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Abstract
Aim—To identify and study targets of microRNA biomarkers of glioblastoma survival across
events (death and recurrence) and phases (life expectancy or post-diagnostic) using functional and
network analyses.

Materials and Methods—microRNAs associated with glioblastoma survival within and across
race, gender, recurrence, and therapy cohorts were identified using 253 individuals, 534
microRNAs, Cox survival model, cross-validation, discriminant analyses, and cross-study
comparison.

Results—All 45 microRNAs revealed were confirmed in independent cancer studies and 25 in
glioblastoma studies. Thirty-nine and six microRNAs (including hsa-miR-222) were associated
with one and multiple glioblastoma survival indicators, respectively. Nineteen and 26 microRNAs
exhibited cohort-dependent (including hsa-miR-10b with therapy and hsa-miR-486 with race) and
independent associations with glioblastoma, respectively.

Conclusion—Sensory perception and G protein-coupled receptor processes were enriched
among microRNA gene targets also associated with survival and network visualization highlighted
their relations. These findings can help to improve prognostic tools and personalized treatments.
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Glioblastoma multiforme (World Health Organization glioma grade IV) is a primary and
aggressive cancer. Glioblastoma patients have a median survival of less than one year, and
the incidence of glioblastoma varies among cohort groups, such as race and gender (1, 2).
Some genes and microRNAs, small non-coding RNA molecules that can affect the post-
transcriptional regulation of genes, exhibit abnormal expression patterns in glioblastoma (3,
4). Data and methodological limitations have prevented the identification of consistent
microRNA biomarkers of glioblastoma survival that could be used to develop effective
prognosis and diagnostic tools and therapies. Data limitations mostly encompass small data
sets with unknown or restricted representation across cohort groups and consideration of a
single glioblastoma survival indicator. Methodological limitations include arbitrary
discretization of response (e.g. high and low survival) and explanatory (e.g. high or low
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expression level) variables (5), single-microRNA analysis (6, 7), pre-selection of
microRNAs, and use of approaches that cannot accommodate the multifactorial nature of the
disease.

The main objective of this study was to identify microRNAs that are reliable indicators of
glioblastoma survival and recurrence using survival analysis. The study also aimed at
extending the findings to microRNA target genes, their biological processes, molecular
functions, and networks. Another goal was to identify and profile cohort-dependent
associations between microRNAs and glioblastoma that can be used in personalized
therapies.

Materials and Methods
Survival, cohort, recurrence, and microRNA information from 253 individuals diagnosed
with glioblastoma and death and recurrence records between the years 1990 and 2008 was
considered. Surgical samples corresponded to newly diagnosed glioblastoma cases, had a
minimum of 80% tumor nuclei and a maximum of 50% necrosis (8). The data was obtained
from The Cancer Genome Atlas (TCGA) December 2009 data freeze (9). Cohort factors
were gender (male or female), race (white Caucasian or not), therapy received (radiation
therapy alone, RX; chemotherapy plus radiation and no targeted therapy, CRN;
chemotherapy plus radiation and targeted therapy, CRT; and all other therapies including no
therapy, OTHER), and the detection of glioblastoma recurrence or progression after the
original diagnostic (progression/recurrence or not).

Prognostic microRNA biomarkers for two events (death and recurrence) and two phases
(from birth to event or from diagnostic to event) were studied through three complementary
glioblastoma survivals: life expectancy (years from birth to death associated with
glioblastoma), post-diagnostic glioblastoma survival (months from glioblastoma diagnostic
to death), and post-diagnostic glioblastoma recurrence or progression (or post-diagnostic
recurrence hazard, encompassing the months from glioblastoma diagnostic to reports of
progression or recurrence). The last two indicators are also known as overall survival (OS)
and progression-free survival (PFS) and offer complementary information to life expectancy
(LE). The models used to describe the three indicators are specified in terms of hazard
(instead of survival) and thus, hazard or survival is used where appropriate. Table I
summarizes the number and distribution of individuals studied across levels of the
covariates considered in the model. The median age at diagnosis was 55.7 years. Expression
levels of 534 microRNAs were measured using the Agilent 8×15K Human microRNA
platform. The data was quantile-normalized, collapsed within microRNA, and log 2-
transformed following the procedures described in Beehive (10).

