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Cancer is a disease that can be seen as a complex system whose dynamics and growth
result from nonlinear processes coupled across wide ranges of spatio-temporal scales.
The current mathematical modeling literature addresses issues at various scales but
the development of theoretical methodologies capable of bridging gaps across scales
needs further study. We present a new theoretical framework based on Dynamic
Density Functional Theory (DDFT) extended, for the first time, to the dynamics of
living tissues by accounting for cell density correlations, different cell types, pheno-
types and cell birth/death processes, in order to provide a biophysically consistent de-
scription of processes across the scales. We present an application of this approach to
tumor growth. Copyright 2012 Author(s). This article is distributed under a Creative
Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.3699065]

I. INTRODUCTION AND MOTIVATION

In oncology and tumor biology, a wealth of genomic, proteomic and pathology-based cell
phenotypic and microenvironmental data are collected at the microscale (i.e., cell scale and below).
Treatment strategies, on the other hand, are determined by tumor response at the tissue-scale in
space over long scales in time. Thus, a fundamental gap that is currently hampering progress in
individualized cancer care is the extrapolation of patient-specific microscale quantitative information
into formulations of therapeutic and intervention strategies at clinically relevant scales (e.g., organ
scales). What is urgently needed is the development of biophysically sound mechanistic connections
among the multi-modal, multi-dimensional and multiscale phenomena and variables involved in
tumor progression. Such multiscale models would enable the integration of abundant microscale
phenotype data (cell architecture, mitotic rates, etc) into a comprehensive picture of individual tumor
behavior and response to treatment at clinically relevant scales that emerge from the underlying
microscopic processes.

We recognize that oncologists and tumor biologists focus almost exclusively on processes
at the sub-cellular and cellular domains (e.g., signaling pathways), and largely overlook physical
phenomena associated with transport of cells and chemicals (e.g., oxygen diffusion) and momentum
(e.g., mechanical forces among cells and other stromal components), which occur at the mesoscopic
scale that spans the distance over which transport gradients are established (i.e., 100 − 200 μm of
tissue for the establishment of oxygen gradients). These mesoscopic phenomena are the missing link
to bridge the current gap between the scales.
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To help bridge this gap, we propose a mathematical approach based on Dynamic Density
Functional Theory1 (DDFT), which provides a mesoscale continuum framework directly derived
from a stochastic, discrete model. Unlike standard mean-field models, the DDFT approach accounts
for correlations.1, 2 We extend the approach to model the spatio-temporal dynamics of multicellular
systems by including cell type, phenotype and birth/death processes, which are major features of
biological tissues.

The DDFT, and its stochastic, discrete counterpart, can be used to develop a hybrid continuum-
discrete multiscale model that satisfies the following properties we deem essential for a multiscale
model: 1) different representations to describe the same quantity of interest at different scales as
needed (e.g., discrete representations are used in regions where the continuum model is not valid
due, for example, to fluctuations); 2) direct calibration/validation of the cell-scale parameters and
equations from individual microscale measurements; and finally 3) upscaling techniques to formulate
(and close) the continuum equations at the larger scales. In contrast to current approaches, such a
multiscale model would provide an accurate description of the feedback and interactions among
processes across different scales and enable the model components at the meso- and tissue scales to
be precisely determined from cell scale modeling, and underlying biological measurements, without
“fitting” them directly.

II. CURRENT APPROACHES: “MULTIPLE-SCALE” MODELS

Due to the intrinsic multiscale nature of cancer, a deeper understanding requires the develop-
ment of models that integrate and combine the phenomena spanning the multiple scales involved.
Hybrid continuum-discrete implementations,3 which typically seek to combine the best of the tissue
(continuum) and cellular (discrete) scale approaches while minimizing their limitations, are a very
promising modeling approach. Many published methods claim to be multiscale because they are
based on a hybrid description of the tumor components, typically by using a discrete representation
of the various cell populations and continuum fields to describe cell substrates (e.g., nutrients, oxygen
and diffusible factors). These models incorporate processes at multiple scales but have difficulties in
capturing the non-trivial interactions among scales that are responsible for the growth of malignant
tissue and do not satisfy the definition of multiscale model introduced above. Here, we concisely
review two promising recent approaches to the development of functional multiscale models for
solid tumor growth. A more complete review may be found in Refs. 4–6.

