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1. Introduction
A promising theory of the aging process holds that senescence is brought about by
dysregulation of transcription factors governing central physiological processes, including
energy metabolism, and immunological homeostasis (Vellanoweth et al. 1994; Supakar et
al., 1995; Roy et al. 1996, 2002; Roy 1997; Chung et al. 2000, 2001, 2002, 2006, 2009;
Lavrovsky et al. 2000; Giardina and Hubbard, 2002; Gosselin and Abbadie, 2003; Herbein
et al. 2006; Yu & Chung, 2006; Salminen et al. 2008a&b). One such transcription factor that
has come to the forefront is nuclear factor kappa B (NF-κB) and its associated signal
transduction network (STN), thus giving rise to the concept of NF-κB-dependent
senescence. The NF-κB STN has also been implicated in the pathophysiology of complex
diseases associated with aging, including cancer (Dolcet et al. 2005; Karin 2006; Inoue et al.
2007; Maeda and Omata 2008), neurological disorders (Kaltschmidt et al. 2005; Mattson
2006; Mattson and Meffert 2006; Memet 2006), and the metabolic syndrome, including type
2 diabetes (T2D), obesity, and cardiovascular disease (CVD) (Sonnenberg et al. 2004; de
Winther et al. 2005; Xanthoulea et al. 2005; Bastard et al. 2006; Schwartz and Reaven,
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2006; Gil et al. 2007). Thus, studies on the genetic regulation of the NF-κB STN may
contribute toward understanding the physiology of senescence and the pathophysiology of
age-associated complex diseases.

In a current approach variously known as system- or systems-genetics it has been argued
that the incorporation of a systems biology perspective can greatly aid efforts to delineate
the genetic architecture underlying transcriptional regulatory networks (Galitski, 2004;
Schadt et al. 2005; Drake et al. 2006; Kadarmideen et al. 2006; Sieberts and Schadt 2007;
Werner 2007; Ayroles et al. 2009; Mackay et al. 2009). Here we employ these methods to
study the genetic regulation of the NF-κB STN.

We first derive a network of gene expression variables intrinsic to the NF-κB STN using
Ingenuity Pathway Analysis (IPA, http://www.ingenuity.com) methods. We then perform
principal components factor analysis (PCFA) to identify sets of highly correlated gene
expression variables within the network, where we take the factors identified to be
multivariate proxies of functional modules at the molecular level. This is similar to methods
that exploit the inherent correlation structure in a transcriptional profiling array to detect
modules within a system (Han et al. 2004; Ihmels et al. 2004; Xia et al. 2006; Xue et al.
2007; Zhan 2007; Han 2008; Kutalik et al. 2008; Wang et al. 2008). Lastly, using statistical
genetic variance component methods (Blangero et al., 2001; Almasy and Blangero, 2008,
2010), we seek to identify and localize quantitative trait loci (QTLs).

2. Materials and Methods
2.1. Study Population

Our analyses were performed on data from the San Antonio Family Heart Study (SAFHS),
which is a study of the genetic determinants of cardiovascular disease (CVD) in Mexican
American families of San Antonio, Texas. The SAFHS population is comprised of large
Mexican American extended families randomly ascertained with respect to CVD (MacCluer
et al. 1999). The SAFHS protocols were approved by the Institutional Review Board at the
University of Texas Health Science Center at San Antonio and all study participants
provided written informed consent.

We note that the crude prevalence of CVD in our sample is 19 %, and so the extent to which
our findings are applicable to “normal aging” is somewhat debatable. However, it is widely
held that aging and age-associated complex diseases such as CVD have common underlying
causes such as inflammation and oxidative stress (Chung et al. 2000, 2001, 2002, 2006,
2009; Brüünsgaard et al., 2001, 2003; Yu & Chung, 2006; Salminen et al. 2008a&b).
Moreover, as detailed in more theoretical work by our group (Blangero et al., 2000, 2001;
Almasy and Blangero, 2008), our statistical genetic approach is optimal for the detection of
causal genes for complex diseases.

