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Empirical studies give increased support for the hypothesis that the sporadic form of
cancer is an age-related metabolic disease characterized by: (a) metabolic dysregula-
tion with random abnormalities in mitochondrial DNA, and (b) metabolic alteration
– the compensatory upregulation of glycolysis to offset mitochondrial impairments.
This paper appeals to the theory of Quantum Metabolism and the principles of natural
selection to formulate a conceptual framework for a quantitative analysis of the origin
and proliferation of the disease. Quantum Metabolism, an analytical theory of energy
transduction in cells inspired by the methodology of the quantum theory of solids,
elucidates the molecular basis for differences in metabolic rate between normal cells,
utilizing predominantly oxidative phosphorylation, and cancer cells utilizing pre-
dominantly glycolysis. The principles of natural selection account for the outcome of
competition between the two classes of cells. Quantum Metabolism and the principles
of natural selection give an ontogenic and evolutionary rationale for cancer prolifera-
tion and furnish a framework for effective therapeutic strategies to impede the spread
of the disease. Copyright 2012 Author(s). This article is distributed under a Creative
Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.3697850]

I. INTRODUCTION

Cancer is a group of some 200 diseases that involve a variety of changes in cell structure,
morphology, and physiology. In an important review, Hanahan and Weinberg1 enumerated several
alterations in cellular dynamics and physiology that underlie the cancer phenotype. In our view, the
three most critical features of cancer cells are

1. Self-sufficiency in growth signals and insensitivity to inhibitory signals,
2. Evasion of programmed cell death,
3. Limitless replicative potential with a potential for the invasion of other organs.

In addition to these demographic and physiological changes, most cancer cells utilize aerobic
glycolysis irrespective of their tissue of origin. The alteration from oxidative phosphorylation to
glycolysis – called the Warburg effect – is quasi-universal and has now become a diagnostic tool for
cancer detection.

The upregulation of glycolysis in cancer cells has damaging effects on the mitochondrial
genome, which in turn can lead to metabolic dysregulation and alterations in cellular dynamics. The
problem, which now emerges can be stated as follows. Is the upregulation of glycolysis, the primary
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cause of cancer, as Warburg contended, or as is currently debated,2, 3 is cancer the result of specific
nuclear gene mutation or chromosomal abnormality?

A resolution of this problem would have important implications regarding therapeutic strate-
gies for the disease. Genomic and chromosomal abnormalities as the primary causes would entail
radiation and chemotherapy as the dominant means of managing the disease. However, metabolic
dysregulation as the primary cause4–6 would imply both diagnostic and therapeutic strategies based
primarily on metabolic intervention, such as monitoring and normalizing glycolytic and oxidative
phosphorylation activity in cancer and in normal cells.

The genomic perspective has dominated both research and management strategies of cancer. This
dominance prevails in spite of the fact that the genomic paradigm does not readily accommodate
certain critical observations concerning the incidence of the disease. The three most pertinent
observations, which are inconsistent with the genomic model, can be classified under the following
rubrics:

1. Ontogenetic: Cancer incidence is tissue specific; epithelial cells are more cancer prone than
mesenchymal cells, and incidence and severity varies markedly from one organ to another.7

2. Epidemiological: Cancer incidence increases exponentially with age and abates with age at
advanced ages.8

3. Phylogenetic: Cancer is widespread among multicellular organisms, but cancer incidence is
species dependent. The number of genetic events necessary to induce malignant transformation
is fewer in mice than in humans. Spontaneous regression of tumors is common in mice but
rare in humans.9

Genomic instability, i.e. mutations in the nuclear genes, as the primary cause of cancer can also
be questioned by appealing to mutagenetic data. Most cancer cells express many and different types
of nuclear gene mutations. However, the large number and variety of pathogenic mutations are not
consistent with the low mutation rate of most nuclear genes. Epidemiological studies indicate that
cancer causing gene mutations are rare and the vast majority of cases are sporadic in origin.6

The difficulties in reconciling these classes of observations with the genomic model have
stimulated a renewed interest in the metabolic hypothesis proposed originally by Warburg.10, 11 A
new variety of studies now furnish strong evidence to indicate defective energy metabolism due to
mitochondrial dysfunction12 as characterizing nearly all sporadic cancers irrespective of cellular or
tissue origin. The alteration in metabolic activity, from oxidative phosphorylation to glycolysis to
accommodate this dysfunction, is the basis for a new class of analytic models of the origin of cancer
cells.5 These models invoke metabolic instability as the primary cause of cancer. While a shift to
glycolytic metabolism in terms of the energy production may only be on the order of 20% of less, in
view of the vastly lower efficiency of the glycolytic pathway (almost an order of magnitude lower than
oxidative phosphorylation), the consumption of glucose is actually predominantly directed towards
glycolysis, which leads to an increased demand on nutritional resources with tumor progression.

In view of these considerations, the origin and proliferation of cancer can now be seen to be
driven by the following sequence of events:

1. Metabolic instability: Impairment of mitochondrial function with a resulting damage to the
respiratory mechanism.

2. Metabolic alteration: The upregulation of glycolysis – an essential compensatory mechanism
of energy production that functions to ensure cell viability by stabilizing the amount of ATP
produced.

