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Abstract
Micro RNAs (miRNAs), small and labile ~22 nucleotide-sized fragments of single stranded RNA,
are important regulators of messenger (mRNA) complexity and in shaping the transcriptome of a
cell. In this communication, we utilized amyloid beta 42 (Aβ42) peptides and interleukin-1beta
(IL1β) as a combinatorial, physiologically-relevant stress to induce miRNAs in human primary
neural (HNG) cells (a co-culture of neurons and astroglia). Specific miRNA up-regulation was
monitored using miRNA arrays, Northern micro-dot blots and RT-PCR. Selective NF-κB
translocation and DNA binding inhibitors including the chelator and anti-oxidant pyrollidine
dithiocarbamate (PDTC) and the polyphenolic resveratrol analog CAY10512 (trans-3,5,4′-
trihydroxystilbene) indicated the NF-κB sensitivity of several brain miRNAs, including miRNA-9,
miRNA-125b and miRNA-146a. The inducible miRNA-125b and miRNA-146a, and their verified
mRNA targets, including 15-lipoxygenase (15-LOX), synapsin-2 (SYN-2), complement factor H
(CFH) and tetraspanin-12 (TSPAN12), suggests complex and highly interactive roles for NF-κB,
miRNA-125b and miRNA-146a. These data further indicate that just two NF-κB-mediated
miRNAs have tremendous potential to contribute to the regulation of neurotrophic support,
synaptogenesis, neuroinflammation, innate immune signaling and amyloidogenesis in stressed
primary neural cells of the human brain.
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Introduction
Micro RNAs (miRNAs) are ~22 nucleotide-sized fragments of endogenously expressed
single stranded RNA that are important regulators of messenger RNA (mRNA) speciation
and complexity. In their typical actions miRNAs regulate gene expression through imperfect
base-pairing with the 3′ un-translated region (3′-UTR) of target mRNAs, and depending on
sequence complementarity within an RNA-induced silencing complex (RISC), results in
either reduction or inhibition in the translational efficiency of the target mRNA (Ambros
2004; Taft et al., 2010). It is generally accepted that up-regulated mammalian miRNAs
predominantly act to decrease their target mRNA levels (Guo et al., 2010). While the
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potential contribution of small RNA to brain genetic function has been known for at least 20
years (Lukiw et al., 1992), more recently there been an explosion into molecular-genetic
research involving the neurobiological function of these non-coding RNAs in brain
development, injury, aging, health and disease (Perron and Provost, 2009; Tsitsiou and
Lindsay 2009; Taft et al., 2010; Lukiw et al., 2010; Madathil et al., 2011).

Pathogenically up-regulated miRNAs can be considered an epigenetic mechanism to down-
regulate specific mRNAs and their expression, and up-regulated miRNA in
neurodegenerative disorders such as Alzheimer s disease (AD) may help explain the large
number of brain gene messages observed to be progressively down-regulated in AD affected
anatomical regions (Loring et al., 2001; Colangelo et al., 2002; Lukiw et al., 2005).
Interestingly, bioinformatics and sequence analysis indicates that a 22 nucleotide single
stranded RNA composed of 4 different ribonucleotides can have over 1013 possible
sequence combinations, so the fact that there typically only ~103 miRNAs in any single cell
type suggests a very high developmental and evolutionary selection pressure to utilize only
specific miRNA oligonucleotide sequences that will yield biologically useful miRNA-
mRNA interactions. Further, miRNAs are highly developmental stage-, tissue- and cell-
specific, even in adjacent cell types, and in human brain cells high abundance miRNAs
number probably less than 102 individual species (Lukiw and Pogue, 2007; Burmistrova et
al., 2007; Yuva-Aydemit et al., 2011; unpublished observations). The small size of miRNAs
and recent identification of miRNA-protective protein and miRNA-containing vesicles
suggests that miRNAs may be a novel means for paracrine and related forms of inter-
cellular and inter-tissue communication (Wang et al., 2010; Arroyo et al., 2011). The
expression of a cell s miRNA repertoire is regulated by multiple transcription factors, are
transcribed as pre-miRNAs, and are not only under the transcriptional control of DNA
binding proteins, transcription factors and RNAPII and RNAPIII enzymes but further by
miRNA-modifying enzymes in the nucleus and cytoplasm that include DGCR8, Exportin 5,
Drosha, Dicer, Argonaute and others (Perron and Provost, 2009; Guo et al., 2010). As many
human neurodegenerative brain conditions such as AD appear to be associated with a
disorder in the innate immune and inflammatory response, immune- and stress-induced
transcription factors such as NF-κB have been shown to play determinant roles in the
regulation of stress-related miRNAs, and their mRNA targets involved in the innate immune
and inflammatory response.

