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E2-EPF ubiquitin carrier protein (UCP) stabilizes hypoxia-
inducible factor-1α (HIF-1α) inducing ischemic vascu-
lar responses. Here, we investigated the effect of UCP 
gene transfer on therapeutic angiogenesis. Adenovirus-
encoded UCP (Ad-F-UCP) increased the expression of 
vascular endothelial growth factor (VEGF) and fibro-
blast growth factor-2 (FGF-2) in cells and mice. Condi-
tioned media from UCP-overexpressing cells promoted 
proliferation, tubule formation, and invasion of human 
umbilical-vascular-endothelial cells (HUVECs), and vas-
cularization in chorioallantoic membrane (CAM) assay. 
Ad-F-UCP increased the vessel density in the Martigel 
plug assay, and generated copious vessel-like structures 
in the explanted muscle. The UCP effect on angiogenesis 
was dependent on VEGF and FGF-2. In mouse hindlimb 
ischemia model (N = 30/group), autoamputation (limb 
loss) occurred in 87% and 68% of the mice with saline 
and Ad encoding β-galactosidase (Ad-LacZ), respec-
tively, whereas only 23% of the mice injected with Ad-F-
UCP showed autoamputation after 21 days of treatment. 
Ad-F-UCP increased protein levels of HIF-1α, platelet-
endothelial cell adhesion molecule-1 (PECAM -1), smooth 
muscle cell actin (SMA) in the ischemic muscle, and aug-
mented blood vessels doubly positive for PECAM-1 and 
SMA. Consequently, UCP gene transfer prevented mus-
cle degeneration and autoamputation of ischemic limb. 
The results suggest that E2-EPF UCP may be a target for 
therapeutic angiogenesis.
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IntroductIon
Angiogenic factors have been extensively exploited for the gene 
therapy of coronary and peripheral artery disease including criti-
cal limb ischemia (CLI).1 Therapeutic effect of angiogenic factors, 
such as vascular endothelial growth factors (VEGFs) and fibro-
blast growth factors (FGFs), has been verified in preclinical ani-
mal models, but appears to be marginal in clinical trials.1 Thus, 
novel modality for therapeutic angiogenesis needs to be sought.

Blood vessel networks mature through a series of multiple 
steps including numerous factors.2 Hypoxia-inducible factor-1α 
(HIF-1α) associates with HIF-1β to form HIF-1 transcription 
factor that activates the expression of various genes involved in 
angiogenesis.3,4 For these reasons, HIF-1α has been extensively 
examined for its potential for therapeutic angiogenesis.5,6 E2-EPF 
ubiquitin carrier protein (UCP) promotes the ubiquitin-medi-
ated proteolysis of von Hippel–Lindau (VHL) that is part of E3 
ubiquitin ligase complex.7,8 The VHL E3 ubiquitin ligase targets 
HIF-1α for ubiquitination and degradation in an oxygen-depen-
dent manner.9,10 Therefore, HIF-1α is stabilized under hypoxia 
and has been shown to be a master regulator for hypoxic/ischemic 
vascular responses.6 Angiogenesis and particularly arteriogenesis 
should also be induced in normoxic area around the ischemic 
tissue for therapeutic neovascularization.11 Forced expression of 
UCP destabilizes VHL and stabilizes HIF-1α in cells under nor-
moxia and under hypoxic (1% oxygen) condition.7 This ability of 
UCP to stabilize HIF-1α led us to test whether UCP is a target for 
therapeutic angiogenesis.