3. Natural Selection: The competition between normal cells utilizing predominantly oxidative
phosphorylation, and tumor cells utilizing predominantly glycolysis.
These three events constitute the driving force which, we believe, ultimately leads to what was
originally considered the primary cause, namely

4. Genomic instability: The increased vulnerability of tumor suppressor genes due to mitochon-
drial impairments.

This sequence of events underscores metabolic instability as the principal cause of cancer and
genomic instability as a consequence. The genomic abnormalities observed can now considered to
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be the result of mitochondrial dysregulation that increases the production of reactive oxygen species
and accelerates aberrant cell-cell signaling.

In this model, the metabolic instability which induces respiratory damage is due to abnormalities
in mitochondrial DNA, the electron transport chain, or in the structure of the phospholipids that form
the inner mitochondrial membrane. Cancer is thus seen as primarily an age-related, multi-stage13

metabolic disease14 whose origin lies in the cumulative effects of molecular instabilities in the
mitochondria and the cytosol.5, 6

The phylogenetic, ontogenetic and epidemiological features, we have noted are consistent
with this metabolic perspective. The species-dependence of cancer incidence can be illustrated
by contrasting the ecological and evolutionary history of humans and mice;15 humans and mice
have experienced different ecological constraints throughout their evolutionary history. Mice are
opportunistic species characterized by large fluctuations in resource abundance. Humans are an
equilibrium species whose vital resources are limited and showing small variation in abundance.
The evolutionary models16 predict that opportunistic species evolve to states defined by weak
demographic stability, with population numbers highly sensitive to random perturbations in their
individual birth and death rates. Equilibrium species evolve to states of strong demographic stability
with population numbers relatively insensitive to random perturbations in the individual birth and
death rates. The positive correlation between demographic stability and metabolism entails that
opportunistic species such as mice will have metabolic networks which are highly vulnerable to the
effects of abnormalities in mitochondrial DNA, whereas equilibrium species such as humans, will
have metabolic networks which are robust and resilient against such perturbations. The comparative
studies of the rate of mitochondrial mutagenesis in mice and humans17 are consistent with these
predictions. The higher metabolic stability of human cells in comparison with murine cells entails
that the number of genetic events necessary to induce malignant tumors will be greater in humans
than in mice. This concurs with the power law dependence, which is close to a sixth power of age
for most types of cancers,7 of the incidence of cancer as a function of age based on epidemiological
data for mice and humans,1 respectively.

The tissue dependence of cancer prevalence is demonstrated by differences in the metabolic
stability of mesenchymal cells and epithelial cells and the tendency of laboratory mice to develop
cancer in cells of mesenchymal tissues such as lymphomas and sarcomas, rather than in cells of
epithelial origin leading to carcinomas. The exponential increase in cancer incidence with age and
the stabilization of this incidence at advanced ages is consistent with predictions based on the
evolutionary dynamics and metabolic theory of aging. This theory predicts that the mortality rate of
equilibrium species such as humans will increase exponentially with age and abate at advance ages,
generating what is now called the mortality plateau.

The claims we have just described regarding the metabolic instability hypothesis for the origin
of cancer are primarily phenomenological. However, there exists analytic support for the claim that
the sporadic form of cancer is an age-related metabolic disease. This support derives from formal
and analytic ontogenic and evolutionary models of cells and organisms.

Ontogenetic processes have been analyzed in a class of models called Quantum Metabolism
– an analytic model of energy transduction in cells.18, 19 This formalism exploits the methodology
of the quantum theory of solids to derive analytic expressions for the cellular metabolic rate in
terms of cell size. These expressions show that metabolic rate is highly dependent on the mode
of coupling between the electron transport chain and ADP phosphorylation, and predicts different
parameter values for cells utilizing oxidative phosphorylation and cells utilizing glycolysis. Quantum
Metabolism thus provides an analytic framework for distinguishing between metabolic rate in normal
cells and cancer cells. The theory represents a cornerstone for the analysis of the origin of cancer
cells.5

The proliferation of cancer cells has been analyzed in terms of a class of models called direc-
tionality theory – an analytic study of genotype and phenotype changes in cellular populations under
the forces of mutation and natural selection.20 The main concept in directionality theory is evolu-
tionary entropy, a measure of the diversity of the pathways of energy flow within individual cells
in a replicating population. The demographic parameter evolutionary entropy predicts the outcome
of competition between incumbent populations and the variant that arises due to mutations. It is the



011101-4 Davies, Demetrius, and Tuszynski AIP Advances 2, 011101 (2012)

basis for an entropic selection principle which specifies the conditions under which one cell type
will replace another due to natural selection. The concept thus plays a central role in the analysis of
conditions which evolve the proliferation of cancer cells which are in competition with normal cells
for the existing space and nutritional resources.