A. Decoupled multiple-scale approach

A mechanistic agent-based model (ABM) of tumor growth was recently introduced7, 8 and
applied to simulating the progression of ductal carcinoma in situ (DCIS) of the breast (Fig. 1). Cell
motion is determined from an overdamped balance of adhesive, repulsive, and motile forces exerted
among the cells and by the extracellular matrix (ECM). Cells (which may have different sizes)
are associated to individual phenotypic states, e.g., proliferative, motile. Transition rates between
the states are governed by exponentially distributed random variables. As illustrated in Fig. 1,
a “bottom-up” approach was used for ABM parameter calibration from experimental data at the
cell-scale (immunohistochemistry of pathology specimens). In particular, experimentally measured
indexes of proliferation and apoptosis were used to obtain average rates of individual cell proliferation
and apoptosis rates in the ABM. Note that such a calibration has also been successfully performed in
the context of liver regeneration.9 However, in Refs. 7,8, an upscaling calibration protocol based on
volume-averaging was additionally used with the ABM to calculate the coarse-grained proliferation
and apoptotic volume rate parameters at the tissue scale, which provided input to a continuum
model10 thus avoiding fitting. A “top-down” approach was used to compare the model results to
tumor volumes measured in patients. This led to the first accurate, patient-specific assessment of
DCIS tumor volumes – a key translational issue in current surgical planning.11
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FIG. 1. Flow of information across the formulations at the cellular and tissue scales in a decoupled multiple-scale approach
for DCIS.7, 11 Bottom images: (left) Bottom-up calibration: immunohistochemistry measurements from patient tissue used
for parameter calibration7 (proliferation and apoptotic indices PI and AI); (center) ABM simulation of DCIS;7 (right) Top-
down validation: comparison of model-predicted tumor volume (dashed curve) to the corresponding volume measured from
histology of the excised tumors from patients (symbols). Reprinted with permission from Ref. 8. Copyright 2010, Cambridge
University Press.

B. Coupled multiple-scale approach: Hybrid models

In a study of the effect of stress on the growth of avascular tumor spheroids in an agarose gel12, 13

a hybrid model was developed where different descriptions of tumor cells were used in different
regions of the spheroids. In the thin proliferating zone at the spheroid edge, an ABM was used
where the discrete cells were represented as deformable ellipsoids, enabling a detailed description
of intercellular dynamics, cell sizes and shapes, and cell-cell interactions. In the larger quiescent
and necrotic regions in the spheroid interior, a continuum viscoelastic description was used. The
coupling among the discrete and continuum components was limited to the incorporation of discrete
cells into the continuum regions through mass and momentum fluxes.

Another hybrid approach has been used to simulate the growth of invasive glioma tumors14

where invading tumor cells were modeled using an ABM as discrete points (i.e., zero size) and a
continuum model was used for the tumor bulk, assuming spherical symmetry. The coupling among
the discrete and continuum models was limited to the production of discrete cells from the continuum
field through mass fluxes at the tumor edge.

In a recent study of a hypoxia-induced epithelial-to-mesenchymal transition during tumor
growth,15 an ABM for tumor cells was coupled directly to a continuum model for tumor volume
fractions through mass and momentum exchanges between the two representations. Rules were
posed to describe the conditions under which the discrete and continuum representations were
used. Briefly, discrete cells were released in hypoxic regions, to model the epithelial-mesenchymal
transition, and discrete cells were converted back to the continuum description at locations where
their population exceeds a threshold (Fig. 2).

C. Assessment of current approaches

The decoupled two-step approach does not allow for any dynamical exchange between cell- and
tissue-scale models, which limits its applicability. The hybrid approaches improve over the decou-
pled methods in that there are interactions among the continuum and discrete cell representations.
However, in both multiple-scale approaches the variables and fluxes considered at the macroscale
(continuum) are pre-assumed and are not obtained by upscaling the cell scale (discrete) dynamics.
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FIG. 2. Hybrid multiple-scale simulation of vascularized tumor growth.15 Discrete tumor cells (blue dots) are released from
hypoxic areas of the continuum tumor regions (gray volumes). Vessel sprouts (light lines) and newly formed vessels (dark
lines) releasing oxygen and nutrients are shown. Time is in proliferation time units.

Multiscale modeling frameworks, such as the heterogeneous multiscale method16 and the
equation-free approach,17 can be used to provide effective macroscale fluxes by numerically up-
scaling the results from models at the microscale. However, these methods do not provide analytical
forms for these fluxes even if the macroscale continuum description is valid and the fluxes can be
defined solely in terms of continuum variables. In the next section, we present a novel approach using
dynamical density functional theory for modeling tissue and tumor growth, which provides a model-
ing framework for obtaining analytical expressions for the macroscale fluxes from the microscopic
processes.

III. DYNAMIC DENSITY FUNCTIONAL THEORY FOR MULTICELLULAR SYSTEMS

Dynamic density functional theory (DDFT) provides a macroscopic continuum framework di-
rectly derived from the microscopic scale, where processes occurring at the microscale (i.e., in an
interacting particle system) are integrated within the mesoscale description and incorporate corre-
lations among the discrete components.1, 2 DDFT has been successfully used to describe Brownian
dynamics of non-equilibrium colloidal particles, e.g., applied to crystal growth in single and bi-
nary component materials.18–20 The theory naturally incorporates elastic, plastic and viscoelastic
deformations as well as defects.