Statistical computing method
A Cox survival model together with leave-one-out cross-validation (LOOCV) and
discriminant analyses were used to identify microRNA expression profiles associated with
glioblastoma survival. This model accommodates censored data resulting from individuals
that are alive or that do not have a recurrence record at the end of the period analyzed. The
test of no association between the microRNA or cohort prognostic markers and the hazard
ratio between gender, race, therapy, or recurrence groups and the 95% confidence interval
limits follow a Chi-square distribution. There was no indication of significant departure
from the proportional hazards assumption, also confirmed by the overlap on microRNAs
between survival indicators.

A multi-step strategy was undertaken to identify and validate microRNA prognostic markers
of glioblastoma survival or recurrence. Cohort variables, microRNAs, and interaction terms
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were included simultaneously in a Cox model, and a combination of forward and stepwise
model selection methods were used to identify association for each survival. The
associations between all microRNAs in the platform, including 14 microRNA reported to be
associated with glioblastoma (hsa-miR-21, hsa-miR-221, hsa-miR-222, hsa-miR-181a, hsa-
miR-181b, hsa-miR-7, hsa-miR-128, hsa-miR-124, hsa-miR-137, hsa-miR-451, hsa-
miR-10b, hsa-miR-129, hsa-miR-139 and hsa-miR-218) (1) were streamlined using the
stepwise method. Following common practice, the resulting microRNA were evaluated
using a LOOCV approach (11–13) and classification analyses (14–17). LOOCV is
recommended especially for data sets of limited size, providing an almost unbiased
estimator and identifying the same best classifiers as other X-fold training-test data
partitions (11, 15). For the X-fold validation approach, the specification of suitable training
and testing data sets would have required at least 160 patients in each data set (5 patients × 2
races × 2 genders × 4 therapies × 2 recurrence groups) and only 253 patients were available.
Use of smaller data sets would have lead to low power and biased findings because of the
ill-representation of patients across cohort groups. Patients were classified into high and low
survival groups using the median time at the glioblastoma event (death or recurrence) as a
cutoff and removing patients with unclear hazard within one unit of the median. Only non-
censored records were used to avoid biased classification estimates. Preliminary results from
linear and quadratic discriminant, logistic, and k nearest-neighbor analyses were consistent,
and quadratic discriminant results are presented.

Validation of the results from the Cox model, LOOCV, and classification analyses on an
independent data set was not feasible because no other data set has information on gender,
race, therapy, recurrence, and age that would allow testing the cohort-dependent microRNAs
identified in this data set. Thus, a two-fold approach was used to offer corroboration of our
findings. First, the microRNAs biomarkers identified in this study were searched against the
glioblastoma multiforme and cancer literature based on independent data sets. Second, the
expression profile of the targets genes of the microRNAs were analyzed (18). The gene
targets corresponding to the microRNA associated with glioblastoma survival were obtained
from MicroCosm (19, 20). Expression measurements for the target genes were available
from the same patients using the Affymetrix HT HG-U133A platform. The normalization
and Cox survival models used for the gene targets were the same as described for the
microRNA. The target genes subsequently used had a significant association (P-value <
0.001) with either glioblastoma OS, PFS, or LE (18). Functional Gene Ontology (GO) and
KEGG Pathway analysis of the significant target genes of the significant microRNAs was
undertaken (21, 22). The enrichment of functional categories was evaluated using Fisher’s
exact (two-tailed) test and false discovery rate (FDR) multiple test adjustment (23). Network
visualization was accomplished by depicting all pair-wise relationships between target genes
using the BisoGenet plug-in from the Cytoscape software (24). BisoGenet’s database,
SysBiomics, integrates data from multiple public domain datasets such as BIND, HPRD,
Mint, DIP, BioGRID or Intact NCBI, UniProt, KEGG, and GO. Based on this information, a
global network of relations among microRNA target genes was created and visualized using
Cytoscape. The network was inferred using only significant target genes (circular network
nodes) of significant microRNAs associated with either glioblastoma survival. Only
interactions (network edges) connecting two target genes directly or through an intermediate
gene (square gray node) were portrayed to facilitate the visualization of relationships and
minimize the incorporation of relationships not relevant to the microRNAs biomarkers
detected in this study. Known gene relationships depicted in the network are summarized in
the SysBiomics repository (24).
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Results
The median length of glioblastoma LE, OS, and PFS was 59 years, 13 months, and 6
months, respectively. Survival length indicators confirm previous reports that most TCGA
samples correspond to primary glioblastoma (1, 25). MicroRNAs associated with the three
glioblastoma survivals are listed in Tables II to IV, respectively. Hazard ratio estimates >1
indicate an increase in the hazard (decrease in survival probability) per unit increase in the
level of microRNA expression, and hazard ratio estimates <1 denote the opposite trend,
conditional on all other cohort and microRNA predictors in the model.