In these studies we used a cocktail of amyloid beta 42 peptides + interleukin 1β
(Aβ42+IL1β) as a AD-relevant pathogenic stressor to induce NF-κ B in human primary
neural (HNG) cells (a co-culture of neurons and astroglia), and specific miRNA up-
regulation were analyzed using miRNA arrays, Northern micro-dot blots and RT-PCR. Both
Aβ42 peptides and the pro-inflammatory IL-1β, as well as NF-κB, have been shown to be
significantly up-regulated in AD-affected brain regions (Lukiw and Bazan, 1998; Lukiw et
al., 2005; Lee et al., 2010; Zhao et al., 2011; Eikelenboom et al., 2011). As required,
selective NF-κB translocation and DNA binding inhibitors including the chelator and anti-
oxidant pyrollidine dithiocarbamate (PDTC; pyrrolidine dithiocarbamic acid) and the
polyphenolic resveratrol analog CAY10512 (trans-3,5,4′-trihydroxystilbene) indicated the
NF-κB sensitivity of miRNA-9, miRNA-125b and miRNA-146a up-regulation. We provide
further evidence that miRNA-125b and miRNA-146a, and several of their verified mRNA
targets including complement factor H (CFH; also known as FH, CFH, HUS, β-1H), the
synaptic vesicle-associated phosphoprotein synapsin-2 (SYN-2; also known as SYNII),
tetraspanin-12 (TSPAN12; also known as NET-2 or transmembrane 4 superfamily member
12) and 15-lipoxygenase (15-LOX) provides a complex interactive regulatory role for NF-
κB and specific miRNA species in innate and immune signaling, synaptogenesis,
amyloidogenesis and neurotrophic support in stressed human brain cells.
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Material and methods
Procedures for the primary culture of human neuronal-glial (HNG) cells (also referred to as
human neural cells; Figure 1A) and their staining with glial-specific glial fibrillary acidic
protein (GFAP), neuron-specific beta-tubulin III (βTUBIII), and Hoescht 33258 nuclear
staining have been previously described in detail (Lukiw et al. 1998; Hill et al., 2001; Higaki
et al., 2002; Pogue and Lukiw 2004; Cui et al., 2004, Lukiw et al., 2005; Alexandrov et al.,
2005; Lukiw et al., 2008; Sethi and Lukiw, 2009; Hill et al., 2009; Pogue et al., 2009; Cui et
al., 2010; Zhao et al., 2011; Li et al., 2011). Note that human primary neuronal cells do not
grow well in the absence of glia; after 1 week of culture brain cells to be stressed received at
each change of medium Aβ42 peptide (5 μM; Sigma-Aldrich) plus human recombinant
interleukin-1β (IL-1β; 10 nM; I4019, Sigma-Aldrich Chemical, St. Louis, MO). Aβ42
peptides were prepared using the hexafluoroisopropanol (HFIP) evaporation-dimethyl
sulfoxide-solubilization method as previously described (Lukiw et al., 2005; Zhao et al.,
2011). Control primary cells received cell culture grade human serum albumin (HSA;
Sigma-Aldrich). As required, HNG cells were treated with either the metal chelator, anti-
oxidant and NF-κB translocation inhibitor pyrollidine dithiocarbamate (PDTC; pyrrolidine
dithiocarbamic acid; P8765; Sigma, St Louis, MO) or the antioxidant CAY10512