results
ucP gene transfer promotes the expression and 
secretion of VeGF and FGF-2 in cells
We showed previously that adenovirus-encoded UCP (Ad-F-UCP) 
increases the expression of VEGF through the VHL/HIF pathway 
at mRNA level.7 Hypoxic induction of an HIF-1α-dependent 
FGF-2 autocrine loop promotes angiogenesis in human endothe-
lial cells.12 Insulin-like growth factor-2 and transforming growth 
factor-β3 genes are activated by HIF-1 and involved in blood ves-
sel formation.13,14 Gene expression of angiogenic factors by HIF-1 
is regulated in a cell type–specific manner.4 Based on these pre-
vious findings, we examined whether Ad-F-UCP increased the 
expression of those angiogenic factors in the cell lines of different 
origin (Figure 1a). VEGF and FGF-2 transcripts were substan-
tially increased in all the cell lines transduced with Ad-F-UCP 
compared to those with phosphate-buffered saline (PBS) or Ad 
encoding β-galactosidase (Ad-LacZ). Because insulin-like growth 
factor-2 and transforming growth factor-β3 transcripts appeared 
not to be greatly increased in the cells with Ad-F-UCP (Figure 1a), 
we quantified protein levels of only VEGF and FGF-2 in the culture 
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supernatants (Figure 1b). UCP expression enhanced the secretion 
of VEGF and FGF-2 in the three cell lines.

conditioned media from ucP-overexpressing  
cells promote proliferation, tubule formation,  
and invasiveness of HuVecs
We collected conditioned media from HeLa, NIH3T3, and 
MRC-5 cells with or without UCP gene transfer and incubated 
human umbilical-vascular-endothelial cells (HUVECs) in the 
conditioned media for 3 days and counted them once a day. We 
photographed viable HUVECs at 48 hours after incubation and 
stained them with crystal violet (Supplementary Figure S1a,b). 
The conditioned media from cells with Ad-F-UCP, but not PBS 
or Ad-LacZ enhanced the proliferation of HUVECs (Figure 2a). 
This proliferation-enhancing effect was in the order of the con-
ditioned medium from HeLa, NIH3T3, and MRC-5 cells with 
Ad-F-UCP (Figure 2a), which appeared to correlate with pro-
tein levels of VEGF and FGF-2 in the culture supernatants 
(Figure 1b).

Tubule formation assay revealed that the conditioned media 
from cells with Ad-F-UCP promoted the formation of elongated 
and robust tube-like structures, and increased tubule branch point 
more than twofold compared with the controls (Figure 2b,c). 
To examine the involvement of VEGF and FGF-2 in the tubule 
formation, we incubated HUVECs in the conditioned media 
with or without neutralizing antibodies against VEGF or FGF-2 
(Figure 2d). The branch point increased by the conditioned 
media from the cells with Ad-F-UCP was significantly reduced by 
the VEGF or FGF-2 antibody (Figure 2d), and further decreased 
when both the antibodies were together present.

The invasion assay revealed that the conditioned media from 
cells transduced with Ad-F-UCP markedly increased the invasive-
ness of HUVECs compared with the controls (Figure 2e).

ucP gene transfer stimulates angiogenesis in vivo
We examined the in vivo angiogenic potential of UCP gene transfer 
by three methods: chorioallantoic membrane (CAM),15 Matrigel 
plug,16 and ex vivo skeletal muscle angiogenesis assays.17

Chicken CAM assay showed that the conditioned medium from 
HeLa cells transduced with Ad-F-UCP significantly increased the 
number of branch points compared with that from cells with PBS 
or Ad-LacZ (Figure 3a,b). The conditioned medium from cells 
with Ad-F-UCP exhibited angiogenic effect comparable to 1 μg of 
human recombinant VEGF-121. This potent effect of the condi-
tioned medium may result from the fact that it contains VEGF, 
FGF-2, and other angiogenic factors, which may synergistically 
promote angiogenesis.

We performed the Matrigel plug assay with NIH3T3 cells with 
or without Ad-F-UCP. Hematoxylin and eosin (H&E) staining of the 
Matrigel plug sections showed that the blood vessel was more abun-
dantly generated in the Ad-F-UCP group (Figure 4a). Physiological 
maturation of blood vessel requires recruitment of smooth muscle 
cells representing pericytes. Thus, lining of smooth muscle cells with 
platelet-endothelial cell adhesion molecule-1 (PECAM-1)–positive 
cells represents maturation of blood vessel.2,18 Immunofluorescent 
staining of the plug sections revealed that the PECAM-1-positive 
area representing the endothelium was lined with smooth muscle 
cell actin (SMA)–positive area (Figure 4a). This lining was more 
abundantly detected in the plug section with Ad-F-UCP compared 
to that with PBS or Ad-LacZ (Figure 4a Merge, yellow). Ad-F-UCP 
increased the capillary (PECAM-1 positivity) and mature vessel 
(SMA-positivity) densities about twofold in the plug assay, respec-
tively, compared with the controls (Figure 4b).