Tables II to IV list previous studies that support the association between the microRNAs and
glioblastoma identified in this study. Corroborating our findings, the majority of microRNAs
associated with glioblastoma survival (25 out of 45 microRNAs) have also been associated
with glioblastoma in independent studies, and the rest (20 microRNAs) have been associated
with other types of cancer (Tables II to IV). MicroRNAs in two families (hsa-miR-181 and
hsa-miR-34 family) and six microRNAs were associated with multiple survival indicators,
while 35 microRNAs were associated with one survival indicator. The same number of
positive and negative associations (HR >1 or HR <1) between microRNA expression levels
and the three glioblastoma hazards studied were revealed in this study (Tables II to IV).
Twenty-six and 19 microRNAs had cohort-independent and-dependent relationships with
glioblastoma survival, respectively. The survival plot in Figure 1 depicts the lower post-
diagnostic survival probability of females that have a low level of microRNA ebv-miR-
bhrf1-1 relative to males with a high expression level. Three microRNAs (hsa-miR-10b,
hsa-miR-222, and hsa-miR-140) exhibited different hazard ratio trends across glioblastoma
indicator, and the associated confidence interval allowed the identification of the trend best
supported by the data.

Integration of Cox survival model, LOOCV, and discriminant analysis supported the correct
classification of 98% and 93% of the patients into the low and high post-diagnostic survival
or OS groups, respectively, and the area under the receiver operator characteristic (ROC)
was 94%. Likewise, 100% and 91% of the individuals in the high and low PFS groups were
correctly classified, and the area under the ROC was 97%. Finally, 86% and 75% of the
patients in the high and low LE groups were correctly classified, and the area under the ROC
was 85%. Another indicator of the reliability of the integrated approach is that all
microRNAs detected in this study have been associated with cancer and the majority with
glioblastoma in independent studies. An additional indicator supporting the microRNAs
identified is that 239, 418, and 336 gene targets of the microRNAs were significantly
associated with LE, OS, and DFS, respectively.

