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Control of DNA replication initiation is essential for

normal cell growth. A unifying characteristic of DNA

replication initiator proteins across the kingdoms of life

is their distinctive AAAþ nucleotide-binding domains.

The bacterial initiator DnaA assembles into a right-handed

helical oligomer built upon interactions between neigh-

bouring AAAþ domains, that in vitro stretches DNA to

promote replication origin opening. The Bacillus subtilis

protein Soj/ParA has previously been shown to regulate

DnaA-dependent DNA replication initiation; however, the

mechanism underlying this control was unknown. Here,

we report that Soj directly interacts with the AAAþ
domain of DnaA and specifically regulates DnaA helix

assembly. We also provide critical biochemical evidence

indicating that DnaA assembles into a helical oligomer

in vivo and that the frequency of replication initiation

correlates with the extent of DnaA oligomer formation.

This work defines a significant new regulatory mechanism

for the control of DNA replication initiation in bacteria.
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Introduction

Successful replication and segregation of genetic information

prior to cell division is essential for all living organisms. Loss

of replication control can dramatically reduce an organism’s

competiveness in its environment, and in extreme cases can

lead to unchecked cell proliferation or cell death. Throughout

the kingdoms of life, chromosome duplication is instigated by

DNA replication initiator protein complexes (Mott and Berger,

2007; Wigley, 2009; Kawakami and Katayama, 2010).

A unifying characteristic of initiator proteins is their AAAþ
nucleotide-binding domain, which is critical for their struc-

ture and function (Tucker and Sallai, 2007; Kawakami and

Katayama, 2010).

Bacterial chromosomes are typically replicated bi-direc-

tionally from a single origin (oriC); an event orchestrated

by the multi-domain initiator protein DnaA (Supplementary

Figure S1; for review see Mott and Berger, 2007; Leonard and

Grimwade, 2010). At the C-terminus, domain IV contains the

helix-turn-helix and basic loop motifs required for specific

double-stranded DNA-binding activity (Erzberger et al, 2002;

Fujikawa et al, 2003). Domain III contains the AAAþ motif

involved in ATP binding and ATP hydrolysis, as well as

residues required for coordinating single-stranded DNA

(Erzberger et al, 2002; Ozaki et al, 2008; Duderstadt et al,

2011). Domain II is a poorly conserved flexible linker (Abe

et al, 2007; Molt et al, 2009) connecting domains III–IV to

domain I, which acts as a hub for additional protein interac-

tions and directs loading of the replicative helicase (Sutton

et al, 1998).

Initiation of DNA replication in bacteria requires stepwise

structural transitions, resulting in the assembly of DnaA into

an active initiation complex (for reviews see Ozaki and

Katayama, 2009; Leonard and Grimwade, 2010). Through

domain IV, DnaA is thought to stably bind conserved nine

basepair sequences (DnaA-boxes) in the oriC region through-

out the cell cycle (Cassler et al, 1995). These founding DnaA

proteins recruit further DnaA molecules onto neighbouring

low-affinity binding sites via dimerization of domain I

(Simmons et al, 2003; Miller et al, 2009). Additional

ATP-bound DnaA proteins then assemble onto this platform

to form a large nucleoprotein complex observable by electron

microscopy as a particle wrapped in DNA (Funnell et al,

1987). This oligomeric structure may correspond to the right-

handed helix, built via interactions between neighbouring

AAAþ domains, which has been observed by X-ray crystal-

lography (Carr and Kaguni, 2001; Erzberger et al, 2006).

Amino-acid substitutions in DnaA that perturb helix forma-

tion in vitro inhibit replication origin unwinding in vitro and

functionality in vivo (Duderstadt et al, 2010), and it has

recently been proposed that the DnaA helix destabilizes an

AT-rich sequence within the origin (the DNA unwinding

element; DUE) by stretching one strand of the DNA duplex

to promote origin opening (Duderstadt et al, 2011). This

activity appears to be accompanied by a transition in DNA-

binding modes from double-stranded to single-stranded; a

result of domain IV engaging the AAAþ motif of a neigh-

bouring monomer within the helical oligomer (Erzberger

et al, 2006; Duderstadt et al, 2010). This compact helix is

thought to continue onto the upper strand of the now single-

stranded DUE via residues in domain III, stabilizing the DUE

in its unwound state (Speck and Messer, 2001; Ozaki et al,

2008). Following open complex formation, DnaA directly

recruits the replicative helicase onto the single-stranded

DNA via interactions with domains I and III (Sutton et al,

1998; Abe et al, 2007). The remaining replisomal components

are then recruited in a stepwise manner, which culminates in

an active DNA replication complex.

There are several steps during initiation at which regula-

tory systems have been found to control bacterial DNA

replication (for review see Katayama et al, 2010). DnaA

binding to oriC can be inhibited either by protein occlusion

(SeqA in Escherichia coli, Spo0A in Bacillus subtilis, and CtrA
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in Caulobacter crescentus), by spatial sequestration (YabA in

B. subtilis), or by titration (datA in E. coli and DBCs in

B. subtilis). DnaA assembly at oriC can be either stimulated

(DiaA in E. coli and HobA in Helicobacter pylori) or repressed

(SirA in B. subtilis) by the binding of regulatory proteins to

domain I. Lastly, DnaA is inactivated following replisome

formation through the stimulation of its ATP hydrolysis

activity (Hda in E. coli and C. crescentus).

In a previous study we identified the highly conserved

ParA protein (Soj) as a novel regulator of DNA replication in

B. subtilis (Murray and Errington, 2008). Soj is a Walker-type

ATPase that forms an ATP-dependent sandwich dimer that

can bind DNA (Leonard et al, 2005). We have shown that the

monomeric Soj protein inhibits DnaA, while dimerization of

Soj switches the protein into an activator of DnaA

(Scholefield et al, 2011). These results indicate that Soj acts

as a molecular switch to control DnaA activity, with its

opposing regulatory activities being dictated by its quaternary

state. Detailed biochemical characterization of Soj proteins

has identified amino-acid substitutions that arrest Soj

quaternary changes at different steps (Figure 1A; Leonard

and Grimwade, 2005; Hester and Lutkenhaus, 2007;

Scholefield et al, 2011). Two separate substitutions inhibit

Soj dimerization: SojK16A is unable to bind ATP, while SojG12V

can bind ATP but cannot dimerize due to a steric clash in the

dimerization interface; both of these proteins inhibit DnaA

activity. The SojR189A substitution allows ATP-dependent

dimerization but disrupts DNA-binding activity: this mutant

protein is relatively inert, presumably because DNA-binding

activity is required for Soj to efficiently activate DnaA

(Scholefield et al, 2011).