We confirmed that the intramuscular injection of Ad-F-UCP 
decreased VHL level, increased HIF-1α level and mRNA levels of 
VEGF and FGF-2 in the thigh muscle of mouse (Supplementary 
Figure S4a,b). We then performed ex vivo skeletal muscle 
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angiogenesis assay.17 The formation of sprouted vessel-like struc-
tures were more in the Ad-F-UCP group compared with the 
Ad-LacZ group (Figure 4c), and were increased in an incubation 
time–dependent manner (Supplementary Figure S4c,d) and in an 
Ad-F-UCP-dosage-dependent manner (Supplementary Figure 
S4e,f). To test the involvement of VEGF or FGF-2 in the forma-
tion of vessel-like structures, skeletal muscles were cultured in the 
presence or absence of anti-VEGF and/or anti-FGF-2 antibodies. 
Anti-VEGF or anti-FGF-2 antibody significantly inhibited Ad-F-
UCP-mediated outgrowth of vessel-like structures (Figure 4c,d), 
and the sprouting was more strongly inhibited when both anti-
bodies were present. Collectively, the results suggest that UCP 
gene transfer promotes neovascularization in vivo.

ucP gene transfer prevents loss of ischemic  
mouse hindlimb
To examine whether our surgical procedure indeed led to isch-
emic hindlimb, we visualized hindlimb vasculature by micro-
computed tomography (CT) after femoral artery occlusion19 and 
also examined the protein level of HIF-1α. Blood perfusion in the 
operated leg was drastically reduced compared with that in the 
non-operated leg or in the leg before operation (Supplementary 
Figure S5a). At 12 hours after the surgery, HIF-1α protein was 
detected in the thigh muscle of the operated leg, but not the non-
operated leg (Supplementary Figure S5b), suggesting the success-
ful induction of ischemic tissue due to insufficient blood perfusion 
by the surgery. We then evaluated the therapeutic effects of Ad-F-
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UCP (Figure 5a). Limb loss occurred in 87% and 68% of the mice 
with PBS and Ad-LacZ, respectively, whereas only 23% of the 
mice injected with Ad-F-UCP showed limb loss. Limb rescue and 
necrosis were observed in 23% and 54% of the mice with Ad-F-
UCP, respectively, while 6% and 26% of the mice with Ad-LacZ 
exhibited limb rescue and limb necrosis, respectively. In the PBS 
group, no mice recovered and 13% of the mice had limb necrosis. 
These differences in the therapeutic effect between the Ad-F-UCP 
group and the control groups were significant. The results suggest 
that UCP gene transfer delays limb loss.

To examine whether Ad-F-UCP-mediated therapeutic effects 
correlated with blood perfusion in ischemic tissue, hindlimb 
vasculature was imaged using micro-CT once a week after treat-
ment (Figure 5b). Vascularity in ischemic hindlimb was severely 
impaired in mice injected with PBS or Ad-LacZ at day 7 after 
treatment and eventually limb loss occurred at day 21, while 
Ad-F-UCP gradually increased vascularity at the hindlimb distal 
to the gene transfer site and rescued ischemic hindlimb. Blood 
vessel network was reconstituted in the ischemic hindlimb with 
Ad-F-UCP after 21 days of treatment, which was comparable to 
that in the non-operated leg (Figure 5b).

F-UCP was expressed for 21 days in the ischemic thigh mus-
cle with Ad-F-UCP, resulting in a decrease in VHL level and an 
increase in HIF-1α protein level (Figure 5c). Expression of VEGF 
and FGF-2 was increased more than twofold in the thigh muscle 
with Ad-F-UCP at day 21 after injection, compared to that with 
PBS or Ad-LacZ (Figure 5d). Protein levels of PECAM-1 and 
SMA were highly maintained for 21 days in the thigh muscle 
with Ad-F-UCP, although their levels were lower than those in 
the thigh muscle without operation (Figure 5c). Protein level of 
a progenitor cell marker CD34 was also slightly increased in the 
thigh muscle with Ad-F-UCP for 21 days (Figure 5c), suggesting 

that the endothelial progenitor cells may be involved in the UCP-
mediated neovascularization.