Several GO categories were enriched (FDR-adjusted P-value < 0.05) among the target genes
significantly associated with multiple survival indicators. Tables V to VII summarize these
findings, with the latter table including an FDR-adjusted P-value <0.01 and a minimum of
six genes due to space limitations. Categories are sorted by GO theme, followed by level and
P-value. The GO categories enriched across all three survival indicators included sensory
perception (of chemical stimulus and smell), neurological process, olfactory receptor
activity, rhodopsin-like receptor activity, and transmembrane receptor activity. All GO
categories enriched in the post-diagnostic death or OS were also identified in either or both
of the remainder indicators. Figure 2 portrays the network including target genes (denoted in
pink) of significant miRNAs that also themselves have a significant association with either
glioblastoma OS or PFS, and have a minimum of one relationship and at most one indirect
relationship with other target genes.
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Discussion
All microRNAs associated with glioblastoma survival detected in this study have been
confirmed in previous independent studies (25 microRNA) or have been associated with
other cancer types (20 microRNAs). This extensive confirmation, the large number of target
genes also significantly associated with glioblastoma survival, and the correct classification
of patients into survival groups further supports the robustness of our findings. The equal
number of positive and negative associations between microRNA expression levels and
survival and the fact that 17% of the microRNAs exhibited associations with multiple
glioblastoma survival indicators confirm the paradigm that glioblastoma initiation and
recurrence are impacted by microRNAs targeting a wide range of oncogenes, tumor
suppressor genes, and pathways at different stages of tumor genesis and growth (26). Most
microRNAs (64%) exhibited a broad, cohort-independent relationship with glioblastoma
survival. This indicates that mainstream and general practices to treat glioblastoma on the
basis of microRNA profiles alone are promising. The identification of sex-, race-, and
therapy-dependent microRNA biomarkers indicates that general practices can be effectively
complemented with personalized practices. The following discussion of the microRNA
biomarkers focuses on novel and high impact discoveries, and relevant supporting
references for all other microRNAs are listed in Tables II to IV.

Higher levels of Kaposi’s sarcoma-associated herpes virus (kshv) miR-k12-1 were
associated with all three glioblastoma survival indicators (Tables II to IV) in agreement with
associations between this microRNA and two B-cell-derived cancer types (27). MicroRNAs
ebv-miR-bhrf1-1, hsa-miR-565, hsa-miR-137, and hsa-miR-512-3p had gender-, race-, and
recurrence-dependent associations with OS and PFS (Tables III and IV). For these four
microRNAs, cohort-independent trends in the same direction were reported respectively for
Burkitt’s lymphoma, ovarian cancer, chemoradiation-treated rectal cancer, and for both
metastatic pancreatic ductal adenocarcinoma cell lines and hepatocellular carcinoma cells
linked to the inhibition of the tumorgenesis factor c-FLIP (28–30). Likewise, the gender-,
therapy- and race-dependent associations between hsa-miR-93, hsa-miR-489, human
cytomegalovirus (hcmv) miR-ul70-3p, hsa-miR-758, hsa-miR-143, and PFS (Table IV) have
been confirmed at a cohort-independent level for T-cell leukemia, breast-cancer MCF-7
cells resistant to tamoxifen, tumors from various tissues (e.g. breast, colon, liver), multidrug-
resistant variant of a human gastric adenocarcinoma cell line, and for both B-cell chronic
lymphocytic leukemia and colorectal cancer cell growth through inhibition of KRAS
translation (31–36). The cohort-independent and gender-dependent association of hsa-
miR-222 with OS and PFS (Tables III and IV, respectively) confirm the results of Ciafre et
al. (37). The therapy-dependent association between glioblastoma and members of the hsa-
miR-181 and hsa-miR-34 families (Tables II to IV) are consistent with previous reports (3,
6, 38). High levels of hsa-miR-140 were associated with higher LE and lower and therapy-
dependent OS (Tables II and III). The multiple modes of action of hsa-miR-140 are
consistent with reports of up-regulation in most glioblastoma cases (38), inhibition of cell
proliferation in osteosarcoma and colon cancer cell lines (39), and treatment-dependent
action (39). Reanalysis of the association between glioblastoma survival and hsa-miR-140
alone (with and without cohort factors, results not shown) produced trends similar to that in
the multi-microRNA models. Thus, our results suggest that the influence of hsa-miR-140 on
glioblastoma survival may vary with the glioblastoma phase considered. A gender-
dependent association between hsa-miR-26a and OS was uncovered (Table III). The general
trend is consistent with the proposed role of hsa-miR-26a promoting glioblastoma cell
growth and formation (37, 40), and the gender-dependent model is in agreement with the
higher expression of hsa-miR-26a in women than in men diagnosed with hepatocellular
carcinoma (41).
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Additional analyses resolved the apparent inconsistencies in the trends between previous
reports and our study for seven microRNAs hsa-miR-182 (42), hsa-miR-106b (43), ebv-
miR-bart7 (44), hsa-miR-189 (45), hsa-miR-221 (46), hsa-miR-21 (47), and hsa-miR-10b (6,
42, 43). For hsa-miR-182, hsa-miR-106b and hsa-miR-221, the individual microRNA
analysis supported the multi-microRNA results. For ebv-miR-bart7, hsa-miR-189 and hsa-
miR-10b, the individual analysis did not detect a significant trend. In one case, hsa-miR-21
was not detected when considered simultaneously with other microRNA but was significant
when considered alone, in agreement with Chan et al. (47). These results suggest that
identification of biomarkers on an individual basis may result in spurious associations and
also validate the approach used in this study to identify biomarkers that simultaneously
considers multiple microRNAs.