Here, we have investigated the negative regulation of

DnaA by monomeric Soj. We have identified amino-acid

substitutions in DnaA that render the protein insensitive to
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Figure 1 Specific mutations in dnaA either bypass or suppress the inhibition of DNA replication initiation by SojG12V. (A) Pathway of the Soj
activity cycle. (B) Point mutations in DnaA introduced by error-prone PCR were found to overcome the small colony phenotype characteristic
of SojG12V overexpression. Strains were grown on NA plates in the presence or absence of 1% xylose to induce sojG12V expression. Wild-type
(HM524), DnaAL294R (HM527), DnaAV323D (HM528), DnaAL337P (HM529), DnaAA341V (HM530). (C) The oriC-to-terminus ratios of dnaA point
mutations generated using PCR mutagenesis were determined using MFA in the presence and absence of SojG12V overexpression (1% xylose).
Suppressor mutations (red) were found to be recalcitrant to SojG12Vactivity. Cells were grown in LB medium at 301C. Values were normalized to
the ori:ter ratio of the wild-type strain grown in the absence of xylose. DnaAV121A (HM713), DnaAA131T (HM714), DnaAA132T (HM710),
DnaAG151R (HM705), DnaAG154S (HM706), DnaAH162Y (HM707), DnaAR281G (HM708), DnaAN311D (HM712), DnaAN311T (HM709), DnaAE314G

(HM711). (D) The SojG12V suppressor mutations in dnaA perturb the formation of a Soj:DnaA–His12 complex in vivo. Cells were grown in LB
medium at 301C, crosslinked with formaldehyde, and the DnaA–His12 complexes were purified before the crosslinks were reversed and proteins
were separated by SDS–PAGE. Soj and DnaA–His12 were detected by western blot analysis. The top panel shows the amount of Soj protein in
the cell lysate (Input) and the bottom panel shows the amount of Soj found in a complex with DnaA–His12 following purification (Complex).
DnaA–His12 (HM657), DnaAL294R–His12 (HM716), DnaAV323D–His12 (HM555), DnaAL337P–His12 (HM658), DnaAA341V–His12 (HM725). (E) The
amount of each DnaASup–His12 protein was determined by western blot analysis. DivIVA was used as a loading control.
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inhibition by monomeric Soj and that do not form a complex

with Soj in vivo. Using these proteins we show that Soj

directly interacts with DnaA in vitro. Importantly, we have

developed a site-specific crosslinking assay that detects DnaA

oligomers assembling on single-stranded and double-

stranded DNA substrates, both of which appear to represent

a helical conformation built upon the AAAþ domains. Using

this assay we show that monomeric Soj specifically inhibits

DnaA helix formation in vitro. Furthermore, we adapted our

site-specific crosslinking assay to demonstrate that (i) DnaA

forms oligomers in vivo, (ii) monomeric Soj inhibits DnaA

oligomerization in vivo, and (iii) the extent of DnaA oligo-

merization in vivo correlates with the rate of DNA replication

initiation. Together, these results establish the DnaA helix as

an important target for regulation, as well as providing

critical biochemical evidence supporting the physiological

relevance of DnaA helix formation during DNA replication

initiation.

Results

Specific point mutations in dnaA disrupt Soj inhibition

in vivo

Previously, we have shown that monomeric Soj inhibits

DnaA activity and forms a complex with DnaA in vivo

(Murray and Errington, 2008). However, it remained unclear

whether this regulation was mediated by a direct interaction

between the proteins. To address this question, we screened

for mutations in dnaA that suppress the growth inhibition

caused by overexpressing monomeric SojG12V (Figure 1B).

A chloramphenicol marker was integrated downstream of the

dnaAN operon and genomic DNA from this strain was used

as a substrate for error-prone PCR to generate point muta-

tions in dnaA. PCR products were transformed into a strain

harbouring an inducible sojG12V allele and plated under

SojG12V overexpression conditions, resulting in slow growth

of wild-type colonies. Genomic DNA from large colonies was

backcrossed into the parent strain to confirm that the muta-

tion conferring fast growth was linked to dnaA. DNA sequen-

cing identified 14 distinct mutations that caused single

amino-acid substitutions within DnaA.

To characterize the mutations in dnaA, marker frequency

analysis (MFA) was used to measure the relative levels of

origin and terminus DNA, thereby generating a measure of

DNA replication initiation frequency (Figure 1C). The muta-

tions within dnaA fell into two classes: hypermorphs that

bypassed SojG12V inhibition (DnaAHyp proteins) by having a

high basal rate of initiation, and suppressors that had an

approximately wild-type rate of initiation but were resistant

to SojG12V inhibition (DnaASup proteins: DnaAL294R,

DnaAV323D, DnaAL337P, DnaAA341V). The suppressor muta-

tions were each independently cloned into dnaA and trans-

formed into the SojG12V overexpression strain to demonstrate

that they were responsible for the large colony phenotype.

The resulting strains displayed rates of DNA replication

initiation and DnaA expression levels similar to wild type in

the presence or absence of SojG12V overexpression

(Supplementary Figure S2).

The ability of Soj to form a complex with DnaA–His12 and

DnaASup–His12 proteins in vivo was investigated using nickel

affinity purification following formaldehyde crosslinking.

Compared with wild-type DnaA–His12, all four DnaASup–

His12 proteins were defective in their ability to form a com-

plex with Soj (Figure 1D). Western blot analysis confirmed

that all DnaA–His12 proteins were expressed to a similar level

as wild type (Figure 1E). Taken together, the data indicate

that these amino-acid substitutions in DnaA suppress SojG12V

inhibition by disrupting DnaA–Soj complex formation.

