiring images at a preselected reg-

ular interval often would result in missing large errors. For

this dataset, the Cyberknife SynchronyTM system localized

the tumor via radiographs every third beam delivered, with a

mean interval of 63 s between image acquisitions. The cur-

rent version of the Cyberknife SYNCHRONY
TM software allows

the operator to select a constant time interval of up to 2.5

min between radiographic image acquisitions. This maxi-

mum time interval for the Cyberknife SynchronyTM system

is more than double the average frequency of the proposed

T2|Q(X) method.

This study determined the performance of respiratory sur-

rogate monitoring for predicting PLS-based tumor localiza-

tion errors.12 This method can be extended to other tumor

displacement inferential approaches to minimize the imaging

frequency of existing systems, thereby decreasing treatment

interruptions and overall patient in-room time. Through

monitoring, this method also has the potential to increase the

targeting accuracy of any real-time motion compensation de-

vice, including radiation gating systems. Berbeco et al. has

concluded that gating margins based on a single simulation

session at the beginning of the treatment may not be enough

to evaluate residual motion of a gated treatment.2 Respira-

tory surrogate monitoring through T2 and Q(X) can detect

increases in residual motion during the treatment, allowing

the clinicians to pause treatment to collect images when nec-
essary to ensure that tumor motion is in accordance with the

internal margin for the plan.

In many cases, the Hotelling statistic (T2) and the input

variable squared prediction error (Q(X)) both exceeded confi-

dence limit thresholds together, a result commonly seen in

process control monitoring through these metrics.16 How-

ever, the statistics did not always indicate alarm concur-

rently. In some cases T2 indicated large error first, but in

other cases Q(X) indicated large error first. As a result, com-

bining the metrics resulted in a slight increase in perform-

ance of the method. Mathematically, T2 and Q(X) are

independent. Their concurrent increase is indicative of a

common cause: some change in the tumor-surrogate rela-

tionship. Transient and long-term changes in the tumor-

surrogate relationship have been described by Ozhasoglu et
al., Seppenwoolde et al., Hoisak et al., and Ionsascu et al.
and are manifested as shifts in the phase offset between tu-

mor and surrogate motion, baseline drifts in tumor position

or surrogate signal, or other complex behavior leading to

lapses in correlation.7,10,19,20 Our previous work has shown

that the tumor-surrogate relationship changes during most

treatment fractions.11

The method described in this study resembles statistical

process control (SPC) monitoring utilized in chemical pro-

cess control applications.16,18,21 However, in classical SPC,

metrics are derived directly from the model that is being

monitored. By contrast, in this method separate models for

monitoring and for tumor displacement prediction were cre-

ated. For optimal tumor localization accuracy, it was neces-

sary to project surrogate marker data from 3D to 1D.12 This

reduction in input dimensionality from m¼ 9 to m¼ 3

reduced the number of scores available for calculating T2,

which uses scores 1 to A, and Q(X), which uses scores Aþ 1

to m. As a result, reducing input dimensionality from 9 to 3

would have decreased the specificity, and consequently the

time to alarm, for a given sensitivity. For instance, by utiliz-

ing the 3D (9 input) marker data for monitoring, at 95% sen-

sitivity the mean time to alarm increased from 2–4 min to

4–8 min.

Neither T2 nor Q(X) increased monotonically over time.

The T2 statistic was cyclic in nature, increasing during certain

phases of respiration, and both T2 and Q(X) were associated

with some degree of noise. In the future, it may be possible to

reduce this periodicity by carefully selecting training data

encompassing a wide range of respiratory phases. It was pos-

sible to improve specificity for Q(X) and T2|Q(X) by consider-

ing time trends in T2 and Q(X) values. We speculate that

utilizing multiple surrogate marker data samples (1–3 s of

data from 26 Hz measurements) helped to overcome the

effects of both noise and training data selection.

V. CONCLUSIONS

In this work, we present a novel approach to determining

tumor position prediction errors in real-time and from meas-

urements of external marker respiratory surrogates exclu-

sively. In a large cohort of lung, liver, and pancreas cases,

the T2 and Q(X) statistics can predict whether tumor localiza-

tion error exceeds 3 mm with 95% sensitivity and 15% spec-

ificity and a mean time to alarm of 5.3 min. The mean time

to alarm for 90%–95% sensitivity was 4–8 min, representing
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a four- to eight-fold decrease in image acquisition frequency

over the Cyberknife SynchronyTM method. Thus, this

approach has the potential to reduce imaging frequency and,

consequently, imaging dose during respiratory surrogate-

guided treatments. Results did not differ by tumor site.
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