The large number of gene targets of the detected microRNAs that also exhibited significant
association with glioblastoma survival further substantiates our findings. Sensory
perception, neurological process, olfactory receptor, and transmembrane receptor activity
were among the processes and functions consistently over-represented among the target
genes of microRNAs associated with all three glioblastoma survival indicators. The
neurological and sensory perception processes are consistent with reports of glioblastoma
candidates for single nucleotide polymorphisms of sensory perception genes and with
reports that individuals with brain tumors lose sensory perception (48). Oncogenes act by
mimicking the growth signals transmitted by transmembrane receptors (49). G Protein-
coupled receptor (GPCR) activity (e.g. rhodopsin-like gene) regulates cellular motility,
growth and differentiation, and gene transcription, three factors central to the biology of
cancer (50). The network of gene targets that have significant association with glioblastoma
survival displays known relationships, including many in the signaling pathways that
involve GPCR, including MAPK, adipocytokine, chemokine, ErBB, FC epsilon RI, mTOR,
neurotrophin, notch, p53, phosphatidylinositol, RIG-I-like receptor, T-cell receptor, TGF-
beta receptor, toll-like receptor, VEGF, and Wnt signaling pathways (Figure 2).

In summary, this study confirmed 25 microRNAs previously associated with glioblastoma
survival and identified 20 other microRNA that have been previously associated with other
cancer types. This confirmation and the high correct classification of patients into survival
groups suggests that the biomarkers revealed in this study are good leads for empirical
confirmation, improved prognostic tools, and personalized treatments of glioblastoma
multiforme. Six and 39 microRNAs were identified as biomarkers of multiple or single
glioblastoma survival indicators, respectively, suggesting the multifactorial and multifaceted
genomic basis of this cancer. Nineteen microRNAs exhibited gender-, race-, therapy-, or
recurrence-dependent associations with glioblastoma survival, suggesting that personalized
prognostic and treatments that consider individual variation can improve the outcome for
glioblastoma patients. Sensory perception and GPCR activities are among the processes of
the microRNA target genes associated with survival.
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Figure 1.
Overall survival plots for males (black lines) and females (gray lines) that have high (dash
lines) and low (solid line) levels of ebv-miR-bhrf1-1.
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Figure 2.
Network of target genes of glioblastoma microRNAs.
Footnote. Circular pink nodes denote target genes of microRNAs associated with
glioblastoma survival that also have a significant association with survival themselves.
Square gray nodes denote a maximum of one intermediate gene between target genes. Edges
denote known relationship between genes from several databases and summarized in the
SysBiomics repository.
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Table II

MicroRNAs associated with life expectancy on a cohort-independent or-dependent manner and supporting
independent studies.

MicroRNA P-value Hazard ratio (95% C.I.) Relevant literature references

hsa-miR-181a* 0.0537 RX=0; 0.33 (0.21 to 0.51)
RX=1; 1.05 (0.33 to 3.38)

(3, 4)G

hsa-miR-189 0.0204 0.20 (0.05 to 0.78) (45)O

hsa-miR-19b 0.0049 1.46 (1.11 to 1.90) (51)G

hsa-miR-222 0.0258 0.83 (0.70 to 0.98) (6, 37, 38)G

hsa-miR-34a 0.0500 RX=0; 0.69 (0.57 to 0.85)
RX=1; 1.17 (0.72 to 1.89)