The main objective of this article is to delineate various diagnostic, preventive and therapeutic
strategies for cancer, which emerge from the proposition that sporadic cancer is intrinsically a
metabolic disease. These strategies are intimately linked to analytical arguments based on Quantum
Metabolism and directionality theory. In view of this, we will give a brief account of the analytic
basis, which underlies these theories, and then discuss the cancer therapeutic strategies, which derive
from the applications of these theories to the study of cancer.

This article is organized as follows: Section II gives a brief overview of Quantum Metabolism.
Section III describes the entropic selection principle. In Section IV we show how the integration of
these two models suggests several classes of metabolic interventions, which could play a critical role
in cancer therapy. The nature of these interventions is intimately linked to the Quantum Metabolism
theory. This theory gives explicit expression for the metabolic rate of normal and cancer cells. These
expressions suggest how the metabolic rate can be modified in order to alter the selective advantage
of normal cells in comparison to cancer cells, thereby arresting the transition towards malignancy.
Section V discusses therapeutic strategies.

II. QUANTUM METABOLISM

Energy transfer in material solids is driven primarily by differences in intensive thermodynamic
quantities such as pressure and temperature. Empirical studies show that temperature and the specific
heat of solids satisfy certain empirical relations – as embodied for example in the Dulong and Petit
law. The quantum theory of solids, as developed by Einstein and later by Debye, was proposed to
explain these empirical relations. The crucial observation in these models was the consideration of
the heat capacity as associated with the vibrations of atoms in a crystalline solid.21

However, living organisms are essentially isothermal. There is very little difference in tempera-
ture between different parts of a cell. On the other hand, energy flow in living organisms is mediated
by differences in the turnover time of various metabolic processes in the cell, which occur in cyclical
fashion. Empirical studies that go back to Kleiber in 196122 have shown that the cycle time of these
metabolic processes is related to the metabolic rate, that is the rate at which the organism transforms
the free energy of nutrients into metabolic work, maintenance of constant temperature and structural
and functional organization of the cells. Quantum Metabolism18, 19 exploits the methodology of the
quantum theory of solids to provide a molecular level explanation of these empirical relations. This
molecular explanation drives the derivation of the new rules relating metabolic rate and body size.

A. Energy transduction in material solids: Material oscillation

Einstein and Debye (see for example Ashcroft and Mermin21) both considered the heat capacity
as associated with the harmonic vibrations of atoms in a crystalline solid. The vibrations were treated
according to quantum theory and satisfied the following tenet:

Quantization principle for material oscillation: The energy stored by an oscillator with fre-
quency ω can only be an integral multiple of a fundamental energy quantum hω:

En = nhω, n = 1, 2, 3, ... (1)

Here, h is Planck’s constant. Einstein’s model was based on the assumption that the vibrational
motions of the various atoms are decoupled from one another and all atoms in the crystal vibrate
with the same frequency. The model proposed by Debye, which proved to be more consistent with
empirical observations, assumed that the atoms in the solid execute coupled vibrations about the
fixed lattice site leading to the propagation of waves (phonons) in the solid and the frequencies of
these vibrations span a range of values from zero to a maximum (Debye) frequency.
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TABLE I. The correspondence between thermodynamic variables and bioenergetic quantities.

Thermodynamic variables Bioenergetic quantities

Temperature (K) Metabolic cycle time (s)
Specific heat (J kg-1 K-1) Metabolic rate (J kg-1 s-1)
Gibbs-Boltzmann entropy (J K-1) Entropy production rate (J K-1 s-1)

B. Energy transduction in cells: Enzymatic oscillators

The production of ATP, the energy currency of living organisms is mediated by the coupling of
two molecular chains:23

1. The redox chain, which describes the transfer of electrons between redox centers within the
electron-transport chain.

2. The ATP-ase motor, which is involved in the phosphorylation of ADP to ATP.

There are two distinct mechanisms by which these two events are coupled: oxidative phospho-
rylation, which involves an electrical process, and substrate phosphorylation, which implicates a
purely chemical process. The transfer of electrons between redox centers is described by a cyclic
scalar process, which induces a vectorial process characterized by a net movement of protons from
one molecular center to another. The transit time of this cyclic process determines the total metabolic
flux, that is, the number of proton charges released by the redox reactions. This transit time, which
we call the metabolic cycle time, denoted τ , will play a fundamental role here. In oxidative phospho-
rylation, which occurs in the mitochondria, the electron transport between redox centers is coupled
to the outward pumping of protons across the mitochondrial membrane thus generating an electro-
chemical gradient, called the proton motive force, �p. Substrate phosphorylation, which is localized
within the cytosol is driven by a set of enzymes which couple ADP phosphorylation to the electron
transport chain.

The molecular dynamics model proposed to investigate this coupling by electrical and chemical
means assumes that the energy generated by the redox reactions can be stored in terms of coherent
vibrational modes of enzymatic oscillators embedded in the cellular organelles.