Soj interacts directly with DnaA in vitro

To test whether Soj and DnaA directly interact, we purified

several DnaA and Soj proteins and measured binding in vitro

using surface plasmon resonance (SPR). B. subtilis DnaA

lacks cysteine residues, allowing for the introduction of a

C-terminal cysteine following a His5-tag. Conjugation of these

proteins to the sensor chip using a ligand thiol coupling

technique produced a homo-orientated DnaA surface. Wild-

type and mutant Soj proteins were then systematically in-

jected over the wild-type and DnaASup surfaces. SPR analysis

showed that wild-type Soj in the monomeric, ADP-bound

form (Soj:ADP) binds to DnaA with an KD of B30mM

(Figure 2A). In contrast, the DnaAL294R and DnaAV323D pro-

teins were severely defective in their interaction with

Soj:ADP, and the DnaAA341V protein displayed an intermedi-

ate interaction profile (Figure 2B). Furthermore, all the

DnaASup proteins failed to support complex formation with

monomeric SojG12V (Figure 2C).

To substantiate the results observed by SPR, DnaA proteins

were subjected to primary amine-specific crosslinking (BS3)

in solution with and without SojG12V. Protein complexes were

separated by SDS–PAGE and DnaA was detected by western

blot analysis (Figure 2E). The appearance of a signal at a

molecular weight expected for a Soj:DnaA complex (27 kDa

þ 54 kDa¼ 81 kDa) was observed in the presence of SojG12V.

By contrast, complex formation was dramatically reduced

when the DnaASup proteins were tested. In addition, the

DnaA:DnaA complex (108 kDa) was reduced in the presence

of SojG12V.

Cytological analysis of GFP–SojG12V localization in

B. subtilis cells suggests that it associates with origin bound

DnaA (Murray and Errington, 2008). To ascertain if SojG12V is

capable of interacting with a DnaA:DNA complex in vitro, a

pull-down experiment was performed. His-tagged SojG12V

was incubated with pBsoriC4 in the presence and absence

of native DnaA (DnaAnat). Proteins and DNA were cross-

linked using a concentration of formaldehyde that yielded a

specific Soj:DnaA interaction (Supplementary Figure S3A).

Complexes were then bound to nickel beads via the histidine

tag on Soj, washed, and the crosslinks reversed. The amount

of pBsoriC4 in these complexes was detected using qPCR.

There was an B13-fold enrichment of pBsoriC4 bound to

SojG12V in the presence of DnaA, indicating that Soj is capable

of forming a complex with DnaA bound to DNA

(Supplementary Figure S3B).

Taken together, the SPR and crosslinking assays indicate

that monomeric Soj directly interacts with DnaA both in

solution and bound to DNA, and that the substitutions in

the DnaASup proteins disrupt complex formation.

Mapping of the DnaASup and DnaAHyp substitutions

onto DnaA structures suggests a mechanism for Soj

regulation

We noted that although our PCR mutagenesis strategy

targeted the entire dnaA region (B5 kb flanking either side
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of dnaA, including the dnaA promoter and all of oriC), all of

the isolated DnaAHyp substitutions were located within the

AAAþ motif of DnaA, while all of the DnaASup substitutions

were located in domain IIIb (or at the border between

domains IIIb and IV, depending upon the assignment of

domain boundaries; see Supplementary Figure S1).

Strikingly, when these amino-acid substitutions were mapped

onto the crystal structure of DnaA domain III from

Thermotoga maritima (Figure 3A), all four of the suppressor

substitutions were found to cluster in domain IIIb, strongly

suggesting that this region is the binding site for Soj.

The DnaAHyp substitutions were found more widely dis-

tributed throughout the AAAþ motif. Three of the amino

acids (G151, G154, and V121) were located around the

nucleotide-binding pocket, with the backbone of the latter

two residues mediating direct contacts with the terminal

phosphate(s) and sugar, respectively. However, the remaining

six DnaAHyp substitutions appear to be surface exposed and

distal from the nucleotide-binding pocket; thus, it was un-

clear what effect these substitutions were having. To gain

insight into how the DnaAHyp proteins might affect DnaA

activity, the positions of these amino-acid substitutions were

mapped onto the helical crystal structure of Aquifex aeolicus

DnaA bound to AMP-PCP (Figure 3B, note A. aeolicus DnaA

lacks a 14 amino-acid stretch present in all classically studied

bacteria including B. subtilis, which harbours two of the four

C

0

20

–20

40

60

80

100

120
SojG12V:ATP SojR189A:ATP

0 100 200 300 400 500 600

0

50

100

150

200

250

300

0

0

100 200 300 400 500 600

Time (s)

D

R
U

Time (s)

0 100 200 300 400 500 6000 100 200 300 400 500 600

0

100

200

300

R
U

400A B

0

100

200

300

400

R
U

R
U

Time (s)Time (s)

Soj:ADPSoj:ADP DnaA

DnaAA341V

DnaAV323D

DnaAL294R

15 µM

7.5 µM

3.8 µM

1.9 µM

+ + + + + + + + +

+ + + + + + + + ++

SojG12V

SojR189A

Soj protein
BS3

DnaA DnaAA341VDnaAL294R DnaAV323D

DnaA

DnaA:DnaA

DnaA:Soj G12V

E

DnaA

DnaA:DnaA

DnaA:Soj R189A

DnaA

DnaAA341VDnaAV323D

DnaAL294R

DnaA

DnaAA341V

DnaAV323D

DnaAL294R

Figure 2 Soj directly interacts with DnaA. (A–D) SPR sensorgrams. DnaA proteins were immobilized onto the SPR chip surface via a unique
C-terminal cysteine residue to create a homogenous surface. Cartoon representations of Soj are shown to indicate the quaternary state of
various proteins. (A) Two-fold serial dilution of wild-type Soj:ADP injected over DnaAH485C. (B–D) The indicated Soj proteins (15 mM) were
injected over wild-type and mutant DnaA surfaces starting at time zero for 360 s. (E) In vitro crosslinking assay using the primary amine-
specific crosslinker (BS3) in the presence of DNA (pBSoriC4; 3 nM) and ATP (2 mM). Protein complexes were separated by SDS–PAGE and the
DnaA protein was visualized by western blotting. Pluses located above each lane indicate the presence of BS3 and/or Soj protein (32mM). The
identity of the DnaA proteins (3mM) are indicated below. The identity of the Soj proteins is indicated to the left of each gel.