(10009536; Cayman Chemical, Ann Arbor, MI) at 10 or 5 uM as previously described
(Figure 1B,C) (Lukiw et al., 2008; Cui et al., 2010). After Aβ42 peptide+IL-1β addition
cells were cultured for 1 additional week after which total RNA and protein fractions were
analyzed using equivalent numbers of brain cells (Lukiw et al., 2005; Zhao et al., 2011). A
guanidine isothiocyanate- and silica gel-based membrane total RNA purification system and
miRNA isolation kit (PureLink™ Invitrogen, Carlsbad, CA) were used to isolate total RNA;
total RNA concentrations were quantified using RNA 6000 Nano LabChips and a 2100
Bioanalyzer (Caliper Technologies, Mountainview, CA; Agilent Technologies, Palo Alto,
CA). Specific small RNAs including 5S RNA, miRNA-9, miRNA-125b, miRNA-146a and
miRNA-183 were initially analyzed and quantified using miRNA arrays (N=3 control, N=3
stressed; LC Sciences, Houston TX; for raw data see
http://www.medschool.lsuhsc.edu/neuroscience/faculty_detail.aspx?name=lukiw_walter) or
Northern dot blots as previously described (Lukiw et al., 2005; Cui et al., 2010; Zhao et al.,
2011). For real-time quantitative PCR (qPCR) analysis of miRNAs, total RNA fractions
were prepared from HNG cells using an miRNeasy Mini Kit (Qiagen, Valencia, CA), and
qPCR analysis was performed using individual TaqMan miRNA assays using a TaqMan
MiRNA Reverse Transcription Kit, TaqMan Universal PCR Master Mix, and an Applied
Biosystems 7500 Real-Time PCR System (Applied Biosystems; Carlsbad, California) as
described by our lab (Lukiw et al., 2005; Cui et al., 2010; Zhao et al., 2011). Altered small
RNA levels of interest were further verified using a quantitative Northern dot blot focusing
assay that utilizes a T4 PNK kinase radiolabel system employing [α-32P]-dATP (6000 Ci/m
mol; Invitrogen, Carlsbad, CA) that significantly concentrates small RNA and miRNA
signals (Lukiw et al., 1998; Lukiw et al., 2005; Cui et al., 2010). All 3 techniques yielded
quantitatively similar results; Northern dot blot and qPCR data for 5SRNA and miRNA-9,
miRNA-125b, miRNA-146a and miRNA-183 are shown in Figure 2. 5S RNA and
miRNA-183 were used as endogenous controls as their levels have been previously shown
not to change under control or stressed physiological conditions in any human brain cell
type studied (Lukiw et al., 2005; Cui et al., 2010; Zhao et al., 2011). Gel shift assay for NF-
κB binding activity, and analysis of the expression of 15-LOX, SYN-2, CFH, TSPAN12 and
β-actin (as an internal control) at the level of mRNA and protein were performed as
previously described (Lukiw and Bazan, 1998; Lukiw et al., 2005; Cui et al., 2010; Zhao et
al., 2011). TSPAN12 protein was analyzed using a rabbit polyclonal antibody to TSPAN12
(ab90091; Abcam, Cambridge, MA) on TGSDS mini-gels (Lukiw et al., 2005; Xu et al.,
2009; Li et al., 2011). Relative 5S RNA, miRNA-132 and miRNA-146a, 15-LOX, SYN-2,
CFH or TSPAN12 mRNA and protein signal strengths were quantified against 5SRNA (for