Quantum Metabolism rests on the notion that the enzymatic oscillations in cellular organelles
and the material oscillators in crystalline solids can be analyzed in terms of the same mathematical
formalism used by Einstein and Debye in the quantum theory of solids. This realization is deduced
from a formal correspondence between the thermodynamic variables in physical systems, and the
metabolic quantities in biological processes. The principal variables in the quantum theory of solids
are the specific heat, the Gibbs-Boltzmann entropy and the absolute temperature T. The fundamental
unit of energy is given by E = kBT, the typical thermal energy per molecule.

The critical variables in the theory of quantum metabolism are the metabolic rate, the entropy
production rate and the mean cycle time, τ . This quantity describes the mean turnover time of the
redox reactions within the cellular organelles. The fundamental unit of energy is now given by E(τ )
= gτ . Here, the value assumed by g will depend on the mechanism, electrical or chemical, by which
the electron transport chain is coupled to ADP phosphorylation. The correspondence between the
thermodynamic variables and bioenergetic quantities is given in Table I.

Note that since physical systems are described here at thermodynamic equilibrium, their pa-
rameters involve thermodynamic variables. Biological systems operate far from thermodynamic
equilibrium (albeit close to steady states), hence their bioenergetic quantities involve fluxes, i.e.
rates of change of energetic values.

The analytical basis for this correspondence is the following tenet: The rate of energy production
in chemical reactions in cells satisfies a variational principle which is formally analogous to the
minimization of the free energy in equilibrium statistical physics.

The above tenet and the formal correspondence in Table I derive from a general variational
principle in the ergodic theory of dynamical systems; see Demetrius24 and Arnold et al..25

Quantum metabolism appeals to the following analogue of Planck’s quantization principle:
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Quantization principle for enzymatic oscillators: The metabolic energy stored by an enzymatic
oscillator with frequency ω is quantized according to the following rule:

En = nκω (2)

Here, κ is an analogue of Planck’s constant and we will refer to it as the biological Planck’s constant.
Quantization is due to integer ATP numbers being produced in the cell’s mitochondria and their
relatively low energy content comparable to physical quantum processes.26 This is discussed in
detail in a later section. In exploiting this quantization principle, the model appeals to two critical
assumptions analogous to those made by Debye in the study of material oscillators forming a lattice
of crystalline solids.

C. Enzymatic oscillators and cycle time

We introduced the term enzymatic oscillator since enzymes undergo electrochemical oscillations
about their fixed positions. These oscillations are generated by the metabolic energy associated
with the transfer of electrons between donor and acceptor pairs in the electron transfer chain in
mitochondria. A number of recent papers provided a description of cells27, 28 and mitochondria
as individual oscillators whose dynamics may obey collective, network properties in terms of
high-amplitude, self-sustained and synchronous oscillations of bioenergetic parameters under both
physiological and patho-physiological conditions.29 Since their power spectrum exhibits an exponent
vastly different from that for random behavior, a description of the metabolic activity involving
mitochondrial proteins involves coupled quantum oscillators of the Debye type.

Based on typical data for ion pumps in biological membranes, the range of values expected for
the cycle time τ is found to be between 10-6 s and 10-3 s.30–33 The energy generated per cycle, gτ ,
is on the order of 10-20 J which corresponds to the value of energy for the almost universal energy
currency in biological systems which is due to the hydrolysis of the ATP (or less frequently GTP)
molecule. ATP synthesis in a mitochondrion or a chloroplast requires approximately 60 kJ/mol of
energy delivered through electron transport reactions or absorption of photons, respectively. ATP
hydrolysis releases approximately 30 kJ/mol of free energy (dependent on the concentration and pH
values), which can be viewed as a biological energy unit or quantum. The human body requires the
production of its weight in ATP every day in order to function,34 which translates into 1021 ATP
molecules per second. Since there are on the order of 3.5 × 1013 cells in the human body and each
cell has on the order of 103 mitochondria, there are approximately 3 × 104 ATP production events
per mitochondrion per second. This involves a complex set of biochemical reactions called oxidative
phosphorylation whose net effect is a conversion of 1 molecule of glucose into 38 molecules ATP.
Consequently, the frequency of the oxidative phosphorylation reaction is approximately 1,000 Hz
for each complex or the characteristic time scale is 10-3 s as stated above.

Using the energy quantization identity E0 = κf and substituting the energy value for ATP
production with its characteristic frequency, we readily estimate the value of the biological equivalent
of Planck’s constant to be κ = 10-24 J/s which, when compared to the physical Planck’s constant h
= 6.6 × 10−34 J/s, gives a ratio of κ/h = 1.8 × 1011. This is a very large number but it may have a
simple explanation. While the physical Planck’s constant corresponds to a single atom and a single
quantum of energy taking it to a higher energy state, the biological constant corresponds to a single
energy-producing organelle, namely a mitochondrion. There are approximately 1.9 × 1014 atoms per
cell and approximately 1000 mitochondria per cell, which gives 1.9 × 1011 atoms per mitochondrial
“sphere of influence” within the cell. This means that an energy unit produced in a mitochondrion
may be imparted to any of these atoms in its vicinity. This number (1.9 × 1011) is reasonably close
to the value of κ/h=1.8 × 1011. The so–defined biological Planck constant does not necessarily
refer to quantum mechanical nature of the process (such as, e.g., the particle-wave duality) but to a
discrete form of biochemical energy and a formal analogy at the level of mathematical description
of metabolism as will be discussed below.