As far as we are aware, DDFT has not been used in the context of multicellular systems.
However, recent experiments on confluent epithelial cell sheets show that there are intriguing
similarities between the dynamics of collective cell motion at high cell densities and the dynamics of
supercooled colloidal and molecular fluids approaching a glass transition.21 In particular, at low cell
densities it is found that the cells flow like a fluid. However, as the cells proliferate and compress,
a critical density emerges above which solid-like behavior is observed and structural relaxations
occur only over long time scales such as the mitosis time scale or longer (e.g., on the order of days).
Accordingly, dynamic heterogeneities are seen to develop concomitant with a decrease in diffusive
motion and the development of peaks in the dynamic structure factor. Together, these results suggest
the importance of accounting for correlations among cells at the mesoscale, which makes DDFT a
natural modeling choice. However, to model physiological tissues as multicellular systems, DDFT
must be extended to account for cell proliferation (mitosis) and death (apoptosis/necrosis), as well
as multiple cell types and phenotypes, which are also the main features needed to model malignant
tissues.
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A. Classical Dynamic Density Functional Theory

We briefly outline DDFT for the dynamics of N interacting (tumor) cells of a single species and
outline the steps that allow for the derivation of equations describing the spatio-temporal evolution
of the tissue-scale description. We describe the motion of each cell by the overdamped Langevin
equation:

dri

dt
= �

( N∑
j=1

Fint
i j + Fext

i

)
+

√
2D ηi (t) , (1)

where ri = (rα
i )α=1...d ∈ �d is the position of the center of mass of the i-th cell in the d-dimensional

physical domain �d and � is the cell motility coefficient linked to the diffusion coefficient D by
the Einstein relation D = � T (T is an effective temperature). To simplify the presentation, we
assume no hydrodynamic interactions between the cells, i.e. no cell-cell friction, which could be
included by adding a viscous drag force in the Langevin equations via a microscopic friction tensor
acting on the relative velocity with neighboring cells.22 Although neglecting cell-cell friction may be
more appropriate in the absence of active cell motion, cell-cell friction could easily be incorporated
using a similar modeling framework. The forces

∑N
j=1 Fint

i j = −∑N
j=1 ∇ri Vint (|ri − r j |) model

cell-cell interactions (e.g., adhesion, repulsion) via a pair potential Vint that depends on the distance
between two cells. We model microenvironmental influences (e.g., chemotaxis, haptotaxis, cell-ECM
adhesion, etc) on cell movement by forces Fext

i = −∇Vext (ri , t), where Vext is an external potential
depending on the microenvironment. The vector ηi(t) is a Gaussian noise satisfying

〈
ηα

i (t)
〉 = 0 and

〈ηα
i (t) η

β

j (t ′)
〉 = δi jδαβδ(t − t ′), where < · > is the averaging over different noise realizations, and

α, β are coordinate indices. From Eq. (1) one can derive the equation for the N-particle position
probability distribution P(rN , t) (or N-body distribution function) by using the multivariable Ito
formula of stochastic calculus23 to obtain the Smoluchowski equation

∂ P(rN , t)

∂t
=

N∑
i=1

∇ri · [−� Fi (rN , t) + D ∇ri

]
P(rN , t) , (2)

where rN = {ri }i=1...N is the N-dimensional position vector of cells and Fi = ∑N
j=1 Fint

i j + Fext
i

denotes the sum of forces exerted on a single cell.
Summarizing the approach in Ref. 24, the discrete density field of the N-cell system is defined

as ρ̄(r, t ; rN ) = ∑N
i=1 δ̄(ri (t) − r), where δ̄ is a coarse-grained delta function over a domain of char-

acteristic length scale l, which lies between the cell size and the cell-density correlation length. The
domain �d is split into small subdomains (nodes) where a local density is defined with fluctuations
around an equilibrium value. The cell density is evaluated around the position r ∈ �d of a node of
size l. The corresponding coarse-grained density ρ(r, t) is the limit of ρ̄(r, t ; rN ) for large N and
small l. Let P[ρ, t] denote the probability of finding a specific realization of function ρ over the
domain r ∈ �d :

P[ρ, t]=
∫

δ
(
ρ − ρ̄(·; rN )

)
P(rN , t)drN =

∫ ∫
δ
(
ρ(r′, t) − ρ̄(r′, t ; rN )

)
δ(r′ − r)P(rN , t)drN dr′.

(3)
Using the Smoluchowski equation (2) and the above definition, we can evaluate the temporal
dynamics of the cell density distribution P[ρ, t]. The derivation involves the technique of projection
operators and is based on the essential assumption that the density ρ(r, t) evolves with a time scale
well-separated from the time scale corresponding to the evolution of the generalized position vector
rN . Finally, the time evolution of P[ρ, t] is described by the following functional Fokker-Planck
equation:24

∂ P[ρ, t]

∂t
= LM[ρ, t] P[ρ, t]. (4)

Eq. (4) is a mesoscopic description of the initial system (1) and includes fluctuations that can be
averaged out only for larger systems, where the first moment of P[ρ, t] (the cell density) is assumed
to dominate the deterministic large-scale dynamics. In Eq. (4) the functional operator LM[ρ, t]
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describes the dynamics of the coarse-grained density:24

LM[ρ, t]P[ρ, t] = −
∫

dr
δ

δρ(r, t)