Immunohistochemical analysis revealed that the ischemic 
muscle was massively degenerated in the PBS or Ad-LacZ group, 
but not with Ad-F-UCP (Figure 6a, H&E). PECAM-1-positive 
area (Figure 6a, dark brown) was more abundantly detected in 
the ischemic muscle with Ad-F-UCP, and was frequently over-
lapped with SMA-positive one in the ischemic muscle with the 
Ad-F-UCP group (Figure 6b Merge, yellow), suggesting efficient 
maturation of blood vessels by the UCP gene transfer. Capillary 
(PECAM-1 positivity) and mature vessel (SMA-positivity) densi-
ties were significantly decreased in the ischemic limb with PBS 
or Ad-LacZ, but not with Ad-F-UCP compared with those in 
nonischemic limb (Figure 6c). Collectively, therapeutic outcome 
of the UCP gene transfer (Figure 5a) is supported by the facts that 
Ad-F-UCP gene transfer induced angiogenic factors (Figure 5d), 
maintained vessel markers at high level (Figure 5c), increased ves-
sel density and maturation (Figure 6b,c), and promoted muscle 
regeneration (Figure 6a) in the ischemic muscle.

dIscussIon
Here, we demonstrated that E2-EPF UCP gene transfer increases 
the expression of VEGF and FGF-2 through the VHL/HIF path-
way in cells and mice, and thereby significantly prevents autoam-
putation in the mouse hindlimb ischemia.

VEGF, PDGF-B, or FGF-2 plays important roles in therapeutic 
angiogenesis.20,21 Although FGF-2 or PDGF-B is activated under 
hypoxic condition,4,22 it is unknown whether HIF-1 directly regu-
lates their expression. We found that UCP induces the gene expres-
sion of VEGF and FGF-2 (Figures 1 and 5c,d; Supplementary 
Figure S4a,b). However, we could not detect increased expres-
sion of PDGF-B in the UCP-overexpressing cells. This may result 
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from the fact that the HIF-1-mediated transcriptional response to 
hypoxia is cell type specific, as previously reported.4 Our result is 
consistent with the previous finding that silencing of prolyl hydrox-
ylase domain-2 gene stabilizes HIF-1α and thereby induces the 
expression of VEGF and FGF-2, but not PDGF-B.22 VEGF expres-
sion is directly regulated by HIF-1 through the hypoxia-response 
element in its promoter.23 Thus, although it remains to be deter-
mined whether HIF-1α directly activates FGF-2 expression, our 

finding suggests that HIF-1α positively regulates FGF-2 expres-
sion under nonhypoxic conditions.

Endogenous HIF-1α was detected in the ischemic muscle at 12 
hours after femoral artery occlusion most likely because of insuf-
ficient blood flow (Supplementary Figure S5b). HIF-1α was not 
detected in the ischemic muscle with PBS or Ad-LacZ at day 8 after 
surgery (Figure 5c). Ad-F-UCP increased HIF-1α in the ischemic 
muscle and this effect of UCP on HIF-1α level was maintained for 

a

100

(23)

26

(68)16

(13)

Limb necrosis Limb loss

Day 7
c

α-Flag
PBS

Ad-
F-U

CP

Ad-
La

cZ

PBS
Ad-

F-U
CP

Ad-
La

cZ

PBS
Ad-

F-U
CP

Ad-
La

cZ

α-UCP

α-VHL

α-PECAM-1

α-SMA

α-CD34

α-Actin

α-HIF-1α

Day 14 Day 21

D
ay

 7

T
he

ra
pe

ut
ic

ef
fe

ct
s 

(%
)

D
ay

 1
4

D
ay

 2
1

OL

OL

d

b
PBSAd-F-UCP Ad-F-UCP Ad-LacZ

NOL NOLNOL OL OLOL

VEGF

FGF-2

IGF-2

TGF-β3

GAPDH

1 1

111

11

11

1 1

2.5

2

1.4

1.4

NOL

Limb rescue

(23)