Lukiw Page 3

Exp Neurol. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.medschool.lsuhsc.edu/neuroscience/faculty_detail.aspx?name=lukiw_walter


miRNA) or β-actin (for protein) in each sample using data-acquisition software provided
with a GS250 molecular imager (Bio-Rad, Hercules, CA; Cui et al., 2010; Zhao et al.,
2011). Graphic presentations were performed using Excel algorithms (Microsoft, Seattle,
WA) and Adobe Photoshop 6.0 (Adobe Systems, San Jose CA). Statistical significance was
analyzed using a two-way factorial analysis of variance (p, ANOVA; SAS Institute, Cary,
NC). A ‘p’ value of <0.05 was deemed as statistically significant; experimental values in the
Figures are expressed as means +/− one standard deviation (SD) of that mean.
Bioinformatics analysis that yielded miRNA-mRNA complementarity maps was performed
using www.mirbase.org and/or www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/b
(University of Manchester, UK) algorithms; additional molecular and genetic details on
CFH, SYN-2, TSPAN12 and 15-LOX were accessed using GeneCards Version 3 at
www.genecards.org (Weizmann Institute of Science, Rehovot, Israel).

Results
Figure 1A shows a typical culture of 2 week old HNG cells studied in this report and Figure
1B shows NF-κB induction by Aβ42 peptide and/or IL-1β, and the inhibitory effects by
both PDTC and CAY10512 in this human brain cell type. Figure 1C shows in bar graph
format the results of Aβ42+IL-1β-mediated induction of miRNA-9, miRNA-125b and
miRNA-146a and inhibition using 2 different classes of NF-κB inhibitors. Untreated
(control) or Aβ42+IL-1β-treated HNG cells exhibited no overt differences in neuronal or
glial cell morphology over the 1 week treatment period. While the basal abundance of
miRNA-9, miRNA-125b and miRNA-146a was miRNA-125b≫miRNA-9⋙miRNA-146a,
the rank order of induction was miRNA-146a⋙miRNA-9≫miRNA-125b. We observe
significant quenching of at least 85% of induced miRNA-9, miRNA-125b and miRNA-146a
signals by both PDTC and CAY10512. The induction of miRNA-9, miRNA-125b and
miRNA-146a by NF-κB, and agents known to induce NF-κB signaling (LPS, Aβ42
peptides, IL-1β, TNFα, oxidative stress, neurotoxic metal sulfates), has been further
supported and discussed in multiple studies and reviews (Taganov et al., 2006; Lukiw an
Pogue 2007; Lukiw et al., 2008; Pogue et al., 2009; Ma et al., 2011; Smale et al., 2011).

Figure 2A shows a green-red color coded cluster diagram of NF-κB up-regulated miRNAs
in Aβ42+IL1β-stressed HNG cells; miRNA-9, miRNA-125b and miRNA-146a were found
to be the most consistently up-regulated (Sethi and Lukiw 2009; Cui et al., 2010). Figure 2B
shows verification of miRNA-9, miRNA-125b and miRNA-146a up-regulation using a
Northern dot blot concentration technique (Lukiw et al., 2008) and Figure 2C shows the
relative up-regulation of miRNA-9, miRNA-125b and miRNA-146a in comparison to
5SRNA in the same sample.

Figure 3 shows highly complementary targets for miRNA-125b and miRNA-146a with
mRNA-3 -UTR sequences showing free energy of associations (EA) of −21.7 kcal/mol or
less; this is indicative of a very high and physiologically favorable potential to form double
stranded RNA structures (Fabian et al., 2010; Witkos et al., 2011). Indeed high free energies
of association (≤−21 kcal/mol) in duplex formation between miRNAs and their mRNA
3′UTR targets may be predictive for down-regulated gene expression. Several additional
studies and comprehensive reviews on regulatory pathways involving NF-κB, miRNA-125b
and miRNA-146a mRNA targets, including the ones studied here, have been recently
published (Li et al., 2011a; Li et al 2011b; Ma et al., 2011; Smale 2011).

Figure 4 shows protein levels for four of the miRNA-bound mRNA targets shown in Figure
3 - 15-LOX, SYN-2, CFH and TSPAN12. All Western blots generated one single prominent
band and the SYN-2, CFH and TSPAN12 bands were further associated with a small faster
running band (Kinders et al., 1998; Yao et al., 2003; Hennig et al., 2007; Lukiw et al., 2008;
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Junge et al., 2009; Cui et al., 2010; Xu et al., 2009). To eliminate the contribution of
Western blot-to-blot variability, control and stressed samples were processed in the same
Western blot under identical analytical conditions. Each of the 15-LOX, SYN-2, CFH and
TSPAN12 RNA and protein signals were found to be significantly reduced in stressed HNG
cells. These overall results suggests that in primary HNG cells that at least four of the
predicted miRNA-mRNA interactions in Figure 3 likely occur, and result in the down-
regulation of selective miRNA-125b- and miRNA-146a-mRNA targets including those
encoding 15-LOX, SYN-2, CFH and TSPAN12.

Figure 5 describes in a highly schematicized format several mRNA targets for miRNA-125b
and miRNA-146a, and the potential influence these human brain miRNAs has on several
inter-related aspects of AD neuropathology including glial cell proliferation, synaptic
failure, neurotrophic failure, neuroinflammation and amyloidogenesis.