2.2. Genotype Data
Fasting blood samples were obtained from study participants at a clinic exam and
transported daily to the Southwest Foundation for Biomedical Research (SFBR), San
Antonio, Texas. Plasma and serum were isolated by low-speed centrifugation and the buffy
coat was harvested for DNA extraction. DNA extracted from lymphocytes was used in
polymerase chain reactions (PCRs) for the amplification of individual DNA (N = 1339) at
432 dinucleotide repeat microsatellite loci (STRs), spaced approximately 10 centiMorgan
(cM) intervals apart across the 22 autosomes, with fluorescently-labeled primers from the
MapPairs Human Screening set, versions 6 and 8 (Research Genetics, Hunstsville, AL).
PCRs were performed separately according to manufacturer specifications in Applied
Biosystems 9700 thermocyclers (Applied Biosystems, Foster City, CA). The products of
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separate PCRs, for each individual, were pooled using the Robbins Hydra-96
Microdispenser, and a labeled size standard was added to each pool. The pooled PCR
products were loaded into an ABI PRISM 377 or 3100 Genetic Analyzer for laser-based
automated genotyping. The STRs and standards were detected and quantified, and genotypes
were scored using the Genotyper software package (Applied Biosystems).

Mistyping analyses were performed on the preliminary genotype marker data using
SimWalk2, following the recommendations of the program developers for accounting for
mistyping error (Sobel and Lange 1996; Sobel et al. 2002). Our overall rate of blanking
mistyped markers was 1.37%. These mistyping analyses allow investigators to account for
Mendelian errors and spurious double recombinants, both of which can severely reduce the
power of a linkage analysis if not accounted for (Sobel et al. 2002). On addressing mistyping
error, these genotype data were then used to compute maximum likelihood estimates of
allele frequencies in SOLAR (Almasy and Blangero 1998). Empirical estimates of identity-
by-descent (IBD) allele sharing at points throughout the genome for every relative pair were
computed using the Loki package (Heath 1997). The multipoint IBD estimates are required
under our variance components modeling approach. The Simwalk II and Loki programs both
require chromosomal maps. We used the set of high-resolution chromosomal maps provided
by the research group at deCODE genetics, Reykjavik, Iceland, which are available online
as a supplemental table to the primary article (Kong et al. 2002).

2.3. Microarray Gene Expression Data
2.3.1. Expression profiling—The expression profiling methodology is described, in
detail, in Göring et al. (2007). In brief, frozen lymphocyte samples were available from
1,280 individuals, collected during their first clinic visit between 1991 and 1995, after an
overnight fast, in EDTA tubes. Lymphocytes were isolated from a 10ml sample using
Histopaque (Sigma Chemical Co., St. Louis, MO), following the suggested protocol of the
manufacturer, washed, and stored in a freeze media in liquid nitrogen.

Total RNA was isolated using a modified procedure of the QIAGEN RNeasy® 96 protocol
for isolation of total RNA from animal cells using spin technology (QIAGEN Inc., Valencia,
CA), and a total of 500ng total RNA dried down and stored at −20°C. Anti-sense RNA
(aRNA) was synthesized, amplified and purified using the Ambion MessageAmp II
Amplification Kit (Ambion, Austin, TX) following the Illumina Sentrix Array Matrix 96-
well expression protocol (Illumina Inc., San Diego, CA). Synthesized cDNA samples were
purified using QIAGEN’s QIAquick 96 PCR purification supplementary protocol for spin
technology (QIAGEN document QQ01.doc, October 2001). Biotin-16-UTP (Roche,
Germany) labeled aRNA was synthesized using Ambion’s proprietary MEGAscript® in
vitro transcription (IVT) technology and T7 RNA Polymerase. Purification of aRNA
samples was performed using QIAGEN’s RNeasy® 96 protocol for RNA cleanup using spin
technology, and a total of 1.5μg aRNA was dried and stored at −20°C prior to sample
hybridization.

Hybridization of aRNA to Illumina® Sentrix® Human Whole Genome (WG-6) Series I
BeadChips and subsequent washing, blocking and detecting were performed using
Illumina’s BeadChip 6×2 protocol. Samples were scanned on the Illumina® BeadArray™