(6)

(54)

20(87)

(26)
8

4
2

77

0

20

40

60

80

P>0.05
Ad-LacZ

P < 0.01

P < 0.01

PBS

PBS
Ad-

F-U
CP

Ad-
La

cZ

Figure 5 Ad-F-ucP prevents autoamputation in the ischemic limb of mouse. (a) At day 21 after injection with or without Ad-F-UCP or Ad-LacZ 
(N = 30 mice/group) into the ischemic muscle, treatment outcome was divided into three grades based on the physiological status of the ischemic 
hindlimb: limb rescue, limb necrosis, and limb loss. Limb rescue means no physical and functional defect of the operated leg (OL). Limb necrosis 
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the representative images for each status. Therapeutic effects were summed up from six separate experiments. (b) Micro-computed tomography 
(CT) images of operated leg (OL) and non-operated leg (NOL) were taken at the indicated times after treatment as described in the Materials and 
Methods section. Representative micro-CT images with one mouse per group in six separate experiments are shown. Arrow indicates increased 
vascularity in the Ad-F-UCP group. (c) The ischemic limb was treated as described in the Materials and Methods section and the indicated proteins 
in the thigh muscle were analyzed at the indicated times by immunoblotting. These experiments were performed with one mouse per group in two 
independent animal experiments and the representative is shown. (d) The ischemic limb was treated as described in Materials and Methods sec-
tion and reverse transcription-polymerase chain reaction (RT-PCR) was performed with total RNAs from the thigh muscle after 21 days of treatment. 
RT-PCR products were resolved by a 1% agarose gel electrophoresis and visualized by ethidium bromide. Band intensity was quantified by densitom-
etry and is relatively expressed. Similar results were obtained from five separate animal experiments and the representative is shown. The samples in 
(c) and (d) were taken from the thigh muscles of mice with limb necrosis in PBS and Ad-LacZ groups and from those with limb necrosis or rescue in 
Ad-F-UCP group. Ad-LacZ, adenovirus encoding β-galactosidase; Ad-F-UCP, Ad-encoded UCP; FGF, fibroblast growth factor; GAPDH, glyceraldehyde  
3-phosphate dehydrogenase; H&E, hematoxylin and eosin; HIF, hypoxia-inducible factor; IGF-2, insulin-like growth factor-2; PBS, phosphate- buffered 
saline; PECAM-1, platelet-endothelial cell adhesion molecule-1; SMA, smooth muscle cell actin; TGF-β3, transforming growth factor-β3; VEGF,  vascular 
endothelial growth factor; VHL, von Hippel–Lindau.
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21 days after injection (Figure 5c). These results suggest that the 
ischemic muscle was no more hypoxic at day 8 after the surgery 
and that UCP gene transfer but not ischemia due to the surgery 
stabilizes HIF-1α in the ischemic muscle, resulting in increased 
expression of VEGF and FGF-2 (Figure 5d). Increased HIF-1α 
level was detected in the thigh muscle of the mouse at day 3 after 
intramuscular injection of Ad-F-UCP, resulting in the increased 
expression of VEGF and FGF-2 (Supplementary Figure S4a,b). 
Neutralizing anti-VEGF and anti-FGF-2 antibodies abolished 
the ability of UCP to promote the tubule formation of HUVECs 
and outgrowth of vessel-like structures in the explanted muscle 

(Figures 2d and 4c,d). These results suggest that UCP promotes 
in vivo vascular responses by stabilizing HIF-1α and exhibits its 
effect on angiogenesis mainly through VEGF and FGF-2, although 
we cannot exclude the involvement of other angiogenic factors.