Soj inhibits DnaA helix formation
G Scholefield et al

&2012 European Molecular Biology Organization The EMBO Journal VOL 31 | NO 6 | 2012 1545



suppressor substitutions (V323D and L337P); see

Supplementary Figures S1 and S4). Significantly, all of

these hypermorphic substitutions were either buried inside

(70%) or adjacent to the DnaA:DnaA interface and were

generally solvent exposed only at each end of the helix. Since

these substitutions lead to hyperactivity of DnaA, we spec-

ulate that they may promote AAAþ mediated oligomeriza-

tion by increasing the affinity of the DnaA:DnaA interaction.

Taken together with the observation that SojG12V disrupts

DnaA:DnaA complex formation (Figure 2E), we hypothe-

sized that monomeric Soj regulates DnaA ATP-dependent

oligomerization.

B. subtilis DnaA assembles into an ATP-dependent

oligomer in vitro

To test this model we designed a crosslinking assay to

specifically detect ATP-dependent oligomerization of DnaA

(Chen, 1991). Guided by the A. aeolicus structure, a pair of

cysteine residues were introduced into domain IIIa at N191

and A198 (Figure 3B, inset). Within the oligomer, the N191

residue from one DnaA monomer is in close proximity

(B9 Å) to the A198 residue of the adjacent monomer.

DnaAN191C,A198C (hereafter referred to as DnaAcc) was

incubated with the cysteine-specific crosslinker bis(maleimi-

do)ethane (BMOE; spacer arm 8.0 Å), protein complexes

were separated by SDS–PAGE, and DnaA was detected by

western blot analysis.

Figure 4A shows that crosslinking of DnaACC captures

multiple high molecular weight complexes that run as a

ladder on the gel. Formation of these DnaA oligomers was

dependent on ATP and dramatically stimulated by DNA.

Critically, mutation of the arginine finger residue (R264A)

that coordinates the g-phosphate of the ATP from the neigh-

bouring DnaA molecule (Erzberger et al, 2006) greatly
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diminished DnaA oligomerization (lanes 7 and 8). The

stimulation by DNA appeared to be non-specific as the

formation of DnaA oligomers was indistinguishable when

comparing plasmids with or without the B. subtilis origin of

replication (pBsoriC4 versus pUC18, respectively), compar-

ing supercoiled DNA with linear DNA, and comparing dou-

ble-stranded DNA with single-stranded DNA (Figure 4B and

data not shown).

Previous work has suggested that the crystalized

DnaA oligomer cannot accommodate binding to double-

stranded DNA through the helix-turn-helix in domain IV

due to substantial steric clashes (Duderstadt et al, 2010).

Because we readily observed that double-stranded DNA

stimulates DnaA oligomer formation, we wondered whether

this stimulation was dependent upon residues required for

the DNA-binding activities of domains III and IV. An

amino-acid substitution was introduced into domain III

(I190A) that previously was shown to disrupt single-stranded

DNA-binding activity of DnaA in vitro and DNA replication

in vivo (Ozaki et al, 2008). As expected, oligomerization of

DnaACC,I190A was not stimulated by single-stranded DNA,

although it was stimulated by double-stranded plasmids

(Figure 4B). Next, to investigate the role played by domain

IV in oligomer formation, arginine 379 was mutated to an

alanine. In E. coli DnaA, the equivalent residue has been

shown to interact with both specific basepairs and backbone

phosphates in the minor groove of double-stranded DNA

(Fujikawa et al, 2003). In contrast to the results obtained

with DnaACC,I190A, oligomerization of DnaACC,R379A was

stimulated by single-stranded DNA, but not by the double-
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stranded pUC18 plasmid. Interestingly, oligomerization of

DnaACC,R379A was stimulated by a plasmid that harboured

oriC (Figure 4B). These results correlated with the ability

of DnaACC,R379A to bind to the respective plasmids as judged

by an electrophoretic mobility shift assay (Supplementary

Figure S5). We note that single-stranded DNA stimulated

helix formation of DnaACC,R379A to a greater degree than

DnaACC. This observation suggests that the arginine residue

may interact with the phosphate backbone of the single-

stranded substrate and inhibit the docking of domain IV

into the AAAþ domain, a transition proposed to be critical

for single-stranded DNA-binding activity (Duderstadt et al,

2010). Taken together, these experiments indicate that

DnaA is capable of forming ATP-dependent oligomers on

both single-stranded and double-stranded DNA substrates,

in contrast to the apparent constraints placed upon domain

IV within the structure of the DnaA oligomer (see

Discussion).

Monomeric Soj specifically inhibits DnaA oligomer

formation in vitro

The DnaA oligomer formation assay was then used to in-

vestigate the effect of Soj on DnaA activity. The presence of

SojG12V significantly reduced both the length and abundance

of the DnaA oligomers formed in the presence of plasmid

DNA (Figure 4C). To determine whether the observed inhibi-

tion was specific to monomeric Soj, the effect of SojK16A

(monomeric) and SojR189A (dimeric) proteins was also inves-

tigated. While SojK16A clearly disrupted DnaA oligomer

formation, SojR189A had little or no effect (Figure 4C) even

though it was capable of interacting with DnaA (Figure 2D

and E). Thus, despite sharing apparent interaction determi-

nants, disruption of DnaA oligomerization is a specific

property of the monomeric Soj protein. These results are

consistent with our previous findings that monomeric Soj

specifically inhibits DnaA initiation activity in vivo

(Scholefield et al, 2011).