{
∇ ·

[
ρ(r, t)∇

(
D

δ

δρ(r, t)
+ �

δFC[ρ(r, t)]

δρ(r, t)

)]
P[ρ, t]

}
,

(5)
where δ/δρ(r, t) is a functional derivative with respect to ρ andFC[ρ] is a coarse-grained free-energy
functional, which is specific to the biophysical processes modeled and will be described in detail
later. In order to derive a deterministic equation for the density, we multiply Eq. (4) by the density
field and integrate, thereby performing an averaging procedure over the possible realizations of the
density field. For appropriate boundary conditions, we integrate by parts and assume vanishing local
fluctuations of the density field to obtain:

∂ρ

∂t
(r, t) = �∇ ·

[
ρ(r, t)∇

(
δFC[ρ(r, t)]

δρ(r, t)

)]
. (6)

Alternatively, one could derive the above result, starting again from Eq. (4), by using a free-energy
minimization principle, as in Ref. 25. We remark that another option to derive Eq. (6) directly from
Eq. (4) is proposed in Ref. 1, by defining ρ̄ as the sum of noise-averaged delta functions without
appealing to a free-energy minimization principle. However, we do not take this alternate approach
here as it is more difficult to account for cell-proliferation as we will propose further in our paper.

The deterministic equation (6) captures the spatio-temporal dynamics of the cell density
of a single cell type at the tissue level in the absence of cell proliferation, is physically-
based, and takes the form of a continuity equation with the flux proportional to the gradient
δFC [ρ]

δρ
of the coarse-grained free-energy functional. In general, this functional takes the form

FC[ρ] = F id [ρ] + F ext [ρ] + F ex [ρ]. The first term corresponds to random cell motion and is
given by F id [ρ] = T

∫
drρ(r)

[
ln (Kρ(r)) − 1

]
, where the prefactor K is the analogue of the ther-

mal de Broglie wavelength (i.e., the average distance between cells under the influence of stochastic
fluctuations). The second term describes the response of cells to an external field, e.g. active cell
movement, and is given by F ext [ρ] = ∫

drρ(r)Vext (r, t). The third term characterizes the excess
free energy that arises from cell-cell interactions, which for pair potentials as used above, is given
by26, 27

ρ(r, t)∇ δF ex [ρ(r, t)]

δρ(r, t)
=

∫
dr′ρ(2)(r, r′, t) ∇r Vint (|r − r′|), (7)

where ρ(2)(r, r′, t) is the two-particle density distribution function. Since ρ(2) depends on ρ(3), the
three-particle distribution function, and so on, Eq. (6) is not closed. To close Eq. (6), the system
needs to be truncated and ρ(2) needs to be approximated. Several approximations as described briefly
below are used.

1. Uncorrelated mean-field approximation

The simplest way to model ρ(2) and close Eq. (6) is to neglect density correlations and take
ρ(2)(r, r′, t) ≈ ρ(r, t) ρ(r′, t). This is known as the mean-field approximation.28 In this case, Eq. (6)
becomes

∂ρ

∂t
(r, t) = D∇2 ρ(r, t) + �∇ · [ρ(r, t)∇Vext (r, t)]

+�∇ ·
[
ρ(r, t)

∫
dr′ρ(r′, t) ∇r Vint (|r − r′|)

]
. (8)

We note that similar formulations have been previously used to model cell-cell adhesion via the
nonlocal operator.29 Further, the mean field approximation fails when either the density is low, so
that fluctuations are non-negligible, or when correlations are important, e.g., arising from long-range
interactions. Interestingly, for a repulsive interaction potential, this leads to a version of Darcy’s law
since for a uniform density ρ = ρ∞, the pressure is p(r) = ρ∞�

∫
dr′Vint (|r − r′|).



011210-7 Chauviere et al. AIP Advances 2, 011210 (2012)

2. Correlated mean-field approximation

In the DDFT framework rather than assuming that there are no correlations, the adiabatic
approximation1 ρ(2)(r, r′, t) ≈ ρ(2)

eq (r, r′) is used, where ρ(2)
eq is a two-particle density distribution

function evaluated for a system with equilibrium density ρ0(r) ≡ ρ(r, t). Although ρ(2)
eq is still not

known in general, the corresponding excess energy F ex [ρ] can be expanded around a constant
reference density ρ∞ to yield30

F ex [ρ(r, t)] 
 F ex (ρ∞) − D

2�

∫
dr 
ρ(r, t)

∫
dr′ 
ρ(r′, t) c(2)

eq (r − r′; ρ∞), (9)

where 
ρ(r, t) = ρ(r, t) − ρ∞ and c(2)
eq (r − r′; ρ∞) = − δ2Fex [ρ]