Ad-F-UCP significantly prevented autoamputation and res-
cued ischemic limb more effectively than Ad-LacZ (Figure 5a). 
Nevertheless, limb rescue was detected in 2 of the 30 mice injected 
with Ad-LacZ but not in mice with PBS, and limb loss occurred 
in the mice with PBS (87%) more frequently than in those with 
Ad-LacZ (68%), although the difference between the two control 
groups was insignificant (Figure 5a). These results may suggest a 
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Figure 6 Ad-F-ucP promotes muscle regeneration and vessel maturation. (a,b) The ischemic limb of the mouse was treated as described in 
Materials and Methods section, and the thigh muscles of the mice with limb necrosis in PBS and Ad-LacZ groups and those of mice with limb necrosis 
or rescue in Ad-F-UCP group was excised after 21 days of treatment. H&E, diaminobenzidine (a, ×200), or immunofluorescent (b, ×100) staining 
was performed with muscle sections and photographed under a microscope. Representative photographs are shown. Arrows in (a) and (b, Merge) 
indicate blood vessel and more mature vessels doubly positive for PECAM-1 and SMA, respectively. (c) ImageJ software was used to quantify the  vessel 
density based on PECAM-1-positive and SMA-positive areas in (b). Vessel density of the PBS group is arbitrarily defined as 1. Data are mean ± SD 
from five independent fields per group in three separate experiments. Ad-LacZ, adenovirus encoding β-galactosidase; Ad-F-UCP, Ad-encoded UCP; 
H&E, hematoxylin and eosin; NOL, non-operated leg; OL, operated leg; PBS, phosphate-buffered saline; PECAM-1, platelet-endothelial cell adhesion 
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positive effect of adenoviral vector itself on therapeutic angiogen-
esis. This vector effect was previously observed in animal model.24 
Adenoviral vector was shown to induce inflammatory reaction in 
the host.25 Inflammation was shown to contribute to neovascu-
larization.26 Thus, it is possible that adenoviral vector-mediated 
stimulation of inflammatory response may in part help to pro-
mote therapeutic angiogenesis by UCP.

Protein level of endogenous VHL was decreased for 21 days 
in the ischemic muscle with Ad-F-UCP (Figure 5c). The ischemic 
muscle cells with Ad-F-UCP were regenerated as much as those of 
nonischemic ones, while the muscle cells were massively degener-
ated in the PBS or Ad-LacZ group (Figure 6a, H&E). Thus, it is 
possible that a decrease in VHL level may help to regenerate isch-
emic muscle and promote neovascularization. In this aspect, ther-
apeutic effect of UCP gene transfer may be substantially different 
from that of gene transfer of constitutively active HIF-1α mutants, 
which does not greatly affect VHL level. However, because VHL 
is tumor suppressive,27 long-term effect of UCP gene transfer 
remains to be investigated.

At day 8 after femoral artery excision, autoamputation already 
occurred in 41% and 32% of the ischemic limb with PBS and 
Ad-LacZ, respectively, while 10% of the ischemic limb with Ad-F-
UCP exhibited limb loss. Thus, it would be improper to assess ther-
apeutic effect of UCP gene transfer by measuring lower extremity 
blood flow if autoamputaion frequently occurs at early times after 
induction of limb ischemia. Furthermore, laser Doppler imaging, 
which has been commonly used for the measurement of blood flow, 
assesses only surface/skin blood flow, but not an accurate tissue 
perfusion. For these reasons, we evaluated the therapeutic effects of 
UCP gene transfer on the three phenotypes of ischemic limb rather 
than the measurement of blood flow (Figure 5a). In particular, we 
focused on how effectively UCP gene transfer could prevent limb 
loss in acute ischemic model. This acute ischemic model may not 
properly reflect clinical situation of CLI patients.28 Nevertheless, 
acute ischemic model would be appropriate to clearly and cost-
effectively assess the therapeutic outcome of angiogenic gene trans-
fer in a relatively short period of time. One of the current aims of 
management of patients with CLI is to prevent amputation.28 In CLI 
patients, FGF-1 gene transfer results in a significantly reduced risk 
of major amputation.29 This finding supports that our assessment 
on therapeutic effects of UCP gene transfer may be more realistic 
than the measurement of blood flow recovery in ischemic limb.

In summary, the results of this study provide proof of prin-
ciple that UCP gene transfer induces expression of angiogenic 
factors through stabilization of HIF-1α in cells and mice, thereby 
reconstitutes blood vessel network effectively and prevents auto-
amputation in the mouse hindlimb ischemia. Our results suggest 
that UCP gene transfer may help to facilitate amputation-free sur-
vival of CLI patients.