Oligomers formed by DnaAL294R and DnaAV323D were

highly resistant to SojG12V activity (Figure 5A). In compar-

ison, oligomers formed by DnaAA341V were partially suscep-

tible to SojG12V, consistent with the intermediate response

observed between the two proteins by SPR analysis (Figures

2B and 5A). Importantly, all of the DnaASup proteins were

found to form oligomers under the same conditions as wild

type (Supplementary Figure S6A). These results indicate that

the effect of SojG12V on DnaA oligomerization is dependent on

the same residues required for the formation of a Soj:DnaA

complex.

To determine whether monomeric Soj prevents DnaA

oligomer formation and/or disassembles pre-formed DnaA

oligomers, an order of addition experiment was performed.

Figure 5B shows that DnaA oligomers formed prior to SojG12V

addition are highly resistant to SojG12V inhibition (lane 3)

when compared with oligomers formed after SojG12V addition

(lane 2), indicating that monomeric Soj acts by preventing

DnaA oligomer formation.

Since the DnaA oligomer can form on both single-stranded

and double-stranded DNA, it was possible that SojG12V

only acted on one of these complexes. SojG12V was found to

disrupt oligomerization of both DnaACC in the presence of

single-stranded DNA and DnaACC,I190A in the presence of

double-stranded DNA (Supplementary Figure S6B). Thus,

monomeric Soj can inhibit DnaA oligomers forming on either

single-stranded or double-stranded substrates, although we

note that the degree of inhibition appeared to be greater in the

presence of single-stranded DNA.

Previous work has established that domain I plays an

important role in DnaA oligomerization in E. coli (Felczak

et al, 2005). To test whether SojG12V inhibition of DnaA

oligomerization was dependent on this domain I self-interac-

tion, we created a truncated version of DnaACC that lacked

domains I and II (DnaAIII/IV,CC). As expected from the inter-

action analysis described above, the DnaAIII/IV protein

retained the ability to interact with Soj (Supplementary

Figure S7A). The truncated DnaA was readily capable of

forming oligomers and, like the full-length protein, these

oligomers were inhibited by monomeric SojG12V but were

not affected by dimeric SojR189A (Supplementary Figure S7B).

These results indicate that the oligomerization activity ob-

served for the DnaACC protein is independent of domains I

and II, and taken together with the interaction experiments,

they support a model in which monomeric Soj inhibits DnaA

oligomerization by specifically regulating an activity of the

AAAþ domain.

SojG12V inhibition of DnaA is independent of DnaA ATP

binding, ATP hydrolysis, and DNA-binding activities

Because oligomerization of DnaACC was stimulated by both

ATP and DNA, we investigated whether monomeric Soj

inhibits DnaA oligomerization by modulating the interaction

of DnaA to either of these molecules. To test whether mono-

meric Soj affects ATP binding to DnaA, we incubated an ATP

hydrolysis deficient DnaA protein (DnaAR313A) with a-P32

ATP in the presence and absence of SojK16A. The DnaAR313A

protein was utilized to prevent hydrolysis of the bound ATP

during the experiment (Supplementary Figure S8A) and

SojK16A was used because it is ATP-binding deficient

(Scholefield et al, 2011). Reactions were assembled and

incubated in an identical manner to the oligomer formation

assay before the proteins were separated from the reaction

buffer using magnetic nickel beads and washed to remove

unbound ATP. The bound ATP was extracted and then

separated by thin layer chromatography. There was no sig-

nificant difference between the amount of ATP bound to

DnaAR313A in the presence or absence of SojK16A

(Figure 5C), indicating that monomeric Soj does not inhibit

ATP binding. Furthermore, SojG12V did not stimulate the

ATPase activity of wild-type DnaA (Supplementary Figure

S8A) and oligomerization of the hydrolysis deficient

DnaACC,R313A protein remained sensitive to SojG12V inhibition

(Figure 5D), indicating that monomeric Soj does not act by

regulating the ATPase activity of DnaA.

To determine whether monomeric Soj inhibits DnaA oligo-

merization by inhibiting the DNA-binding activity of DnaA,

we determined whether SojG12V was capable of inhibiting

DnaACC oligomer formation in the absence of DNA. As

before, SojG12V inhibited DnaACC oligomerization but had

little effect on DnaACC,V323D (Supplementary Figure S8B).

These results indicate that monomeric Soj can regulate

DnaA helix formation in a manner that is independent of

the ability of DnaA to bind to DNA. Taken together, the data

support the model that monomeric Soj directly interacts with

the AAAþ domain of DnaA to specifically prevent ATP-

dependent oligomer formation.
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Monomeric Soj inhibits DnaA oligomer formation in vivo

To determine if the inhibition of DnaA oligomer formation

caused by monomeric Soj in vitro was physiologically rele-

vant, the site-specific crosslinking assay was modified to

detect DnaA oligomers in vivo. The endogenous dnaA gene

was replaced with dnaAN191C,A198C (dnaACC) and BMOE was

used to crosslink DnaACC proteins in intact cells that were

harvested during exponential growth. The strain harbouring

dnaACC mildly overinitated DNA replication compared with

wild type, although its growth and morphology appeared

normal (Supplementary Figure S9A). Following incubation

with BMOE, cells containing DnaACC (but not cells with

single cysteine substitutions) formed oligomers and this

was dependent upon the arginine finger required for the

interaction of neighbouring AAAþ domains (Figure 6A–C).

Thus, the site-specific crosslinking assay captures DnaA

oligomers within B. subtilis cells that likely correspond to

the complexes observed in vitro.

Figure 6A shows that overexpression of monomeric

SojG12V resulted in an B50% decrease in the percentage of

DnaACC found in the oligomer compared with wild type,

while overexpression of dimeric SojR189A had no inhibitory

effect (both Soj proteins were overexpressed to the same

extent; Supplementary Figure S9B). Moreover, the oligomers

formed by one of the DnaASup proteins (DnaACC,V323D) were

resistant to SojG12V overexpression (Figure 6C). These results

suggest that monomeric Soj is capable of directly inhibiting

DnaA oligomer formation in vivo as well as in vitro.