Discussion
Micro-RNAs and small RNAs are acquiring increasingly important roles in modulating the
pathogenesis of human neurologic disorders including inflammatory neurodegeneration, AD
and murine transgenic models of AD (Tg-AD) (Lukiw et al., 1992; Lukiw 2007; Coolen and
Bally-Cuif, 2009; Hebert and De Strooper, 2009; Taft et al., 2010; Fabian et al., 2010;
Baltimore 2011; Li et al., 2011a, 2011b). Recent interrelated and independent studies further
suggest the sensitivity of human miRNA-9, miRNA-125b and miRNA-146a to central
nervous system (CNS)-relevant stress and neuropathology as NF-κB-mediated miRNAs
(Lukiw et al., 2008; Cui et al., 2010; Ma et al., 2011; Smale 2011; Sen 2011). Only up-
regulated miRNAs were analyzed in these studies as down-regulation of miRNA abundance
may be, in part, a consequence of their relatively short half-life, and uncontrolled and rapid
degradation, especially in human post-mortem tissues (Sethi and Lukiw 2009). Moreover it
has been recently shown that the primary mode of (up-regulated) miRNA action in
mammalian cells is to down-regulate their target mRNA levels (Guo et al., 2010). The
neurological activities of miRNA-9, miRNA-125b and miRNA-146a and several of their
mRNA targets, and implications, are further discussed in the sections below:

miRNA-9
miRNA-9 is a human brain abundant miRNA with a half-life of 0.5–1 hr in both cultured
human primary brain cells and tissues, possessing the shortest half-life of any human brain
miRNA studied to date (Sethi and Lukiw., 2009; Bazzoni et al., 2011). Interestingly,
miRNA-9 exerts significant control of neural progenitor cell proliferation and differentiation
in the developing telencephalon by regulating the expression of multiple transcription
factors including Foxg1, Nr2e1 and Pax6 (Shibata et al., 2011). We note that miRNA-9
decreases in expression as human brain cells age in primary culture, in accordance with its
established role as a developmentally regulated miRNA (Yuva-Aydemir et al., 2011).
Knockdown of miRNA-9 in neural progenitor cells, results in an inhibition of neurogenesis
along the anterior-posterior axis of the CNS (Bonev et al., 2011), and miRNA-9 is
significantly down-regulated in the tissues of fetuses with severe congenital abnormalities
such as anencephaly (Zhang et al., 2010). MiRNA-9 has been further reported to be up-
regulated in glioma cell lines and tissues and appears to be the target the chromobox protein
homolog CBX7 Involved in maintaining the transcriptionally repressive state of genes and
regulator of cellular lifespan by maintaining the repression of the cyclin-dependent kinase
inhibitor 2A (CDKN2A) thus linking miRNA-9 with CDKN2A-mediated glial cell
proliferation (Chao et al., 2009; Pogue et al., 2010).

Lukiw Page 5

Exp Neurol. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



miRNA-125b
One of the most human brain abundant, if not the most abundant CNS miRNAs and
intensively studied miRNAs, is the inducible miRNA-125b, first shown to be up-regulated
in differentiating mouse and human neurons, and since implicated in mammalian neuronal
development and function (Sempere et al., 2004). miRNA-125b has been shown to be
induced by neurotoxic metal sulfates that generate robust oxidative stress, and is also up-
regulated in brain cancers where it apparently targets CDKN2A, a negative regulator of cell
growth (Lukiw 2007; Lukiw and Pogue, 2007; Sethi and Lukiw 2009; Pogue et al., 2010;
Feng et al., 2011). Up-regulated miRNA-125b thus associates with glial cell proliferation
and is further associated with astrogliosis in neurodegenerative conditions such as AD and
Down s syndrome, as well as in glioma and glioblastoma multiforme (Pogue et al., 2010).
Interestingly miRNA-125b and miRNA-146a have tandem binding sites in the human CFH
mRNA 3′-UTR (Cui et al., 2010; unpublished observations).

miRNA-146a
miRNA-146a was first described as an NF-κB-regulated pro-inflammatory miRNA that was
found to target signaling proteins of innate immune responses, and more specifically the 3′-
UTR of complement factor H (CFH) in human monocytes (Taganov et al., 2006). Elevated
miRNA-146a in AD brain was previously shown to also target CFH and the interleukin-1
associated kinase 1 (IRAK-1), and is believed to contribute to altered innate immune
responses and neuro-inflammation in degenerating human brain cells and tissues (Lukiw et
al., 2008; Cui et al., 2010). CFH is a highly abundant human serum protein of hepatic origin,
abundant CFH presence in brain and retinal tissues suggests CFH involvement in the innate
immune response and inflammatory regulation within the privileged immunology of these
tissues (Lukiw et al., 2008). Although miRNA-146a is the least basally abundant miRNA
when compared to miRNA-9 and miRNA-125b, it is the most inducible and up-regulated
miRNA in AD brain compared to all other NF-κB-regulated species so far indentified (Fig.
1). Interestingly, miRNA-146a may be the most induced of the miRNAs studied here due to
the presence of 3 cannonical tandem NF-κB binding sites in the pre-miRNA-146a promoter
(Taganov et al., 2006; Lukiw et al., 2008).