MAterIAls And MetHods
Cell culture. HUVECs were maintained in a standard endothelial cell cul-
ture medium (EGM-2 BulletKit; Clonetics, San Diego, CA). HUVECs with 
passage 4–8 were used for the experiments. The endothelial cell culture 
medium was switched to a serum-free Dulbecco’s modified Eagle’s medium 
at 24 hours before assay. HeLa carcinoma and human MRC-5 and mouse 
NIH3T3 fibroblast cells were cultured under a standard condition.

Ad vector and transduction. Construction, amplification, titer determina-
tion, and transduction of Ad-F-UCP or Ad-LacZ were done as previously 
described.7

Recombinant proteins and antibodies. We purchased antibodies spe-
cific for Flag, actin, SMA (Sigma-Aldrich, St Louis, MO), CD34 (Santa 
Cruz Biotechnology, Santa Cruz, CA), VHL, HIF-1α, PECAM-1 (BD 
Pharmingen, San Diego, CA), and human VEGF and FGF-2 (Santa Cruz 
Biotechnology), complete proteinase inhibitor cocktail (Roche, Basel, 
Switzerland), VEGF-121 (R&D Systems, Minneapolis, MN), and IgG 
(Jackson Laboratories, Bar Harbor, ME). We generated UCP-specific anti-
body by immunizing mice with  His-UCP.

Enzyme-linked immunosorbent assay. Protein levels in culture super-
natants were quantified by enzyme-linked immunosorbent assay using 
human or mouse VEGF and FGF-2 Quantikine kits according to the man-
ufacturer’s instructions (R&D Systems).

RNA extraction and reverse transcription-polymerase chain reaction. 
Total RNA was extracted from cells or muscles using easy-spin RNA 
extraction kit (Intron, Seoul, Korea). Complementary DNA synthesis and 
polymerase chain reaction were performed using one-step master mix 
(Intron). Complementary DNA was synthesized from 1 μg of total RNA 
and amplified with polymerase chain reaction using primers specific for 
each gene. Glyceraldehyde 3-phosphate dehydrogenase transcript was 
used to normalize sample amplification. Band intensity was quantified 
using densitometer software. Primer sequences for reverse transcription-
polymerase chain reaction are shown in Supplementary Figure S6.

Protein extraction and immunoblotting. We lysed cells in a buffer 
(50 mmol/l Tris-HCl, pH 7.5, 150 mmol/l NaCl, 1% NP-40, 0.1% sodium 
dodecyl sulfate, 0.5% sodium deoxycholate, one tablet proteinase inhibi-
tor cocktail/100 ml). We homogenized tissues in PRO-PREP lysis buffer 
(Intron) and prepared protein samples by clearing cell lysates or homo-
genates by centrifugation. Immunoblotting was performed as previously 
reported.7,8 Protein bands were visualized by the ECL detection system 
(Intron). α-Actin-specific antibody was used for a loading control.

HUVEC proliferation, tubule formation, and invasion assays. Conditioned 
media were prepared from cells with or without adenoviral vectors at 48 
hours after transduction. HUVECs were plated at 5 × 10³ cells/well in the 
conditioned media on 24-well plates. Viable cells were counted with a 
hemocytometer.

Matrigel (BD Bioscience, Bedford, MA) was added to a 12-well plate, 
which was then incubated for 30 minutes at room temperature for the 
matrix solution to be solidified. HUVECs (2 × 105) per well were then 
plated on top of the solidified matrix, and cultured at 37°C for 24 hours. 
HUVECs were fixed with methanol for 15 minutes and stained with 
0.05% crystal violet. Tubule formation was inspected with a microscope. 
The number of tubule branch point in microscopic field (×100) was 
determined.

HUVECs were plated at a density of 1 × 104 cells/well in a serum-free 
Dulbecco’s modified Eagle’s medium in the upper chamber in Transwell 
chambers (8 µm, 24-well format). The insert membranes were coated with 
Matrigel. Conditioned medium was added to the lower chamber. After 
HUVECs were cultured for 24 hours, the insert membranes were cut. 
HUVECs were stained with H&E.