In addition to analysis of the DnaASup protein, the in vivo

oligomer formation assay was used to investigate the activity
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of several DnaAHyp proteins. The three DnaAHyp proteins

tested (A132T, G154S, and R281G) showed an B2–3-fold

increased propensity to form oligomers compared with the

wild type (Figure 6C). The helices formed by the DnaAHyp

proteins remained susceptible to inhibition by SojG12V, con-

sistent with the results from the MFA described above

(Figure 1C). These observations are compatible with the

model that the DnaAHyp proteins bypass SojG12V inhibition

by promoting interactions between adjacent DnaA mono-

mers, thus leading to an increase in DnaA oligomer formation

and in the rate of DNA replication initiation.

Interestingly, the DNA replication initiation frequency

of wild-type DnaA and each DnaAHyp protein (in the presence

or absence of SojG12V) strongly correlated with the

percentage of protein observed in oligomers (correlation

coefficient¼ 0.903) (Figure 6D). This result further supports
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the biological significance of DnaA oligomer formation, and

suggests that this activity may be the rate-limiting step

required for DNA replication initiation in B. subtilis.

Discussion

Monomeric Soj inhibits DnaA helix formation

In this report we show that monomeric Soj stalls DNA

replication initiation by directly interacting with the initiator

protein DnaA and specifically inhibiting DnaA oligomer

formation. Based on the arguments outlined below, we

propose that monomeric Soj regulates DnaA assembly into

a right-handed helical structure. If this is correct, we have

uncovered a novel mode of DnaA regulation mediated via the

Soj protein. We also provide critical biochemical evidence

demonstrating that the DnaA helix observed by X-ray crystal-

lography assembles and has functional relevance in vivo,

thereby supporting the physiological role of both this DnaA

structure and the proposed Soj regulatory mechanism.

To study the negative regulation of DnaA by monomeric

Soj, we established a cysteine crosslinking assay capable of

detecting an ATP-dependent DnaA oligomer. To achieve

crosslinking via BMOE, this oligomer has to fulfil two

requirements: first, the arginine finger residue (R264) has to

coordinate the ATP of the neighbouring monomer, and

second, the two cysteines from adjacent AAAþ motifs

have to be brought within 9 Å of each other. This means

that there are two relatively fixed contacts between neigh-

bouring AAAþ domains necessary for an efficient reaction.

Since these dual requirements would allow minimal flexibil-

ity of the AAAþ domains relative to each other, the DnaACC

site-specific crosslinking assay is most likely capturing the

AAAþ domains in an orientation analogous to the published

crystal structure. Therefore, we propose that our DnaACC

oligomer formation assay captures a helical structure of

B. subtilis DnaA.

The DnaA helix can form on single-strand and

double-stranded DNA

It has been proposed that the compact DnaA helix observed

in the crystal structure could only form on single-stranded

DNA through interactions in domain III, since domain IV is

packed tightly into the compact helix, effectively sequestering

the double-stranded DNA-binding interface (Erzberger et al,

2006; Ozaki et al, 2008; Duderstadt et al, 2010). Consistent

with this model and supporting the importance of the compact

DnaA helix, it has been shown that amino-acid substitutions in

the domain III–IV interface that affect DnaA oligomerization

inhibit both open complex formation in vitro and replication

origin function in vivo (Duderstadt et al, 2010). However, it

should be noted that genetic analyses, electron microscopy

analyses, and footprinting assays together strongly indicated

that ATP-bound DnaA must first cooperatively assemble into a

large nucleoprotein complex built upon defined interactions

on double-stranded DNA within oriC prior to open complex

formation (Mott and Berger, 2007; Rozgaja et al, 2011). Thus, it

was not clear how the compact DnaA helix would be assembled

at the replication origin.

We observed that an ATP-dependent DnaA helix can be

built on either single-stranded or double-stranded DNA. The

DnaA helix formed on single-stranded DNA was found to

depend on I190 in domain III, located within the central pore

of the helix. By contrast, the DnaA helix formed on non-

specific double-stranded DNA was found to depend on R379

in domain IV and was independent of I190. These observa-

tions imply that during DnaA helix formation on double-

stranded DNA, domain IV must be extended away from the

AAAþ helical core. This also leads to the conclusion,

supported by the structures of DnaA bound to ADP and

AMP-PCP (Erzberger et al, 2002, 2006; Ozaki et al, 2008;

Duderstadt et al, 2010), that the a-helix linking domains III

and IV is a semi-flexible linker, allowing domain IV to adopt

multiple conformations relative to the helical AAAþ core.

These results are consistent with the model, originally

proposed by Erzberger et al (2006), whereby ATP-bound

DnaA initially assembles into an extended helical structure

that is engaged with specific double-stranded DNA-binding

sequences through domain IV, followed by the transition to a

compact helix at which point domain IV dissociates from

double-stranded DNA and folds into domain III, thereby

promoting the single-stranded DNA-binding activity of resi-

dues located in the central channel formed by the AAAþ
motifs (Figure 7). Although the precise architecture of the

DNA replication initiation complex has not yet been deter-

mined (see Ozaki and Katayama, 2011), our data help to

reconcile how multiple distinct helical DnaA oligomers could

be assembled specifically at bacterial replication origins.
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In addition to the helical DnaA oligomer built upon the

AAAþ core, it is important to note that domain I plays

critical roles in DnaA assembly and activity. Many bacterial

DnaA proteins can directly form homo-oligomers that are

dependent upon domain I (Weigel et al, 1999; Simmons et al,

2003). This domain I self-interaction is required for DnaA

both to recruit additional DnaA proteins to the replication

origin and to load the replicative helicase (Felczak et al, 2005;

Miller et al, 2009). Although this domain I self-interaction is

not necessary for either assembly or ssDNA stretching activ-

ity of the DnaA helical oligomer (Supplementry Figure S7B;

Erzberger et al, 2006; Duderstadt et al, 2010, 2011), it could

stimulate DnaA helix formation indirectly either by increas-

ing the local concentration of DnaA at oriC or by stabilizing

DnaA oligomers at oriC. Future studies will be needed to

determine how these distinct DnaA interfaces, along with the

information encoded by the DNA sequence of oriC, act in

concert to construct an active DnaA initiation complex.