miRNA-9, miRNA-125b and miRNA-146a mRNA targets in the brain
Up-regulation in the brain-abundant miRNA-125b is associated with down-regulation of
both the 15-lipoxygenase 15-LOX and the synaptic vesicle-associated phosphoprotein
synapsin-2 (SYN-2). The 15-LOX enzyme is essential in the conversion of the essential
omega-3 fatty acid docosahexaenoic acid (DHA) into the potent neuroprotectin D1 (NPD1),
and deficits in 15-LOX correlate with NPD1 deficits in AD brain (Hennig et al., 2007; Zhao
et al., 2011). The neuronal-enriched phosphoprotein SYN-2 that associates with the
cytoplasmic surface of synaptic vesicles is also a miRNA-125b target, and miRNA-125b up-
regulation is associated with SYN-2 down-regulation (Fig. 4) (Yao et al., 2003). Similarly,
CFH is a key negative regulator of the innate immune system, and miRNA-146a up-
regulation associates with decreased CFH in AD, prion disease and temporal lobe epilepsy
(Kinders et al., 1998; Lukiw et al., 2008; Saba et al., 2008; Hebert and De Strooper 2009;
Tsitsiou and Lindsay 2009; Aronica et al., 2010). The mRNA encoding a 4-time membrane
spanning integral membrane protein TSPAN12 is also a target for miRNA-146a; and up-
regulated miRNA might be expected to contribute to the down-regulation of TSPAN12 as is
observed in AD brain and in stressed human brain cells (Fig. 4) (Xu et al., 2009; Li et al.,
2011). Interestingly, sufficient TSPAN12 appears to be required for the neurotrophic
cleavage of the beta-amyloid precursor protein (βAPP); insufficient TSPAN12 is associated
with the induction of amyloidogenesis (Xu et al., 2009; Junge et al., 2009). Hence the
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integrated miRNA-mRNA interactions of as few as two human brain miRNAs –
miRNA-125b and miRNA-146a – may in part explain not only the observed down-
regulation of 15-LOX, SYN-2, CFH and TSPAN12 but also pathogenic deficiencies in
innate and immune signaling, synaptogenesis, amyloidogenesis and neurotrophic support in
the pathogenic brain.