(52, 53)G

hsa-miR-550 <0.0001 4.18 (2.31 to 7.56) (54)O

hsa-miR-625 0.0119 2.48 (1.22 to 5.02) (55)O

kshv-miR-k12-1 0.0023 2.08 (1.30 to 3.32) (27)O

hsa-miR-10b <0.0001 0.74 (0.64 to 0.85) (6, 42, 43)G

hsa-miR-140 0.0130 1.57 (1.10 to 2.24) (38, 39)G

hsa-miR-149 0.0056 0.76 (0.63 to 0.92) (56)G

C.I., Confidence Interval; RX=1 denotes radiation therapy alone, RX=0 denotes non-radiation therapy;

G
glioblastoma multiforme study;

O
study on any other type of cancer.
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Table III

MicroRNAs associated with overall survival on a cohort-independent or -dependent manner and supporting
independent studies.

MicroRNA P-value Hazard ratio (95% C.I.) Relevant literature references

hsa-miR-182 0.0245 RX=0: 0.67 (0.57 to 0.77)
RX=1: 1.00 (0.71 to 1.38)

(42)G

0.0027 CRT=0: 0.66 (0.56 to 0.77)
CRT=1: 1.19 (0.83 to 1.69)

hsa-miR-189 0.0316 0.12 (0.02 to 0.83) (45)O

hsa-miR-196a 0.0168 1.39 (1.06 to 1.81) (57)G

hsa-miR-221 0.0298 RX=0: 0.67 (0.43 to 1.04)
RX=1: 0.41 (0.22 to 0.75)

(6, 37, 38, 46)G

hsa-miR-222 <0.0001 2.14 (1.51 to 3.03) (6, 37, 38)G

hsa-miR-23b 0.0135 1.61 (1.10 to 2.35) (37)G

hsa-miR-26a 0.0020 Male: 1.33 (1.02 to 1.71)
Female: 2.52 (1.78 to 3.58)

(37, 40, 41)G

hsa-miR-324-5p <0.0001 2.73 (1.80 to 4.14) (58)G

hsa-miR-34c 0.0106 0.62 (0.43 to 0.90) (52, 53)G

ebv-miR-bhrf1-1 0.0009 Other: 0.09 (0.01 to 0.51)
Caucasian: 1.83 (1.16 to 2.88)

(28)O

0.0008 Male: 0.65 (0.35 to 1.24)
Female: 2.77 (1.43 to 5.38)

hsa-miR-512-3p 0.0030 0.28 (0.12 to 0.65) (55, 59)O

hsa-miR-565 0.0996 Other: 2.97 (1.71 to 5.16)
Caucasian: 1.80 (1.41 to 2.30)

(29)O

0.0003 Pr/Re=0: 3.80 (2.40 to 6.02)
Pr/Re=1: 1.59 (1.27 to 2.00)

hsa-miR-572 0.0691 0.76 (0.57 to 1.02) (60)O

hsa-miR-766 0.0052 1.57 (1.15 to 2.16) (61)O

kshv-miR-k12-1 <0.0001 2.77 (1.78 to 4.31) (27)O

kshv-miR-k12-6-3p 0.0608 1.54 (0.98 to 2.43) (62)O

hsa-miR-101 0.0065 1.63 (1.15 to 2.32) (26)G

hsa-miR-10b 0.0146 RX=0: 1.16 (0.97 to 1.38)
RX=1: 0.74 (0.52 to 1.04)

(6, 42, 43)G

hsa-miR-134 0.0007 2.11 (1.37 to 3.25) (43)G

hsa-miR-137 0.0010 CRN=0: 2.11 (1.45 to 3.05)
CRN=1: 0.94 (0.67 to 1.32)

(30)O

hsa-miR-140 0.0010 CRN=0: 0.21 (0.12 to 0.37)
CRN=1: 0.65 (0.37 to 1.15)