δρ(r)δρ(r′) |ρ(·)=ρ∞ is the direct two-point cor-
relation function of the uniform system, which is related to the total correlation function h(r), with
r = |r|, by the Ornstein-Zernike (OZ) equation31

h(r ) = c(2)
eq (r ; ρ∞) + ρ∞

∫
dr ′h(r ′)c(2)

eq (|r − r′|; ρ∞), (10)

where spherical symmetry is assumed. At this point, the system is still not closed and an additional
closure relation needs to be imposed between h and c(2)

eq to be able to solve the Ornstein-Zernike
equation (10). There are numerous examples of physically-based closure relations in the literature,31

which relate h, c(2)
eq and the interaction potential Vint; see Sec. III C for an example of a specific

closure relation. With these approximations, Eq. (6) becomes

∂ρ

∂t
(r, t) = D∇2 ρ(r, t) + �∇ · [ρ(r, t)∇Vext (r, t)]

−D∇ ·
[
ρ(r, t)

∫
dr′ (ρ(r′, t) − ρ∞

) ∇rc(2)
eq (|r − r′|; ρ∞)

]
, (11)

where c(2)
eq remains to be evaluated via the OZ equation and a closure equation. We note that in both the

uncorrelated and correlated mean-field models, the nonlocal terms may be further approximated and
localized in space using gradient expansions. Next, we extend the DDFT framework to multicellular
systems.

B. Multicellular Dynamic Density Functional Theory

As a first step towards the development of DDFT for multicellular systems, we extend the DDFT
framework to account for different types of cells and cell phenotypes. We then develop an extension
to birth/death processes.

1. Multiple cell types

We consider Mσ different cell species, identified by the index k, with each species having Nk

cells with a common set of biophysical properties. The Langevin equation describing the motion of
the i-th cell in population k, via its center of mass located at rk

i , reads

drk
i

dt
= �k

( Mσ∑
l=1

Nk∑
j=1

Fkl,int
i j + Fk,ext

i

)
+

√
2Dk ηk

i (t) , (12)

where all the notation used in the previous section is generalized to account for the properties
associated with a species k. The multispecies Eq. (12) is a straightforward generalization of the
single species Eq. (1) where there are now cell-cell interactions among the different species k and l
(e.g., to model differential adhesion) via the forces Fkl,int

i j and external forces in the microenvironment

Fk,ext
i , which act on each species individually (e.g., only a subset of the cell species may respond to

particular microenvironmental forces).
The derivation of the deterministic counterpart (i.e., the equation for the continuous cell density

ρk of each species) of the multispecies Langevin equations (12) is similar to the single species case
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presented in Section III A. We use multivariable stochastic Ito calculus for each species to derive
the corresponding Smoluchowski equation for each Nk-body distribution function. Then, we use
Kawasaki’s approach24 and introduce the probability Pk[ρk, t] of finding a specic realization of ρk,
whose dynamics is given by a functional Fokker-Planck equation. By averaging over all possible
realizations, we obtain a deterministic continuity equation for the cell density ρk of each species k,
which reads

∂ρk

∂t
(r, t) = �k∇ ·

[
ρk(r, t)∇

(
δFC[ρ(r, t)]

δρk(r, t)

)]
, (13)

where FC[ρ] denotes the coarse-grained free-energy functional of the entire multispecies system of
interacting cells, i.e., FC[ρ]=FC[ρ1, . . . , ρMσ

]. The energy associated with random cell motion and
the external field are simply sums of the contributions from each species. The excess part of the free
energy is the generalization of Eq. (7) and is given by

ρk(r, t)∇ δF ex [ρ(r, t)]

δρk(r, t)
=

Mσ∑
l=1

∫
dr′ρ(2)

kl (r, r′, t) ∇r Vkl,int (|r − r′|), (14)

where ρ
(2)
kl (r, r′, t) describes cross-correlations between species k and l. Approximations and closure

relations analogous to those described in Secs. III A 1 and III A 2 can be used to complete and close
the system of equations, yielding a system of coupled integrodifferential equations.

2. Multiple cell phenotypes

We next consider the case in which cells have different phenotypes. Recent experimental
evidence suggests that phenotypic traits, such as the state of differentiation, are not necessarily
fully hierarchical but rather a stochastically evolving, potentially reversible continuum.32–36 Similar
to Refs. 36, 37, where Markov processes have been used to model differentiation dynamics, we
introduce a stochastic differential equation that governs the temporal evolution of a phenotype
vector σ i of cell i where each component of σ i describes a cell phenotypic trait (e.g., differentiation,
proliferation, etc):

dσ i

dt
= Ai (rN , σ N ) +

√
2Dσ ησ

i (t) , (15)

where Ai corresponds to evolutionary and external pressures and models drift forces driving the
evolution of (the possibly interdependent) phenotypic traits of cell i. Similar to the definition of rN

(the generalized N-dimensional position vector of the whole set of cells), σ N = {σ i}i = 1. . . N is the
generalized N-dimensional phenotype vector of the whole set of cells. The second term in Eq. (15)
accounts for uncorrelated random fluctuations of the phenotype (it is straightforward to extend the
model to include correlated fluctuations).