500GX Reader using Illumina® BeadScan image data acquisition software (version
2.3.0.13). Illumina® BeadStudio software (version 1.5.0.34) was used for preliminary data
analysis, with a standard background normalization, to generate an output file for statistical
analysis. In total we interrogated 47,289 unique transcripts: 22,151 probes (47%) are
targeted at Reference Sequence (RefSeq) transcripts, and the remaining 25,128 probes
(53%) correspond to other, generally less well characterized transcripts (including predicted
genes).
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2.3.2. Identification and standardization of expressed transcripts—In order to
identify transcripts that exhibited sufficient quantitative expression in lymphocytes, the
distribution of expression values for a given transcript was compared to the distribution of
the expression values of the controls that are imbedded in each chip. For each transcript, we
performed a χ2 “tail” test of whether there was a significant excess of samples with values
above the 95th percentile of the control null distribution. This test was used because it
allows detection of even those transcripts that are clearly present above baseline levels in
only a subset of individuals, while not being detectable above baseline levels in most
individuals. Using a false discovery rate of 0.05, we identified 20,413 transcripts that
exhibited significant expression by this criterion.

To minimize effects due to RNA quantity and quality we performed within and across
sample normalization. This conservative procedure results in normalized expression
phenotypes that are comparable between individuals and across transcripts.

2.4. Network Analysis Methods
We used Ingenuity Pathways Analysis (Ingenuity® Systems, www.ingenuity.com) to
identify published gene/gene product interactions between NF-κB and the genes detected in
our transcriptional profiling. Our genes of interest were overlaid onto a global molecular
network developed from the literature on reported connectivity recorded in the Ingenuity
Pathways Knowledge Base. This allows the generation of gene networks, and graphical
representation of the molecular relationships between genes/gene products.

2.5. Principal Component Factor Analysis (PCFA)
To aid in the discovery of QTLs controlling gene expression networks, we use the approach
of PCFA, which has been widely used in genetic studies of the metabolic syndrome (Arya et
al. 2002; Liu et al. 2003; North et al. 2003, 2005; Cai et al. 2004; Lin et al. 2005; Edwards et
al. 2008). We note also that PC analysis (PCA), which is the first step of PCFA, is widely
used in gene expression analyses, usually in combination with other statistical approaches
(Selaru et al. 2004; Wang and Gehan 2005; Roden et al. 2006; Wang et al. 2007; Ringnér
2008). Moreover, PCA has been used to identify functional modules of gene expression
variables that manifest at the molecular level (Alter et al. 2000; Selaru et al. 2004; Janes and
Yaffe 2006; Roden et al. 2006; Alter 2007). Generally, PCFA is a data-reduction technique
that produces representative subsets in multivariate space—termed factors—of the original
set of variables that explain a disproportionately higher portion of the total variance in the
data. PCFA first uses PCA to find “raw” factors, and then uses a factor rotation procedure,
such as varimax rotation, to produce factors that may be easier to interpret (Dunteman 1989;
Kachigan 1991; Manly 1994; Jolliffe 2002). Factors with eigenvalues >1 were retained for
subsequent analysis, and, to aid in factor interpretation, variables with factor loadings >|0.4|
were taken to be the defining variables of the factor (Edwards et al. 1994; Arya et al. 2002;
Stevens 2002; Cai et al. 2004; Lin et al. 2005).

2.6. Variance Components (VC) Models
Consider a data vector of N individuals, yN×1, which we assume follows the multivariate
normal distribution, and is well-described by the following linear model:

Eq. 1

where XN×k is a matrix of individual fixed effects (including a column of “1s” followed by
the covariate effects), βk×1 is a vector of the grand mean and (k−1) beta-coefficients, and
gN×1 and eN×1 are unobservable vectors of random genetic and environmental effects. The
model for the multivariate mean is given by:
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Eq. 2

Eq. 2 where we have dropped the dimension subscripts for simplicity. Let the residuals
vector between the data and the mean vector be given as: Δ = y − Xβ. Assuming
independent genetic and environmental effects, the covariance matrix of the data vector,
denoted by Σ (of dimensions N × N), is modeled as:

Eq. 3

where the kinship matrix, Φ, and the identity matrix, I, partition the total variance into
shared genetic and random environmental variance components, respectively. We note that
y, φxz, and δxz are the scalar versions of y, Φ, and I. From this equation, we get the polygenic

heritability, given as .

To model a QTL effect, we add it to the linear model in Equation 1 as an unobservable
random effect, and its variance component to the model for the covariance matrix in
Equation 3 as follows:

Eq. 4

where  is the QTL variance, and Φ ̂ is the matrix of pair-wise estimates of identity-by-
descent at a given point or locus in the genome based on flanking marker information.