(38, 39)G

hsa-miR-148a <0.0001 1.65 (1.35 to 2.02) (63)O

hsa-miR-409-3p 0.0001 0.43 (0.28 to 0.66) (64)O

C.I., Confidence Interval; RX=1 denotes radiation therapy alone, RX=0 denotes non-RX therapy; CRT=1 denotes chemotherapy plus radiation and
targeted therapy, CRT=0 denotes non-CRT therapy; Pr/Re=1 denotes glioblastoma recurrence or progression report, Pr/Re=0 denotes no recurrence
or progression report; CRN=1 denotes chemotherapy plus radiation and no targeted therapy, CRN=0 denotes non-CRN therapy;

G
glioblastoma multiforme study;
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O
study on any other type of cancer.
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Table IV

MicroRNAs associated with progression-free survival on a cohort-independent or-dependent manner and
supporting independent studies.

MicroRNA P-value Hazard ratio (95% C.I.) Relevant literature references

hsa-miR-181c 0.0004 CRN=0: 0.27 (0.16 to 0.47)
CRN=1: 0.82 (0.53 to 1.35)

(6, 38)G

hsa-miR-188 <0.0001 2.30 (1.55 to 3.40) (42)G

hsa-miR-222 0.0814 Male: 1.27 (1.02 to 1.58)
Female: 1.65 (1.29 to 2.12)

(6, 37, 38)G

hsa-miR-296 0.0247 RX=0: 1.56 (1.14 to 2.14)
RX=1: 3.83 (1.82 to 8.07)

(38, 65)G

0.0633 CRT=0: 2.04 (1.51 to 2.76)
CRT=1: 0.90 (0.39 to 2.10)

ebv-miR-bart7 <0.0001 0.05 (0.01 to 0.15) (44)O

hsa-miR-486 0.0168 Other: 0.74 (0.44 to 1.25)
Caucasian: 1.53 (1.12 to 2.08)

(42)G

hsa-miR-489 0.0041 0.04 (0.00 to 0.36) (32)O

hsa-miR-512-3p 0.0257 Other: 0.00 (0.00 to 0.04)
Caucasian: 0.07 (0.02 to 0.28)

(55, 59)O

hcmv-miR-ul70-3p 0.0004 Male: 0.43 (0.27 to 0.67)
Female: 1.13 (0.71 to 1.79)

(33)O

hsa-miR-552 0.0001 0.00 (0.00 to 0.01) (26)G

hsa-miR-578 <0.0001 0.00 (0.00 to 0.00) (66)G

hsa-miR-582 0.0003 5.49 (2.17 to 13.88) (26)G

hsa-miR-584 0.0307 0.22 (0.05 to 0.87) (26)G

hsa-miR-758 0.0029 CRN=0: 0.77 (0.23 to 2.60)
CRN=1: 0.08 (0.03 to 0.21)

(34)O

hsa-miR-93 0.0006 2.63 (1.51 to 4.85) (31)O

kshv-miR-k12-1 <0.0001 3.19 (1.93 to 5.29) (27)O

kshv-miR-k12-6-5p <0.0001 3.70 (1.93 to 7.10) (67)O

hsa-miR-106b 0.0014 RX=0: 0.12 (0.06 to 0.22)
RX=1: 0.55 (0.22 to 1.40)

(43)G

hsa-miR-143 0.0020 Other: 0.30 (0.16 to 0.54)
Caucasian: 0.83 (0.61 to 1.12)

(35, 36)O

C.I., Confidence Interval; CRN=1 denotes chemotherapy plus radiation and no targeted therapy, CRN=0 denotes non-CRN therapy; RX=1 denotes
radiation therapy alone, RX=0 denotes non-RX therapy; CRT=1 denotes chemotherapy plus radiation and targeted therapy, CRT=0 denotes non-
CRT therapy;

G
glioblastoma multiforme study;

O
study on any other type of cancer; n/a, no association with any type of cancer found in literature.
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Table V

Gene Ontology categories enriched (FDR-adjusted P-value <0.05) among the target genes of microRNAs
associated with life expectancy

Gene Ontology Level Term FDR P-value No. of genes

Biological process 3 Neurological process (GO:0050877) 0.0248 219

Biological process 4 Sensory perception (GO:0007600) 0.0111 151

Biological process 5 Sensory perception of chemical stimulus (GO:0007606) <0.0001 70