Potential mechanisms for Soj activity

Our genetic analysis suggests that Soj directly interacts with

domain IIIB (or the region linking domains IIIb and IV) of

DnaA. Comparison of the ADP-bound monomeric and the

AMP-PCP-bound helical DnaA structures indicates that

domain IIIB must shift and domain IV must bend to generate

the space required for the arginine finger from the neighbouring

monomer to engage the g-phosphate of ATP (Erzberger et al,

2006). Furthermore, our biochemical analyses show that

monomeric Soj neither inhibits ATP binding, nor stimulates

ATP hydrolysis, nor disassembles pre-formed DnaA helices.

Based on these considerations, we envisage two potential

mechanisms by which Soj could act to prevent helix forma-

tion (Figure 7). First, Soj could bind to domain IIIB and

sterically inhibit helix assembly. Second, Soj could bind to

domain IIIB and prevent DnaA undergoing the conforma-

tional changes required for it to assemble into a helix. Taking

into account the observations that both monomeric

and dimeric Soj proteins bind to DnaA, that the DnaASup

substitutions impair the binding of both Soj conformations,

and that prevention of DnaA helix formation is specific to

monomeric Soj, we currently favour the latter allosteric

model because binding of the larger Soj dimer would

presumably create an even greater steric wedge between

neighbouring DnaA molecules.

Our preliminary data suggest that dimeric Soj stimulates

DnaA helix formation in vivo, consistent with its ability to

increase the frequency of DNA replication initiation (GJS and

HM, unpublished data). In addition, previous data indicate that

Soj can positively regulate DnaA activity as a transcriptional

regulator (Murray and Errington, 2008). Thus, we wonder

whether Soj could allosterically regulate DnaA helix formation

both negatively and positively, with the direction of regulation

depending upon the quaternary state of the Soj protein.

Although the interaction studies indicate that both mono-

meric and dimeric Soj proteins bind to a similar region of

DnaA (Figure 2C–E), we note that the dimeric Soj protein

remained capable of interacting with all of the DnaASup

substitutions, albeit to a lesser extent than with the wild-

type protein (Figure 2D). This observation suggests that

dimeric Soj may be able to interact with a second site on

DnaA, and this additional contact could influence the

outcome of the interaction between the two proteins. These

questions regarding dichotomies between the activities and

the interactions of monomeric and dimeric Soj proteins are

currently under investigation.

Biological implications of regulating DnaA helix formation

The signal that switches Soj from a monomer to a dimer, and

thus from an inhibitor to an activator of DnaA, is unknown.

In all growth conditions tested so far, it appears that Soj

dimerization is efficiently inhibited by the regulatory protein

Spo0J (ParB). Therefore, Soj probably spends most of its time

in the inhibitory monomeric state. Previous cytological

studies have shown that GFP–SojG12V localizes as a focus at

oriC in a DnaA-dependent manner (Murray and Errington,

2008), suggesting that Soj prevents DnaA helix formation at

oriC. By stalling DNA replication initiation at the stage of

DnaA helix formation, it would allow DnaA to remain primed

for rapid activation (i.e., DnaA would already be ATP-bound

and localized at the origin). We hypothesize that a cellular

signal, such as an increase in nutritional availability, entry

into a developmental programme, or a cell-cycle event,

stimulates the conversion of Soj from monomer to dimer

(perhaps locally around oriC), thereby swiftly promoting the

initiation of DNA replication.

Chromosomally encoded par genes are found throughout

all branches of the bacterial kingdom (Livny et al, 2007).

Nonetheless, many species do not harbour par genes and we

hypothesize that regulation of DnaA helix formation, repre-

senting the active initiation complex, is achieved through

different mechanisms in various bacteria. In E. coli, which

does not have par genes, the rate of ATP binding appears to

limit DnaA oligomerization potential (Kurokawa et al, 1999).

In C. crescentus DnaA is degraded at the end of every cell

cycle (Gorbatyuk and Marczynski, 2005), suggesting that

helix formation could be limited by protein synthesis.

Interestingly, although C. crescentus contains par genes, it

appears that in this organism ParA is involved in segregation

of the chromosome origin region (Ptacin et al, 2010;

Scholefield et al, 2010). Whether this variation in ParA

activity reflects the fact that DnaA oligomerization in C.

crescentus is limited at a different step in the assembly

pathway compared with B. subtilis is not known, but it will

be informative to determine the rate-limiting step in DnaA

oligomerization for a range of bacteria and correlate this with

the activity of their respective ParA proteins.

The B. subtilis Par system: roles in DNA replication and

chromosome segregation

par operons were originally identified on low-copy number

plasmids where they ensure faithful segregation of plasmids

into daughter cells (Gerdes et al, 2010). In these systems, the

ParB protein binds to a centromere-like site on the plasmid

(parS), followed by segregation of this nucleoprotein complex

by the ATPase ParA. The chromosomal orthologues of Par

proteins are found throughout the bacterial kingdom and

have been shown to influence chromosome organization

and segregation in a number of diverse species (for review

see Gerdes et al, 2010). These results led to the hypothesis

that Par proteins act in an analogous manner to their plasmid

orthologues by forming a segregation machine that actively

separates replicated chromosomes prior to cell division.

Despite the appeal of this model, rigorous examination of

Soj/ParA activity during vegetative growth in B. subtilis has
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so far provided little support for a role in chromosome

segregation or origin localization (Lee and Grossman,

2006). However, it has been shown that Spo0J/ParB is

required for proper DNA segregation in B. subtilis (Ireton

et al, 1994), and recent work indicates that Spo0J affects

chromosome organization by recruiting Condensin (the SMC

complex) to the origin region of the chromosome (Gruber and

Errington, 2009; Sullivan et al, 2009). Therefore, the B.

subtilis Par system is involved in accurate chromosome

segregation, although apparently not in an analogous manner

to related plasmid systems. Moreover, it appears that the

activity of the B. subtilis Par system is more complex than

initially imagined, with the Spo0J:parS complex acting as a

regulator of, and perhaps coordinating the activities of,

factors involved in DNA replication (Soj) and DNA organiza-

tion/segregation (SMC) leading to possible coordination

between the two systems.