Whereas Eq. (15) models the dynamics of the phenotype of cell i, the movement of that cell
is still modeled via the Langevin equations. Assuming that the biophysics driving the cell spatio-
temporal dynamics in the Langevin equations may depend on the cell phenotype, we shall consider
�(σ i), Fi (rN , σ N ) = ∑N

j=1 Fint
i j (ri , σ i , r j , σ j ) + Fext

i (ri , σ i ) and D(σ i) in Eq. (1), which we rewrite
for clarity as:

dri

dt
= �(σ i ) Fi (rN , σ N ) +

√
2D(σ i ) ηi (t) . (16)

Equations (15) and (16) form a discrete coupled system accounting for the stochastic dynamics of
cell in both the physical and phenotypic spaces. Similar to the derivation performed in Section III A,
we introduce the generalized N-particle probability distribution P(rN , σ N , t). Then, assuming that
the interspecies noise terms ησ

i (t) are statistically independent, we apply the multivariate Ito formula
to a function of the vector (rN , σ N ) to derive the Smoluchowski equation governing the spatio-
temporal evolution of P(rN , σ N , t). The rest of the derivation of a deterministic equation involves a
new definition of the discrete density field, i.e. ρ̄(r, σ , t ; rN , σ N ) = ∑N

i=1 δ̄(ri (t) − r) δ̄(σ i (t) − σ ),
with δ̄ being the coarse-grained delta function already introduced and σ the vector of continuous
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phenotype traits of cells at position r at time t. The application of Kawasaki’s approach24 to define
the generalized coarse-grained density ρ(r, σ , t) as the limit of ρ̄(r, σ , t ; rN , σ N ) and to define the
probability P[ρ, t], whose dynamics is governed by a functional Fokker-Planck equation, remains
valid. Here the generalized density ρ depends on both spatial and phenotypic continuous variables
r and σ . The averaging over all possible realizations yields the following deterministic equation for
the generalized density ρ:

∂ρ

∂t
(r, σ , t) = �(σ )∇r ·

[
ρ(r, σ , t)∇r

(
δFC[ρ(r, σ , t)]

δρ(r, σ , t)

)]

+Dσ ∇2
σρ(r, σ , t) − ∇σ · [A(r, σ )ρ(r, σ , t)] , (17)

where ∇σ denotes the gradient with respect to the phenotype vector σ . Here, the functional free
energy now involves integration over σ . In particular, the excess part of the free energy is now given
by

ρ(r, σ , t)∇ δF ex [ρ(r, σ , t)]

δρ(r, σ , t)
=

∫ ∫
dσ ′dr′ρ(2)

(
(r, σ ), (r′, σ ′), t

) ∇r Vint (|r − r′|, σ , σ ′), (18)

where ρ(2)
(
(r, σ ), (r′, σ ′), t

)
is a generalized two-particle density distribution function.

The first term on the right hand side of Eq. (17) corresponds to the transport of cells in the
physical space (i.e., diffusion, advection by an external field, as in Eqs. (8) and (11) with coefficients
depending now on the phenotype σ ). In addition, the transport may also be influenced by the nature
of the interactions among cells of different phenotypes via the potential Vint (see Eq. (18)). The
second and third terms on the right hand side of Eq. (17) account for the phenotype dynamics
that includes diffusion (e.g., for random mutations) and a drift term with velocity A (e.g., for
evolutionary forces) within the phenotype space. Remark that those terms are to be compared with
those of population dynamics models developed for cell differentiation37, 38 in which the level of
differentiation is described by a continuous variable as suggested in Ref. 39.

While a similar approximation procedure as described in Sec. III A 2 can be used to close the
system utilizing a multicomponent Ornstein-Zernike equation, it is not clear that the physically-
based closure relations described in Ref. 31 are appropriate for this context. This is under study, see
Sec. IV.

As an example, suppose that the phenotype is solely described by the state of differentiation
of a cell. Then let σ = s be a scalar variable that denotes the differentiation state of a cell with s
= 0 denoting the undifferentiated state and s = 1 the fully differentiated state. Then, the drift term
A = A(r, s) is also a scalar, with A ≥ 0 describing hierarchical forces driving differentiation and A
≤ 0 describing de-differentiation. Feedback that modifies cell differentiation rates can be captured
using this approach and a more detailed model that relates A to external (e.g., from the microenviron-
ment) and interaction (e.g., among cells at different differentiation stages) forces analogous to those in
Eq. (1), but now in the phenotype space.

3. Cell birth/death processes

We next describe the generalization of DDFT to include birth/death (BD) processes. We present
the derivation for a single species, which can be generalized straightforwardly to a multispecies,
multiphenotype system. The derivation of macroscopic descriptions of randomly moving reacting
particles has a long history (see Ref. 23 for example). Only recently, rigorous mathematical results
have been developed to treat stochastic spatially-distributed BD processes, e.g. Ref. 40.