Biological process 6 Sensory perception of smell (GO:0007608) <0.0001 63

Molecular function 4 Transmembrane receptor activity (GO:0004888) 0.0146 239

Molecular function 5 G Protein-coupled receptor activity (GO:0004930) 0.0039 160

Molecular function 6 Rhodopsin-like receptor activity (GO:0001584) 0.0023 134

Molecular function 7 Olfactory receptor activity (GO:0004984) <0.0001 60
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Table VI

Gene Ontology categories enriched (FDR-adjusted P-value <0.05) among the target genes of microRNAs
associated with overall survival.

Gene Ontology Level Term FDR P-value No. of genes

Biological process 3 Neurological process (GO:0050877) <0.0001 371

Biological process 3 Cell communication (GO:0007154) 0.0001 1546

Biological process 4 Sensory perception (GO:0007600) <0.0001 255

Biological process 4 Signal transduction (GO:0007165) 0.0006 1400

Biological process 5 Sensory perception of chem. stimulus (GO:0007606) <0.0001 129

Biological process 5 Cell surface receptor linked signal transduction (GO:0007166) 0.0145 684

Biological process 6 Sensory perception of smell (GO:0007608) <0.0001 123

Biological process 6 G Protein-coupled receptor protein signaling pathway (GO:0007186) 0.0156 413

Molecular function 3 Receptor activity (GO:0004872) 0.0040 711

Molecular function 3 Antigen binding (GO:0003823) 0.0422 16

Molecular function 4 Transmembrane receptor activity (GO:0004888) 0.0002 457

Molecular function 5 G Protein-coupled receptor activity (GO:0004930) <0.0001 315

Molecular function 6 Rhodopsin-like receptor activity (GO:0001584) 0.0002 274

Molecular function 7 Olfactory receptor activity (GO:0004984) <0.0001 120
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Table VII

Gene Ontology categories enriched (FDR-adjusted P-value <0.01, number genes >6) among the target genes
of microRNAs associated with progression-free survival.

Gene Ontology Level Term FDR P-value No. of genes

Biological process 3 Cell communication (GO:0007154) <0.0001 975

Biological process 3 Multicellular development (GO:0007275) <0.0001 507

Biological process 3 Neurological process (GO:0050877) <0.0001 248

Biological process 3 Anatomical structure development (GO:0048856) <0.0001 483

Biological process 3 Cellular organization & biogenesis (GO:0016043) 0.0008 639

Biological process 3 Cellular metabolic process (GO:0044237) 0.0014 2290

Biological process 3 Cellular developmental process (GO:0048869) 0.0066 551

Biological process 4 Signal transduction (GO:0007165) <0.0001 889

Biological process 4 Sensory perception (GO:0007600) <0.0001 172

Biological process 4 System development (GO:0048731) <0.0001 386

Biological process 5 Sensory perception of chemical stimulus (GO:0007606) <0.0001 86

Biological process 5 Cell surface receptor linked signal transduction (GO:0007166) <0.0001 433

Biological process 5 Organ development (GO:0048513) 0.0085 285

Biological process 5 + Regulation of metabolic process (GO:0009893) 0.0087 84

Biological process 5 Carboxylic acid metabolic process (GO:0019752) 0.0095 185

Biological process 5 + Regulation of cellular process (GO:0048522) 0.0095 214

Biological process 6 Organ morphogenesis (GO:0009887) <0.0001 57

Biological process 6 Sensory perception of smell (GO:0007608) <0.0001 80

Biological process 6 G Protein-coupled receptor protein signaling pathway (GO:0007186) 0.0099 266

Molecular function 3 Protein binding (GO:0005515) <0.0001 1601

Molecular function 4 Transmembrane receptor activity (GO:0004888) 0.0017 305

Molecular function 6 Rhodopsin-like receptor activity (GO:0001584) 0.0101 179

Molecular function 7 Olfactory receptor activity (GO:0004984) 0.0002 79
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