Conclusions
The five main conclusions of this study are: (a) that normally aging, and stressed HNG cells
in primary culture are a proven and human-relevant brain cell model to study the mechanism
of transcription factor mediated miRNA activation and speciation, including the actions of
specific transcription factor inhibitors, under normal aging and Aβ42 peptide- and cytokine-
induced stress conditions; (b) that the down-regulated expression of several bioinformatics-
and computationally-predicted mRNAs and proteins are targeted by increases in specific
human brain-relevant miRNA abundances; (c) that high free energies of association (≤−21
kcal/mol) between miRNAs and their mRNA 3′UTR targets may be predictive for selective
down-regulation of gene expression; (d) that stressors known to induce NF-κB activate
select and pathologically relevant human brain cell miRNAs, and NF-κB inhibitors
selectively negate this induction; and (e) that single miRNAs (such as miRNA-125b and
miRNA-146a) appear to have the capability to regulate multiple mRNA nodes within
neurobiological and neuro-immunological pathways. Indeed, some of these mRNA targets
are known to associate with neurodegenerative disease, and participate in complex positive
or negative NF-κB-mediated feedback and signaling loops (Lukiw et al., 2008; Cui et al.,
2010; Ma et al. 2011). The targeted over-abundance of NF-κB in specific anatomical
regions in AD neocortex and hippocampus further implicates an NF-κB-mediated, miRNA-
regulated disease mechanism that appears to selectively down-regulate different pathology-
associated brain gene transcripts during the AD-process, including those encoding 15-LOX,
SYN-2, CFH and TSPAN12 (Lukiw and Bazan, 1998; Loring et al., 2001; Colangelo et al.,
2002; Lukiw et al., 2004; Alexandrov et al., 2005; Li et al., 2011a; 2011b). NF-κB may be
singularly important in regulating genetic responses to brain stress through the innate
immune response because it belongs to the category of ‘pre-formed’ primary transcription
factors that are already present in cells in an ‘inactive-sensory’ state, and do not require new
protein synthesis to be activated. The more chronic and persistent activation of NF-κB via
the interleukin-1 receptor-associated kinase-2 (IRAK-2) signaling pathway in AD has
recently been described (Taganov et al., 2006; Cui et al., 2010; Baltimore, 2011; Sen 2011;
Smale 2011). It will certainly be interesting to further analyze the role of NF-κB and other
transcription factors, chromatin-mediated mechanisms and other epigenetic influences on
specific miRNA-mRNA activation pathways to further understand their surprisingly
dynamic interactive roles, and their contribution to the neurogenetics of brain cell aging in
both health and degenerative disease.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(A) control human neuronal-glial (HNG) cells in primary culture stained with antibody to
glial fibrillary acidic protein (GFAP), a glial-specific cytoplasmic marker (green
fluorescence; λmax=556 nm); with antibody to βTUBIII, a neuron-specific cytoplasmic
marker (red; λmax=702 nm), and with Hoescht 33258 to highlight the morphological
features of both glial- and neuronal-cell nuclei (blue; λmax=461 nm; 2 weeks in culture; 20x
magnification) (Zhao et al., 2011); note large nuclear area, relative to both glial or neuronal
cytoplasmic area, indicative of high levels of transcriptional activity (Cui et al., 2005); (B)
relative induction of NF-κB in HNG cells by IL-1β and Aβ42, either alone or in
combination, and effects of PDTC and CAY10512, as analyzed by human NF-κB gel-shift
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assay (Lukiw and Bazan, 1998; Pogue et al., 2009); IL-1β and Aβ42 together show
synergistic effects as previously described in older HNG cell cultures (Lukiw et al., 2008);
(C) Aβ42+IL-1β-induced HNG cells in primary culture show significant up-regulation of
miRNA-9, miRNA-125b and miRNA-146a, and inhibition by the metal ion chelator, anti-
oxidant and NF-κB inhibitor PDTC, and CAY10512 (Lukiw et al., 2008; Cui et al., 2010).
Aβ42+IL-1β has been previously shown to induce NF-κB and selective miRNA expression
in several different human brain cell types (Li et al., 2011); other classes of NF-κB
inhibitors, including the polyphenolic free radical scavenger curcumin are also known to
significantly quench the up-regulation of brain-enriched miRNAs (Lukiw et al., 2008; Cui et
al., 2010).
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Figure 2.
(A) Cluster diagram of NF-κB-up-regulated miRNAs in Aβ42+IL1β-stressed HNG primary
cells (N=3) compared to untreated controls (N=3); hsa miR = homo sapiens micro RNA; (B)
dot blot confirmation of up-regulated miRNA-9, miRNA-125b and miRNA-146a abundance
in stressed HNG cells compared to control 5SRNA and miRNA-183 (N=2 control; N=2
Aβ42+IL1β-stressed); and (C) RT-PCR confirmation of up-regulated miRNA-146a,
miRNA-125b and miRNA-9 (N=5 control; N=5 Aβ42+IL1β-stressed); note in parts (B) and
(C) 5SRNA was loaded at 1/20 the amount of all other miRNAs; as miRNAs have been