We begin by considering only BD processes. Under the assumption of a local stochastic Markov
process, cell birth/death can be classically modeled via the following Fokker-Planck equation:41

∂ P[ρ, t]

∂t
= LBD[ρ, t]P[ρ, t], where (19)

LBD[ρ, t]P[ρ, t] =
∫

dr
δ

δρ(r)

{[
−D(1)

BD[ρ(r)] + 1

2

δD(2)
BD[ρ(r)]

δρ(r)

]
P[ρ, t]

}
, (20)
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and the cell density functionals D(i)
BD[ρ], i = 1, 2, represent the first and the second moments of the

BD process.
Next, we consider combined BD and cell-movement processes. We assume that the time scale

of cell movement (i.e., from cell-cell interactions, external and random forces) across the length l is
much smaller than the characteristic time of BD processes. That is, the ratio κ = τM/τBD 
 1, where
τM and τBD are the time scales of the movement and BD processes, respectively. This implies that
the system evolves during a time τBD under the composition of LBD and κ−1 times of LM, which
yields:

P[ρ, t + τB D] = (
1 + τB DLBD

)(
1 + τMLM

)κ−1

P[ρ, t]. (21)

For times much larger than τBD, and using the separation of BD and movement time scales, we
derive a new functional Fokker-Planck equation that replaces Eq. (4):

∂ P[ρ, t]

∂t
= (

LM[ρ, t] + LBD[ρ, t]
)
P[ρ, t]. (22)

Following the steps of the derivation of Eq. (6) from Eq. (4), as described in Section III A, an
averaging procedure of the functional Fokker-Planck equation (22) over the possible realizations of
the density field leads to a deterministic equation for the time evolution of the density:

∂ρ

∂t
(r, t) = �∇ ·

[
ρ(r, t)∇ δFC[ρ(r, t)]

δρ(r, t)

]
+ D(1)

BD[ρ(r, t)] , (23)

which describes both BD processes and cell movement simultaneously in a multicellular system.

C. Application to tumor growth

We illustrate the DDFT modeling framework by presenting an example that contains the basic
phenomenology of tumor growth. We neglect many biophysical processes4, 42 and assume that tumor
cell movement is mediated by random motion, cell-cell interaction forces and cell-extracellular
matrix (ECM) interactions through haptotaxis, which can be modeled as an external force. In
particular, let E denote the density of the ECM. Then, the external potential can be taken to be Vext

= −ξEE, which models movement of cells up gradients of ECM. We assume that ECM is degraded
and produced by tumor cells. As a simple model of cell-cell interaction forces, one may use the
Morse potential VM (r ) = V̄M

(
1 − e−a(r−re)

)2
, which describes short-range repulsion, e.g., resulting

from cell-cell compression, and longer-range attraction, e.g., resulting from cell-cell adhesion. Here,
V̄M and a are parameters that control the well-depth and width, respectively, and re is an equilibrium
distance. Of course, more sophisticated models of interactions may be used.43 Accordingly, the
overdamped Langevin equation (1) becomes

dri

dt
= −�

N∑
j=1

∇VM
(|ri − r j |

) + χE∇E(ri ) +
√

2D ηi (t) , (24)

where χE = �ξE. The ECM evolves according to

d E

dt
= λE

N∑
i=1

δ (r − ri (t)) , (25)

where λE is the net rate of ECM production, which is assumed to saturate at a specific value Esat

of ECM density, λE = λ̄E,prod (Esat − E)+ − λ̄E,degrade E , and the subscript + denotes the positive
part.

The proliferation of tumor cells is dependent on the availability of nutrients with concentration n.
As a simple model of BD, we assume that a single cell can undergo mitosis with a nutrient-dependent

probability λm = λm(n), which we represent by means of the stoichiometric equation X
λm−→ 2X .

We model cell death (e.g., apoptosis) as occuring with a constant probability λd, described by

the stoichiometric equation X
λd−→ ∅. This can be implemented as a Markov process and affects
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the number of cells in the population making N = N(t). The nutrient is provided by the vascular
system, diffuses through the microenvironment and is uptaken by tumor cells, and thus satisfies the
reaction-diffusion equation

∂n

∂t
= Dn∇2n + Sn − λn

N (t)∑
i=1

δ (r − ri (t)) , (26)

where Dn is the diffusion coefficient, Sn represents nutrient sources and λn is the nutrient uptake rate
assumed to be proportional to n, λn = λ̄nn.

Putting together the methodology described in the previous subsections, and using the fact
that the first moment of the BD process described above is simply the result of two mass action
laws, that is D(1)

BD[ρ] = λm(n) ρ − λd ρ, we can derive the corresponding deterministic equation
for the cell density ρ. Taking correlations into account, and using the approximations described in
Sec. III A 2, the cell density equation becomes

∂ρ

∂t
(r, t) = D∇2 ρ(r, t) − χE∇ · [ρ(r, t)∇E(r, t)] + [λm(n(r, t)) − λd ] ρ(r, t)

−D∇ ·
[
ρ(r, t)

∫
dr′ (ρ(r′, t) − ρ∞

) ∇rc(2)
eq (|r − r′|; ρ∞)

]
. (27)

Due to cell proliferation, the reference density ρ∞ should be time-dependent to reflect changes in
correlations due to increased cell densities, as observed in Ref. 21. A simple way of implementing
this is to define the reference density to be ρ∞(t) = 1/ |�| ∫ drρ(r, t), where the integral is taken
over the full domain �. Assuming no-flux boundary conditions, we obtain

dρ∞
dt

= 1

|�|
∫

dr [λm(n(r, t)) − λd ] ρ(r, t). (28)