AAAþ inter-protein interactions as a regulatory target

in ORC

In eukaryotic organisms, DNA replication is initiated by the

origin recognition complex (ORC; Orc1–6) in combination

with Cdc6. Orc1, Orc4, Orc5, and Cdc6 contain AAAþ
domains, while Orc2 and Orc3 are predicted to have

AAAþ -like folds. Orc1 and Orc5 have been shown to bind

ATP while Orc1 and Cdc6 have intrinsic ATPase activity

(Kawakami and Katayama, 2010). Strikingly, ORC has been

shown to undergo an ATP-dependent conformational change,

and the structure of the DnaA helix can be docked into a

low-resolution structure of ORC (Clarey et al, 2006). These

observations suggest that the ATP-dependent conformational

changes in ORC result from a similar reorientation of the

AAAþ domains observed in DnaA. Consistent with this

model, the arginine finger residue in Orc4 and the ATPase

activity of Cdc6 are both critical for reiterative helicase

loading (Schepers and Diffley, 2001; Bowers et al, 2004).

We suggest that detailed examination of DnaA conforma-

tional changes required for the assembly of an active

initiation complex will likely underpin and inform the

mechanistic understanding of related initiator complexes

from higher organisms. Furthermore, our finding that DnaA

helix formation is targeted for regulation by Soj opens up the

possibility that the conformational changes observed for ORC

will also be subject to regulation.

Materials and methods

Strains and plasmids
Strains and plasmids used in this study are described in the
Supplementary data and listed in Supplementary Tables SI and SII
and the relevant oligonucleotides in Supplementary Table SIII.
E. coli strain DH5a (Invitrogen) was used for the construction of all
plasmids, and strain BL21 (DE3) pLysS (Stratagene) was used to
express all proteins. The plasmid pET21-d (Invitrogen) was used as
the expression vector for all proteins.

Media and chemicals
Nutrient agar (NA; Oxoid) was used for routine selection and
maintenance of both B. subtilis and E. coli strains. For experiments
in B. subtilis, cells were grown in either Luria-Bertani (LB) medium
or casein hydrolysate medium. Supplements were added as
required: 20mg/ml tryptophan, 5mg/ml chloramphenicol, 2 mg/ml
kanamycin, 50 mg/ml spectinomycin. For plasmid and protein
expression in E. coli, cells were grown in LB medium or Nutrient
Broth (Oxoid) and supplemented with 30mg/ml (for single copy
plasmids) or 75mg/ml ampicillin and 10 mg/ml chloramphenicol.

Unless otherwise stated, all chemicals and reagents were obtained
from Sigma-Aldrich.

Marker frequency analysis
MFA was essentially done as previously described (Murray and
Errington, 2008). For details see Supplementary data.

Purification of in vivo protein–protein complexes
This was done as previously described, for details see Supplemen-
tary data (Murray and Errington, 2008).

Primary amine crosslinking assay
Soj proteins (36mM) were diluted into oligomer formation buffer
(25 mM HEPES pH 7.6, 200 mM NaCl, 100 mM potassium gluta-
mate, and 10 mM MgCl2) supplemented with 2 mM ATP and 3 nM
pBSoriC4 at room temperature. DnaA (3mM) was then immediately
added and the reaction was incubated at 371C for 15 min. The
primary amine-specific crosslinker BS3 (Thermo Scientific) was
then added (0.1 mM final) and the reaction was left to proceed for
3 min at 371C. The reaction was quenched by the addition of TRIS
(100 mM final pH 8) for 10 min at 371C. Samples were separated by
SDS–PAGE and bands were visualized by western blot
analysis using a-DnaA polyclonal antibodies.

In vitro helix formation assay
Soj proteins (12, 24, and 36 mM) were diluted into oligomer
formation buffer (see above) supplemented with 2 mM ATP and
3 nM pBSoriC4. DnaA (3mM) was then added and the reaction was
incubated at 371C for 15 min. BMOE cysteine-specific crosslinker
(Thermo Scientific) was added to a final concentration of 2 mM and
the reaction was left to proceed for 3 min at 371C. The reaction was
quenched by the addition of cysteine (50 mM final) for 5 min at
371C. Samples were separated by SDS–PAGE and bands were
visualized by western blot analysis using a-DnaA polyclonal
antibodies.

In vivo helix formation assay
Crosslinking media (Spizizen minimal media supplemented with
0.01 mg/ml Fe–NH4–citrate, 0.5% glucose, 6 mM MgSO4, and
0.02 mg/ml of all the natural amino acids except cysteine) was
inoculated directly from �801C with the required strain and left to
grow overnight at 371C. Cells were diluted 1:100 into fresh
crosslinking media in a flask allowing for high aeration and grown
at 301C until the A600 reached B0.1 at which point xylose (1%
final) was added or removed by washing to induce or to repress soj
alleles, respectively. Cell growth was allowed to continue until the
A600 reached B0.6. 10 ml of culture was collected by centrifugation
at 14K r.p.m. for 1 min and resuspended in 2 ml in vivo crosslinking
buffer (50 mM HEPES pH 7 and 10% Sucrose). For MFA, another
250ml of cells was added directly to 25ml of 10% sodium azide and
then treated and analysed by qPCR. Cells were collected as above
and resuspended in 100ml in vivo crosslinking buffer and flash
frozen in liquid nitrogen (flash freezing and the subsequent
addition of DMSO did not affect cell viability). Frozen cells were
thawed and BMOE was added to a final concentration of 2 mM. The
reaction was left to proceed for 30 min at 371C with shaking at
800 r.p.m. before being quenched by the addition of cysteine
(100 mM final) for 5 min at 371C. Cells were lysed by the addition of
a 0.5� reaction volume of SDS–PAGE sample loading buffer and
DTT followed by heating to 901C for 15 min and then briefly
sonicated at 41C. Cell debris was removed by centrifugation at 14K
r.p.m. for 15 min at 41C. Finally, samples were concentrated using a
10-kDa MWCO centrifugal unit (Millipore) and analysed by SDS–
PAGE. Bands were visualized by western blot analysis using
a-DnaA polyclonal antibodies.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal. org).
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