2.7. Inferential Procedures: Likelihood ratio and LOD score
Our inferences are either directly formed from the results of the likelihood ratio test (LRT)
or indirectly in that, under the VC approach, the LOD score is derived as the ratio of the
LRT statistic, denoted by Λ, to twice ln(10). Let the parameters under the full polygenic

model (Equations 1–3) be collected in a column vector: . Under this
model, the likelihood function of the parameter vector conditional on the data is then given
by:

Eq. 5

Using this equation, maximum likelihood estimates are computed in SOLAR (Almasy and
Blangero, 1996), and Λ is given as minus twice the difference of likelihoods between the
null and alternative hypotheses:

Eq. 6

where θH0 and θHA represent the parameter vectors under the null (H0) and alternative (HA)
hypotheses, respectively. In general, Λ is distributed as a chi-square random variable with
degrees of freedom (d.f.) given by the difference in the number of estimated parameters
under the null and alternative hypotheses. For variances and/or standard deviations,
however, the null hypothesis is on a boundary of the parameter space, in which case Λ has
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been shown to be distributed as a 50:50 mixture of point-mass at 0 and a chi-square variate
with 1 d.f (Self and Liang 1987).

Inferences for multipoint genome-wide linkage scans are traditionally made on the basis of
LOD scores. To provide a conservative corrective for the number of tests under a typical
genome-wide linkage scan, a LOD score greater than or equal to 3.0 is taken to indicate
significance of linkage (MacCluer et al. 1999; Ott 1999).

3. Results
3.1. Network Analysis

We used IPA to construct a network based solely on evidence of a first degree relationship
(no intermediary gene/product) between each of the 20,413 transcripts that had detectable
expression levels and NF-κB. We identified 60 genes with published first-degree gene/gene
product interactions with NF-κB in our dataset, as shown in Figure 1.

3.2. Pathway Analysis
The core of the NF-κB STN is made up five proteins of the Rel family, RelA (p65), RelB, c-
Rel, NF-κB1 (p50/p105), and NF-κB2 (p52/p100), which form homodimers or heterodimers
that are present in bound form in the cytoplasm, but upon activation may translocate to the
nucleus to stimulate transcription (Ghosh and Karin 2002; Li and Verma 2002; Hayden et al.
2006; Xiao et al. 2006; Hoffmann and Baltimore 2006; Vallabhapurapu and Karin 2009). In
the cytoplasm, the NF-κB core proteins are bound by inhibitors of NF-κB (IκB), and are
activated by phosphorylation of IκB by IκB kinases (IKK) (Ghosh and Karin 2002; Liou
2002; Hoffmann and Baltimore 2006; Xiao et al. 2006; Perkins 2007; Vallabhapurapu and
Karin 2009). Once activated by IKK mediated phosphorylation of the NF-κB/IκB complex,
NF-κB can take either of two main pathways, the canonical or classical pathway and the
noncanonical or alternative pathway (Bonizzi and Karin 2003; Hayden et al. 2006; Xiao et
al. 2006; Vallabhapurapu and Karin 2009).

Using information available in the literature, we limited further analyses to a subset of the
NF-κB STN to 19 transcripts. First of all, we selected a core component comprised of the
transcripts central to the NF-κB STN, which included four of the five core proteins, namely
Rel, RelA, RelB, and NF-κB1, one inhibitor, namely IκBα, and two members of the
activator kinases, namely IKKβ and IKKγ. We also included tumor necrosis factor α (TNFα)
because of its ubiquitous involvement in upregulating inflammatory pathways, mainly
through the NF-κB STN, in relation to senescence (Brüünsgaard et al. 2001; Brüünsgaard
and Pedersen 2003; Krabbe et al. 2004; Sonnenberg et al. 2004; Tedgui and Mallat 2006).
An additional 12 transcripts were selected because they were either a cell-surface receptor
protein or an important adaptor protein that interacts with a receptor protein. These include
toll-like receptors 3 and 4 (TLR3 and TLR4), three members of the TNF receptor
superfamily (TNFRSF), namely TNFRSF1A, TNFRSF6, TNFRSF14, two TNF receptor
associated factors (TRAF), namely TRAF2 and TRAF5, two transcripts of TNF receptor 1
associated death domain protein (TRADD), the adaptor protein myeloid differentiation
factor-88 (MyD88), and two transcripts of toll/interleukin-1 receptor (TIR) domain-
containing adaptor inducing interferon-β (TRIF).