shown to possess relatively short half-lives, down-regulated miRNA abundance values are
suspect to degradation interference and were not considered in these experiments (Sethi and
Lukiw, 2009). Members of the Let7 miRNA family were also found to be up-regulated by
stress in these studies cells but did not reach statistical significance (data not shown).
Genbank-based DNA sequence analysis indicates miRNA-9, miRNA-125b and
miRNA-146a all contain canonical, and often multiple, NF-κB binding sites in their
respective pre-miRNA promoters, a feature absent within the 15-LOX, SYN-2, CFH and
TSPAN12 immediate promoters (Lukiw et al., 2008; Pogue et al., 2010, Pogue et al., 2011;
see also Fig. 1; unpublished observations). In (C) a dashed horizontal line at 100 indicates
levels of the 5SRNA control for ease of comparison; *p<0.05, ANOVA).
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Figure 3.
In silico computation and bioinformatics analysis using www.mirbase.org and/or
www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/b algorithms; predicted miRNA-
mRNA complementarity maps for miRNA-125b (A–C) and miRNA-146a (D–F) of ≤
−21.71 kcal/mol (Cui et al., 2010). Specific mRNA targets for miRNA-9 are currently being
investigated. miRNA-mRNA oligonucleotide complementarity yielding free energies of at
least ≤ −21kcal/mol may favor selective miRNA-mRNA targeting and down-regulation of
specific gene expression (unpublished observations). As indicated, miRNA-125b and
miRNA-146a sequences are highlighted in yellow, and complementary sequence in the 3′
un-translated region (3′ UTR) of target mRNAs are highlighted in red; an “|” between the
miRNA and mRNA indicates a hydrogen bond; an “:” between the miRNA and mRNA
indicates a partial hydrogen bond. Energies of association (EA), chromosomal location and
Genbank accession numbers of target mRNAs are indicated. miRNA-125b-mediated down-
regulation of CDKN2A, 15-LOX and SYN II has implications for, respectively, glial cell
proliferation (Pogue et al., 2010), neurotrophism (Lukiw et al., 2005; Zhao et al., 2011) and
synaptic signaling (Yao et al., 2003; Lukiw 2004). Evidence for miRNA-146a targeting of
CFH, IRAK-1 and TSPAN12 (also known as NET-2 or TM4SF12) mRNA, and down-
regulation of CFH, IRAK-1 and TSPAN12 expression in human brain cells is further
supported by recent studies (Lukiw et al., 2008; Cui et al., 2009; Li et al., 2011a; Li et al.,
2011b).
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Figure 4.
(A) Western analysis indicating down-regulation of 2 miRNA-125b targets (15-LOX and
SYN-2) and 2 miRNA-146a targets (CFH and TSPAN12) in control and Aβ42+IL1β-
stressed HNG primary cells, compared to a β-actin internal control within the same sample;
15-LOX, SYN-2, CFH and TSPAN12 protein levels (molecular weights ~63, 74, 150, and
35 kDa, respectively) were found to be down-regulated between 0.21 and 0.29 of controls;
note that in the ‘stressed’ panel (part A, bottom) total proteins were loaded at 1.5 times the
amount as in the ‘control’ panel so that the faint bands for ‘stressed’ 15-LOX, SYN-2, CFH
and TSPAN12 became more clearly visible for a publication quality photo; (B) Comparison
of RNA and protein signal strengths for 15-LOX, SYN-2, CFH and TSPAN12; mRNA
signal strengths (gel data not shown) were found to be down-regulated between 0.54 and
0.63 of controls; relative RNA and protein control levels were both set to 1.0 (dashed
horizontal line) for ease of comparison; N=3; *p<0.05, **p<0.01 (ANOVA).
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Figure 5.
Several key pathological features of AD - glial cell proliferation, synaptic failure,
neurotrophic failure, neuroinflammation and amyloidogenesis - can be explained in part by
the actions of just two up-regulated miRNAs - miRNA-125b and miRNA-146a. Initially, in
this pathogenic cascade, the combination of Aβ42 peptide+IL-1β up-regulates the pro-
inflammatory transcription factor NF-κB which drives the transcription of miRNA-125b and
miRNA-146a (Lukiw et al., 2007; Pogue et al., 2009). Up-regulated miRNA-125b results in
down-regulation in the expression of CDKN2A, a negative regulator of glial cell
proliferation (Pogue et al., 2010), down-regulation in the abundance of SYN-2, an essential
neuronal phosphoprotein implicated in synaptogenesis and the modulation of
neurotransmitter release (Figure 4), and down-regulation in the abundance of 15-LOX, a key
enzyme in the biosynthesis of neuroprotectin D1 (NPD1) from the essential omega-3 fatty
acid docosahexaneoic acid (DHA; Lukiw et al., 2005; Lukiw and Bazan 2008; Zhao et al.,
2011). Similarly, an up-regulated miRNA-146a targets the mRNAs for CFH, IRAK-1 and
TSPAN12, down-regulates CFH, IRAK-1 and TSPAN12 gene expression, and this has
implications for up-regulated neuroinflammation and amyloidogenesis (notably a down-
regulated IRAK-1 is associated with a compensatory surge in the abundance of IRAK-2; Cui
et al., 2010). At this time we cannot exclude the participation of other misegulated miRNAs
that may contribute epigenetically to the initiation or advancement of the AD process.
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