It is also worth briefly pointing out another physical aspect of cellular metabolism, namely
its collective character resulting in synchronized oscillations that propagate through biological
matter. Assuming that metabolic processes propagate in a wave-like fashion, and using the standard
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relationship between the wavelength λ, propagation velocity v, and frequency f, λ = v/f, with v on
the order of 1 μm/s and f = 1000 Hz, as stated above, we find that λ is on the order of 1 nm. This is
consistent with the value of proton displacement in electric fields of mitochondrial membranes.30, 31

D. Metabolic rate and body size

The fundamental variables in the theory of quantum metabolism are the metabolic rate, P, the
rate at which the cell transforms resource energy into cellular work, and the cycle time τ , the mean
turnover time of the metabolic processes in the cellular organelle. These two quantities, as shown by
Demetrius and Tuszynski,19 are analytically related by means of an expression formally analogous
to the relation between specific heat and temperature in the quantum theory of solids. We have
P ∼ τ d.

The meaning of the dimensionless parameter d, 0 < d < 3, is explained below. The total
metabolic flux generated by the enzymatic reactions depends on the geometric configuration of the
enzymes localized within the cellular matrix. The metabolic flux is related to N(r), the total number
of metabolites crossing a cell boundary of radius r per unit time, t. For systems where the enzymes
are localized in a plane within the cellular matrix, we have N(r) ∼ r2. In systems where the enzymes
are distributed uniformly within the cell, we have N(r) ∼ r3. In general, we introduce a simple scaling
relation between N and r:

N (r ) = ard (3)

where d, the effective dimensionality of the network, can be viewed as the number of degrees
of freedom of the enzymes embedded in the cellular matrix. In view of Eq. (3), we define the
dimensionality of the oscillator network, d, as

d = lim
r→∞

(
log N (r )

log r

)
. (4)

Clearly, the parameter d depends on the internal organization of the oscillator network. The above
arguments entail the following characterization of the dimensionality parameter. In the case of
mitochondria, d in most cases is expected to correspond to the Euclidean dimension D of the
embedding physical space (D = 1, 2, 3), since energy transfer across the membrane is by mass
transport.

The above relation between P and τ underpins the allometric rules relating metabolic rate
and body size for both unicellular and multicellular organisms. The derivation rests on the total
metabolic energy, U, generated by the metabolic processes and the following characterization in
terms of metabolic rate P = U/τ , and body size U = aW.

These considerations yield the allometric rule:

P = αW d/d+1 (5)

The proportionality constant α in Eq. (5) is given by α = cg where c is a numerical constant. The
characterization of g, as noted earlier, is conditional on the mode of coupling between the electron
transport chain and ADP phosphorylation.

Electrical coupling. When the mode of coupling is electrical, a situation which occurs when
energy production is largely by oxidative phosphorylation, the parameter g is determined by proton
transduction within and across the bio-membrane. The bioenergetic parameter, C, stands for proton
conductance and �p for the proton motive force are the critical variables. We have

C = Coexp(−�E/RT ). (6)

Here, �E is the activation energy and R is the gas constant. The proton gradient �p is given bythe
well-know formula in biophysics, namely

�p = �ψ − (2.3RT/F)�pH. (7)

where �	 is the membrane potential, and F denotes Faraday’s constant.
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Chemical coupling. When the mode of coupling is chemical, as in the case of substrate phos-
phorylation, the parameter g is determined by the reaction rates of the glycolytic enzymes and we
have

g′ = g0 exp(−�G/RT ). (8)

where �G is the activation free energy.
In both cases g has an Arrhenius form being proportional to exp(−β�E) where β =(RT)-1 as

has been determined empirically for a number of species.35

The relations Eq. (7) and Eq. (8) indicate that the metabolic rate of cells using oxidative
phosphorylation will be dependent on the bioenergetic parameters that characterize the mitochondrial
membrane; in cells utilizing glycolysis, the metabolic rate will be dependent on the activity of the
glycolytic enzymes. These differences between the two major mechanisms of metabolic energy
production will play an important role in our study of competition between the two classes of cells.

III. THE ENTROPIC PRINCIPLES OF SELECTION

Most normal cells utilize predominantly oxidative phosphorylation as a mechanism to generate
ATP. Most cancer cells utilize predominantly glycolysis. This altered metabolism, the upregulation
of glycolysis, is the strategy cells with impaired mitochondrial function (and/or driven by hypoxia)
adopted in order to obtain adequate ATP for their metabolic needs. The cells with up-regulated
glycolysis exhibit several of the recognized hallmarks of cancer cells. The proliferation of cancer
cells is therefore contingent on the outcome of competition between the cells with predominant
oxidative phosphorylation activity and the cells with up-regulated glycolysis.