3.2. Principal Components Factor Analysis (PCFA)
Currently, TLR signaling pathways are classified as being either MyD88-dependent or
MyD88-independent/TRIF-dependent (Akira et al. 2001; Heine and Lien 2003; Akira and
Takeda 2004; West et al. 2006; Atkinson 2008). Therefore, we decided to perform PCFA on
the 19 transcripts named above, but also on two subsets, one excluding just the MyD88
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transcript, and the other excluding the two TRIF transcripts. We call the set of 19 transcripts
the “All-Transcripts” (AT) set, the subset excluding MyD88 the “TRIF-dependent” (TD) set,
and the subset excluding the TRIF transcripts the “MyD88-dependent” (MD) set. The latter
two variable sets were considered in order to take advantage of the fact that PCFA finds
factors that are made up of variables that are correlated within-factor but are orthogonal
across factors, which would potentially accentuate effects that are truly independent of either
MyD88 or TRIF, respectively. Conversely, the AT set was considered because of the
potential for synergistic effects involving both MyD88 and TRIF.

For the AT set, eigenvalues and percent variance explained for all factors with an eigenvalue
greater than 1 are presented in Table 1. The factor loadings after varimax rotation for the AT
set are presented in Table 2. Similarly, for the TD and MD sets, the eigenvalues and percent
variance explained for all factors with an eigenvalue greater than 1 and the factor loadings
are respectively presented in Tables 3–6.

3.3. Heritability and Linkage
In the ensuing, factors will have AT, TD, or MD as a suffix to indicate which set they were
derived from. The heritability for each factor across the three variable sets are reported in
Table 7. All of the factors were significantly heritable. The heritabilities ranged from a low
of 19% to a high of 52%.

The genome-wide maximum LOD scores for all factors are reported in Table 8. Each
variable set gave rise to at least one factor with a LOD score greater than 3, two on
chromosome 15 at 15q12 and 15q22.2, and another two on chromosome 17 at 17p13.3, and
17q25.3 (Table 8; Figs. 2&3). We also found several suggestive signals (2 < LOD score < 3)
at 1q32.1, 1q41, 2q34, 3q23, and 7p15.3 (Table 8). We do not believe that the three
suggestive signals on chromosomes 15 and 17 are distinct from the nearby locations
reported just above at 15q12, 15q22.2, and 17p13.3.

4. Discussion
It has long been thought that NF-κB and its associated STN plays a major role in aging
(Vellanoweth et al. 1994; Supakar et al., 1995; Roy et al. 1996, 2002; Roy 1997; Chung et
al. 2000, 2001, 2002, 2006, 2009; Lavrovsky et al. 2000; Giardina and Hubbard, 2002;
Gosselin and Abbadie, 2003; Herbein et al. 2006; Yu & Chung, 2006; Salminen et al.
2008a&b). We have dubbed this work the theory of NF-κB-dependent senescence. An
attractive characteristic of the theory of NF-κB-dependent senescence is the elegance of
mechanistically unifying it with at least four other prominent theories of aging, namely the
oxidative stress, calorie restriction, inflammation, and immunological theories, and with a
related theory on the etiology of the metabolic syndrome, namely the macronutrient intake
theory of Dandona and colleagues (Dandona et al. 2004a,b,c, 2005).

The canonical and alternative signaling pathways of the NF-κB STN are set in train by
extracellular signals and stimuli, such as proinflammatory cytokines and oxidative stress
(Xiao 2004; Perkins 2007). Acting independently and/or in concert, the two pathways
regulate the innate and adaptive arms of the immune response, including inflammation and
cell-mediated pathways, respectively (Li and Verma 2002; Liou 2002; Bonizzi and Karin
2003; Liang et al. 2004; Hayden et al. 2006; Xiao et al. 2006; Vallabhapurapu and Karin
2009). In related work, it has been shown that by directly modulating oxidative stress,
calorie restriction indirectly regulates NF-kappa B expression (Kim et al. 2002a&b, 2008;
Jung et al. 2009). This is consistent with demonstrations that macronutrient intake promotes
oxidative stress, which in turn upregulates the NF-κB STN (Dandona et al. 2004a,b,c, 2005).
Thus, the NF-κB STN constitutes a critical nexus for linking calorie restriction,
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macronutrient intake, and oxidative stress to inflammatory and adaptive immunity pathways
in relation to senescence (Figure 4).