As described in Sec. III A 2, Eq. (27) is not closed and requires the direct two-point correlation
function c(2)

eq that is determined as the solution of the Ornstein-Zernike equation (repeated here for
clarity)

h(r ) = c(2)
eq (r ; ρ∞) + ρ∞

∫
dr ′h(r ′)c(2)

eq (|r − r′|; ρ∞), (29)

together with a closure rule, which we may take, for example, to be the hypernetted chain closure31

(HNC) from the physical sciences,

h(r ) = exp

[
− �

D
VM (r ) + h(r ) − c(2)

eq (r ; ρ∞)

]
− 1, (30)

which relates the total correlation function h with c(2)
eq and the interaction potential VM. Then, for

the given potential VM, Eqs. (29) and (30) form a system of two nonlinear equations for the two
unknowns h and c(2)

eq , parameterized by the reference density ρ∞ that changes dynamically due to
Eq. (28), thus providing the direct two-point correlation function c(2)

eq to close Eq. (27).
Finally, the continuum equations for the ECM and nutrient concentration become

d E

dt
= [

λ̄E,prod (Esat − E)+ − λ̄E,degrade E
]
ρ, (31)

dn

dt
= Dn∇2n + Sn − λ̄nnρ (32)

Thus far, we have outlined a stochastic, discrete model and its deterministic, continuum coun-
terpart, which provide descriptions of the same processes occurring during tumor growth at different
scales. These models can be used together to develop a hybrid continuum-discrete multiscale model
using an adaptive mesh and algorithm refinement approach,44, 45 where the continuum model is used
at coarse grid scales, while the discrete algorithm is used on the finest mesh where fluctuations
are important (e.g., near the tumor-host interface). Further, feedback from continuum-scale to the
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microscale can be accommodated, for example, by assuming that the discrete forces depend on the
cell density.

IV. DISCUSSION AND OUTLOOK

We have proposed a modeling framework for multicellular systems by extending Dynamic
Density Functional Theory (DDFT) to account for different cell types, phenotypes and birth/death
processes. Analytical expressions were obtained for the biophysical fluxes that incorporate density
correlations, which were modeled using several levels of approximation following a DDFT approach.
We then applied these ideas to tumor growth and developed a stochastic, discrete model and a
continuum DDFT-type counterpart that modeled the same biophysical processes at larger scales.
We discussed how these continuum and discrete systems can be used to derive a hybrid continuum-
discrete multiscale model that satisfies the essential properties of a multiscale approach as described
in Sec. I.

The primary difference between our framework and existing models is that the DDFT-based
approach accounts for correlations at the continuum scale whereas existing models for multicellular
systems tend to use uncorrelated mean-field approximations. As observed in recent experiments
of collective cell motion,21 correlations become more important as cells proliferate and compress
one another, leading to a transition from fluid-like to solid-like behavior. In growing tumors, where
there is significant cell proliferation and compression, similar behavior may be expected. This
cannot be captured in an uncorrelated mean-field model without phenomenological modifications
of the biophysical fluxes (and constitutive laws) to separate fluid-like and elastic-like regimes using,
for example, pre-imposed yield stresses.46, 47 In contrast, such transitions should be automatically
captured in our approach, as has been observed in the physical sciences.48–50

In the development of a DDFT for multicellular systems, several levels of approximations were
used to close the system of equations including an adiabatic approximation and explicit closure
relations, which relate the correlations to the microscopic interaction potential. While this approach
has been used successfully in the physical sciences, it remains to be seen how appropriate these
approximations are for biological systems. Alternatively, experimental measurements can be used to
generate correlations by exploiting the relations between the structure factor and the correlations.51

For example, experimental measurements of the structure factor can be used to generate the total
correlation function via the Fourier transform. Then, the direct two-point correlation function can
be determined from the total correlation by solving the Ornstein-Zernike equation.

Further, the experiments discussed above on collective cell motion21 also underscore the po-
tential importance of taking into account cell sizes and shapes, which are strongly influenced by
compression and migration. While there is little known about DDFT for active, deformable objects,
it may be possible to describe these effects as components in a phenotype vector, such as we have
introduced here.

Because the DDFT-based model provides a description of processes at the mesoscale, further
coarse-graining is needed to describe processes at the tissue scale. This should be possible by
adapting and extending density-amplitude expansions developed in the physical sciences, where
equations are derived for the amplitudes and phases of the density, which vary on much longer
length scales.52–54

While we have discussed the application of the DDFT framework to tumor growth, it is important
to note that the framework can easily be made more general to accommodate more detailed tumor-
stroma interactions. Further, heterogeneity and anisotropy associated with the ECM can be modeled
using an approach analogous to that used in the development of a DDFT model of nematic liquid
crystals.55, 56
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55 M. Rex, H. Wensink, and H. Löwen, Phys. Rev. E 76, 21403 (2007).
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