Evolutionary entropy, as defined for a population of replicating cells, is given by

S = −
d∑

j=1

p j log p j . (9)

Here d is the number of different states of the cell cycle. The quantity pj describes the probability
that the “mother” of a random “daughter” cell is in the stage j of the cell cycle.

The quantity S describes the diversity of energy flow within the population and characterizes
the variability in the rate at which the cells pass through the various stages of the cell cycle. A
population in which all cell pass through the stages of the cell cycle at the same rate and with the
same phase – a synchronous population – has entropy zero. A population in which each cell passes
through the different phases of the cell cycle at different rates has positive entropy – an asynchronous
population. See Figure 1.

The entropic principle of selection is a set of rules that predicts the outcome of selection
between cells with different phenotypes. The principle asserts that the outcome of natural selection
is a stochastic process, which is contingent on the resource constraints – its abundance and its
diversity, and predicted by evolutionary entropy.

A. Evolutionary entropy as a measure of selective advantage

The dynamics of selection involving a resident population of size M, say a rare variant, is
dependent on the population size and the resource abundance, R. When resource abundance and
population size are both infinite, the outcome of selection is predicted by the population growth rate.
However, when resources are finite in abundance, and population size is finite, it was shown16 that
the outcome of selection is contingent on the resource abundance and its diversity and predicted
by the demographic parameter evolutionary entropy, a measure of diversity of energy flow in the
population.

The selective advantage, denoted s, in this class of models can be quantified by introducing the
function

s = −(� − γ /M)�S. (10)
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FIG. 1. A diagram of energy flows within populations of cells. (a) Synchronous population: In this model there is a unique
pathway of energy flow, hence S = 0. (b) Asynchronous population: In this model there are multiple pathways of energy flow
hence S > 0.

Here, �S = S* − S, where S and S* denote the evolutionary entropy of the incumbent (e.g. normal
cells) and variant (e.g. cancer cells) populations, respectively. The quantity �, the reproductive
potential, and γ , the demographic index, are statistical parameters, which depend on the age or stage
specific mortality and replication rates of the individual cells in the population. Here, � and γ have
units of inverse time. These parameters characterize certain measures of the resource constraints
and have been precisely defined and discussed elsewhere.20, 36 Briefly, the following two situations
may arise leading to the same outcome, where the variant population increases in frequency: (a) �

<0, γ >0, �S >0, and (b) � >0, γ <0, �S <0. If we let M tend to infinity, then the selective
advantage becomes: s = −� �S, and we have the corresponding conditions for the variant population
increasing in infrequency: (a) � <0, �S >0, and (b) � >0, �S <0.

The parameters � and γ are demographic but they characterize certain properties of the environ-
ment, namely its abundance and diversity as follows: (i) � <0, resources constant and limited, (ii) �

>0, resources vary in abundance, (iii) γ <0 resource with homogenous composition; a singular re-
source, and (iv) γ >0 resource with heterogenous composition, diverse resource. The mathematical
basis of � and γ is described elsewhere.20, 36

The term selective advantage describes the restrictions on the parameters �, γ and the demo-
graphic variable S, which determines the sign of s and hence the outcome of competition between
the two types. When s > 0, the variant type X* will increase in frequency and displace the resident;
when s < 0, the variant type, initially rare, will become extinct with a certain probability dependent
on the population size of the resident.

The expression for s given by Eq. (10) furnishes a set of conditions on resource abundance
described by �, and diversity characterized by γ , which determines the success or failure of the
variant type X* in the competition for resources. This set of criteria is called the entropic principle
of selection. These criteria are qualitatively depicted as follows:

(Ia) When resources are diverse in composition, and abundance is constant and limited, variants
with increased entropy will almost always increase in frequency.

(Ib) When resources are singular in composition, and undergo large variations in abundance,
variants with decreased entropy will almost always increase in frequency.

We can furthermore infer from the measure of selective advantage given by Eq. (10), that when
M tends to infinity, the measure of selective advantage is now given by s = −� �S. Implications
of Eq. (10) can be summarized as follows. If (� − γ /M) <0, �S > 0, which implies also � <0, γ
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>0, the variant population increases in frequency. If (� − γ /M) >0, �S <0, which implies � >0,
γ <0, the variant increases in frequency as well.

This measure indicates that for infinite size, the selective outcome is now determined uniquely
by resource abundance. We now have the following criteria:

(IIa) When resource supply is constant and limited, the variants with increased entropy will prevail.
(IIb) When resources are subject to large variation in abundance, the variants with decreased

entropy will prevail.

B. The metabolic principle of natural selection

The entropic principle of natural selection describes selective criteria in terms of evolutionary
entropy.37 It is a measure of demographic stability, that is, the rate at which the population returns
to the steady state condition after a random perturbation in the cellular replication and survivorship
rate.