To better understand the genetic regulation of the NF-κB STN, and, by extension the genetic
architecture underlying NF-κB-dependent senescence, we used a comprehensive systems
genetics approach. First, we constructed a gene expression network representative of the
NF-κB STN. Then, with the goal of concentrating our efforts on the most important sources
of variation, we used a PCFA approach on a subset of the NF-κB STN. Finally, we analyzed
the factors so derived using a statistical genetic VC approach. We found that these factors
are all significantly heritable, and, further, we found strong evidence of four QTLS at
chromosomes 15q12, 15q22.2, 17p13.3, and 17q25.3, and suggestive evidence of potential
QTLs on chromosomes 1, 2, 3, and 7.

To facilitate discussion of these QTLs in relation to the PCFA results, we abbreviate the
factors by “F” followed by the factor number, and then by the AT, TD, or MD abbreviations
as appropriate. For example, factor 5 under the AT set is abbreviated as F5AT. We also
restrict our discussion to our strongest results (i.e. QTLs with a LOD score > 3). We found
that five PCFA factors gave rise to the 4 main linkage signals on chromosomes 15 and 17.
The composite variables F7AT and F1TD have the same three NF-κB STN variables loading
onto the factor, namely RELB, TRAF5, and TRIF, and as expected they give rise to what
appears to be the same linkage signals. Similarly, F5AT and F5TD also have the same NF-
κB STN variables loading onto the factor, namely REL and TRADD, and their linkage
signals on chromosomes 15 and 17 are similar. The maximum LOD scores for F5AT and
F5TD are 3.03 at chromosome 15q12 and 3.25 at chromosome 17q25.3, respectively, and
suggestive LODS scores for the same traits are 2.21 at chromosome 17q25.3 and 2.74 at
chromosome 15q12, respectively. Given that MyD88 is the main difference between the AT
and TD sets, it may be that the putative QTL on chromosome 15q12 is relatively more
important in the MD TLR signaling pathway and that the putative QTL on chromosome
17q25.3 is relatively more important in the TD TLR signaling pathway. F5MD had only one
NF-κB STN variable loading onto the factor, namely NFKB1. We note that none of the
cytogenetic locations of the putative QTLs coincide with the cytogenetic locations of the
constituent genes in the relevant factors. Thus, we have identified what appear to be trans-
QTLs influencing three of the five main core proteins of the NF-κB STN, namely Rel, RelB
and NFKB1, and three other important signaling proteins, namely TRADD, TRIF, and
TRAF5.

As reported in Schadt et al. (2005) and discussed in Sieberts and Schadt (2007), trans-QTLs
can play prominent roles as drivers of complex disease causation if they are centrally located
in a network known to be important in complex disease. Their group was able to identify
and functionally validate three candidate genes as causal for obesity, and these genes were
first identified as trans-QTLs centrally located in a gene expression network known to be
important in obesity. Regarding our situation, the work of Schadt and colleagues is
encouraging because our trans-QTLs are centrally located within the NF-κB STN.

The work reported herein is part of an ongoing investigation of the genetic regulation of the
NF-κB STN by way of a systems genetics approach. While our findings regarding the
heritable factors of the NF-κB STN and their associated trans-QTLs are important, we
emphasize that together they constitute what is only a first step in the process of gene
discovery. We are currently pursuing more fine-detail genetic analyses by examining the
transcripts and single nucleotide polymorphisms within the 1-LOD intervals of the QTLs
identified here.
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Highlights

• Gene expression network of the nuclear factor kappa B (NF-κB) signaling
network.

• Principal components factor analysis used to derive composite traits.

• Identified and localized quantitative trait loci (QTL) underlying the NF-κB
signaling network.
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Figure 1.
Gene expression network of the heritable transcripts in the nuclear factor kappa B signaling
pathway.
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Figure 2.
LOD plots on chromosome 15 for F5AT (black), F1TD (red), and F7AT (blue).
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Figure 3.
LOD plots on chromosome 17 for F5TD (black), and F5MD (blue).
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Figure 4.
Schematic diagram of the nuclear factor kappa B signal transduction network in relation to
other physiological processes important in senescence and age-associated disease.
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