As shown recently by Demetrius, Legendre and Harremoes38 evolutionary entropy is analytically
related to the metabolic rate. This is given by

S = a + log P, (11)

where a is a taxon-specific constant.
Now cells utilizing oxidative phosphorylation and cells utilizing glycolysis differ in terms

of their metabolic rate. We now appeal to the selection principle to derive a criterion for selective
outcome involving a population of cells utilizing oxidative phosphorylation, and a variant population,
utilizing glycolysis. Here, we assume that population size is sufficiently large that the effects of
resource diversity on selection can be neglected.

In view if Eq. (11), �P �S >0, and the measure of selective advantage can be expressed in
terms of the metabolic rate S= -� �P, hence both (i) �<0, �P>0 and (ii) �>0, �P<0, lead to the
variant population increases. We state it as follows when adapted to the context of cancer cells.

(IIIa) When resources are constant and limited, cells utilizing oxidative phosphorylation will
increase in frequency.

(IIIb) When resources are subject to large variation in abundance, cells utilizing glycolysis will
increase in frequency.

The principles (IIIa) and (IIIb) constitute the basis for the evolutionary rationale of the Warburg
effect, that is the increased glycolytic flux observed in cancer cells. The metabolism of glucose
to lactate by glycolysis generates only 2 ATP molecules per molecule of glucose, whereas ox-
idative phosphorylation generates up to 36 molecules of ATP upon complete oxidation of one
glucose molecule. The question which this raises concerns the selective advantage of a less efficient
metabolism, glycolysis. The metabolic selective principle asserts that the selective advantage is
conditioned by the cellular microenvironment – the diversity and the magnitude and variation in
abundance of the resource. Large variations ion oxygen and glucose characterize the microenviron-
ment of cancer cells. This condition confers a selective advantage to a fermentative metabolism and
explains the growth advantage, which the Warburg effect confers on cancer cells.

IV. THE ORIGIN OF CANCER

A central tenet of modern molecular biology is the primacy of the genetic program in monitoring
the transition in an organism from conception to reproductive maturity. All cells in the reproductively
mature organism are genetically identical; the physiological and phenotypic differences in cell types
in the reproductively mature organism are derived from differences in gene expression.

Aging can be described as the continuous decline in the production of metabolic energy and
the increased spreading of the energy over the various storage modes in the macromolecules that
are involved in energy transduction within the cell. This spatial spreading of energy increases the
vulnerability of the cell to injury from external forces and concomitantly the susceptibility of the
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FIG. 2. A schematic illustration of the transition to malignancy.

organism to age-related diseases.39 The process can be described by the following sequence of events
(see Figure 2):

1. Molecular instability. This process refers to the reduction in the energy states of the molecules
that determine the cellular metabolic network. These bioenergetic changes are the result of
random losses in molecular fidelity and a concomitant increase in thermodynamic entropy.
Accordingly, aging is not the result of a genetic program but a consequence of a stochastic
process. The cumulative loss of molecular fidelity will ultimately overwhelm the processes of
damage repair and thereby increase the vulnerability of the cell to injury by external agents.

2. Metabolic instability. This notion pertains to impairment in the energy producing organelles
and hence a damage in the capacity of these organelles to maintain stable concentrations of
ATP. The vulnerability of the metabolic networks to pathology will depend on the level of
molecular instability induced by the aging process. The magnitude of molecular instability
increases with age and abates with age at advanced age. Thus, cancer is an age-related disease
whose incidence will increase with age and stabilize at advanced ages.

3. Metabolic alteration. This refers to the upregulation of glycolysis to compensate for the decline
in ATP production by oxidative phosphorylation. The cellular microenvironment confers a
selective advantage to cells adopting the glycolytic mode of energy transduction. This leads to
the proliferation of the cancer phenotype.

4. Genomic instability. Aerobic glycolysis has a disruptive effect on the oncogenes and tumor
suppressor genes. This leads to increase mutability of the nuclear genome – an event we
describe by the term genomic instability. The loss of the genomic caretakers involved in sensing
and repairing DNA damage will in turn dysregulate energy processing in the mitochondria
and thereby induce metabolic instability. The cyclic process involving genomic and metabolic
instability will enable pre-malignant cells to attain the various hallmarks of cancer.

The program of cancer initiation we described here can be triggered by a large family of
unspecific conditions, namely: viruses, carcinogens, inflammation and ionizing radiation.6 These
unspecific conditions do not necessarily directly cause cancer: they simply accelerate the transition to
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metabolic instability. The theory we have described indicates that the transition towards the cancer
phenotype is determined by the selective advantage of the cells utilizing the glycolytic mode of
energy production. The selective advantage depends on two main factors: (a) the abundance and the
diversity of the resources the cells utilize, and (b) the relative metabolic rate of the normal and tumor
cells.

V. THERAPEUTIC STRATEGIES

Our model for the origin of cancer contends that sporadic cancer is an age-related metabolic
disease. From this perspective, normal cells are characterized by the oxidative phosphorylation mode
of metabolic regulation, and cancer cells are described by the glycolytic mode of energy processing.

Our analysis of metabolic dysregulation as the primary cause of the disease suggests that
therapeutic strategies, which are based on impeding the transition from an oxidative mode of
regulation to a glycolytic mode, may be an effective approach in controlling the disease.

Quantum metabolism and the entropic principle of selection are two theoretical frameworks for
developing effective therapeutic strategies. According to Quantum Metabolism, cellular metabolic
rate depends on the mechanism of energy processing, oxidative phosphorylation or glycolysis. The
scaling coefficient, α, in cells using oxidative phosphorylation is determined by the bioenergetic
parameters, proton conductance, C, and the proton-motive force, �p. Here, we have α ∼ C �p
where �p = �	 − a �pH, with �	 denoting the membrane potential and �pH representing the
change in pH across the membrane.

The scaling coefficient for cells utilizing glycolysis depends on the mean reaction rate K of the
glycolytic enzymes, hence α ∼ K.

According to the entropy selection principle, the outcome of competition between normal
cells utilizing predominantly oxidative phosphorylation and the cancer cells utilizing predominantly
glycolysis is conditional on the diversity and the variation in resource abundance of the microenvi-
ronment. We have the following:

1. A diverse resource, which is constant and limited, will favor cells with oxidative phosphory-
lation activity – the normal cells.

2. A singular resource, which is subject to large variations in abundance will favor cells with
glycolytic activity – the cancer cells.

These two classes of observations furnish a theoretical basis for the following types of therapeutic
strategies:

(I) Modifying the metabolic rate of cancer cells.
The allometric scaling laws for metabolic rate which Quantum Metabolism describes suggest
the following class of metabolic interventions: (a) The use of drugs which target the glycolytic
and pentose phosphate pathway enzymes, (b) Imposing limitations on substrate abundance
and increasing the diversity of possible substrates, and (c) Lifestyle modifications – diet and
exercise.

(II) Modifying the metabolic rate of normal cells.
The analysis indicates that in the case of cells using oxidative phosphorylation, the metabolic
rate is dependent on bioenergetic parameters. These quantities are the proton conductance
and the proton-motive force. The latter is determined by the membrane potential and the
difference in pH across the membrane. Consequently, the membrane composition will play a
critical role in regulating the metabolic rate.
We elaborate on these observations with some specific examples. Cancer cells upregulates the
glycolytic enzymes:26 hexokinase, phosphofructokinase, lactate dehydrogenase, etc., which
can be inhibited by pharmacological agents with potential therapeutic effects which could
deprive cancer cells of their selective advantage. Metabolic rates can be controlled by varia-
tions in temperature and pH as well as the use of anti-oxidizing agents such as vitamins and
nutraceuticals.40 One of the well-known characteristics of cancer cells is their difference in
pH (acidity) compared to normal cells. Interestingly, cancer cells appear to exhibit greater
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heat sensitivity than normal cells, which may also lead to therapeutic applications. Recent
biochemical and clinical studies have revealed a profound and selective toxic effect of ele-
vated temperatures on tumor cells. The metabolic rate of normal cells is primarily determined
by the phospholipid composition of the mitochondrial membrane. This composition can be
modified by exercise and diet.41

(III) Modifying the cycle time
Metabolic rate P is related to the cycle time τ by P ∼ aτ d where a is a proportionality constant
and d the dimensionality parameter. Cavalier et al.42 and Kadenbach43 have documented
various types of inhibitors and modifying agents, which may impinge on mitochondrial
activity and thereby affect cycle time. The most significant of these inhibitors are agents in:
(a) the Krebs cycle – which block one or more of the TCA cycle enzymes, (b) the respiratory
chain – which block respiration in the presence of either ADP or uncoupling agents, and (c)
phosphorylation chain – which abolish the burst of oxygen consumption.

These inhibitors will modify the cycle thereby regulating the metabolic rate and thus affecting
the selective advantage of the cancer cells.

The understanding of the metabolic basis of carcinogenesis, which this evolutionary study
generates, suggests new methods for regulating cellular metabolic rate and thereby impeding the
transition from a benign tumor to a malignant state. Further details of the strategy based on metabolic
interventions can be found elsewhere.5

VI. CONCLUSIONS

Sporadic forms of cancer are age-related metabolic diseases, which have their origin in the
mitochondria and cytosol of cells. Molecular infidelity and its concomitant metabolic instability
are an inherent and integral part of the aging process. This is characterized by dysregulation of the
metabolic system and a compensatory shift from oxidative phosphorylation to substrate-level phos-
phorylation. The analytic study of cancer progression and cancer therapy requires an elucidation of
(a) the molecular basis of the process of metabolic regulation and (b) the selective event which defines
competition between these two metabolic mechanisms, oxidative phosphorylation and glycolysis.
Quantum Metabolism, an analytic theory of energy transduction in cells and an entropic selection
principle, a general rule of cellular competition for energy sources, furnish the analytical framework
for elucidating these issues of cancer progression and involving this to forge new methods of cancer
therapy based on metabolic intervention. Finally, while this is still in an early stage of discovery,
stem cells are likely to be utilizing competitive advantage in terms of their metabolism and signaling
as has recently been indicated by linking their metabolism to differentiation.44
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