CAM assay. Fresh fertilized eggs were incubated in a standard egg incuba-
tor at 37°C. A small hole (~1.5 cm in diameter) was made by removing the 
egg shell and inner shell membrane. The exposed area was then sealed with 
cellophane tape at day 3 after incubation. The eggs were incubated with the 
hole upright. Sterile cover glasses were absorbed with 10 µl of the enriched 
media, and placed on the CAMs that had been preincubated for 3 days. 
The CAM was photographed under a microscope. The number of vessel 
branch point was counted within identical field.
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Immunohistochemistry. Matrigel plugs or muscle tissues were frozen in 
optimal cutting temperature compound or fixed with 10% formalin for 
H&E staining or immunohistochemistry. Frozen samples were sectioned 
at a thickness of 5–7 μm in a cryostat. Sections were fixed with methanol, 
and reacted with a mixture of anti-PECAM-1 and fluorescein isothiocy-
anate–conjugated anti-SMA monoclonal antibodies. Sections were sub-
sequently reacted with rhodamine-conjugated anti-mouse IgG antibody 
(Sigma-Aldrich).

For diaminobenzidine staining, paraffin-embedded tissue sections were 
deparaffinized and hydrated through xylenes and graded alcohol series. 
Antigen retrieval was performed at 55°C for 10 minutes using protease K 
(10 µg/slide). Endogenous peroxidase activity was quenched by treating the 
sections with 0.3% H2O2 for 30 minutes. The sections were incubated in PBS 
with Tween-20 (0.05% Tween-20 in PBS) containing 3% fetal bovine serum 
at room temperature for 30 minutes. Envision Dual link system-HRP kit 
(Dako, Carpinteria, CA) was used for diaminobenzidine staining.

ex vivo angiogenesis assay. We injected 2 × 108 plaque-forming-unit 
(PFU) of Ad-LacZ or Ad-F-UCP in 100 µl of PBS into skeletal muscle of 
mouse. Three days after injection, the muscles were excised and cut in 
the middle to expose the injection area and washed three times with PBS. 
The washed muscles were placed in a 24-well plate containing 250 µl of 
Matrigel and incubated at 37°C for 30 minutes to solidify the gel. Samples 
were then covered with 500 µl of Dulbecco’s modified Eagle’s medium con-
taining 5% fetal bovine serum. The plate was placed in a 5% CO2 atmo-
sphere at 37°C. Outgrowth of vessel-like structures was observed with a 
microscope (×50).

Mouse hindlimb ischemia model. Mouse experiments were performed in 
accordance with the guidelines and under the approval of the Institutional 
Review Committee for the Animal Care and Use, KRIBB, Daejeon, Korea. 
We used 8- to 10-week-old BAL b/c female mice weighing 20–25 g. Mice 
underwent surgical ligation of the part of the right proximal femoral artery 
and distal artery site and excision, as previously reported.30 One day after 
the surgery, 2 × 109 PFU of Ad-F-UCP or Ad-LacZ in 100 µl of PBS were 
injected into four different sites on skeletal muscle of mouse. The left leg 
was left without operation and was used as an internal control. Experiment 
with 5–13 mice/group was repeated six times. One identical mouse in each 
group per experiment was used for hindlimb vasculature imaging at 7, 14, 
and 21 days after treatment. One or two mice in each group per experi-
ment were killed for immunoblotting, reverse transcription-polymerase 
chain reaction, and immunohistochemical analyses at 7 and 14 days after 
treatment, respectively. After 21 days of treatment, remaining mice were 
analyzed for therapeutic effects, killed, and then used for biochemical and 
immunological analyses.

Micro-CT imaging of mouse hindlimb vasculature. Hindlimb vasculature 
was imaged using a micro-CT imaging system (NFR-Polaris-G90; Nano 
Focus Ray Company, Iksan, Korea). The scanner was set to a voltage of 80 
kVp and a current of 85 µA. Scans were completed over 360° of rotation 
of the X-ray tube. It took 700 seconds for each micro-CT scan. The recon-
struction image size was 1,024 × 1,024 pixels, and the number of slices 
was 540.

Mice were placed in a chamber with 4% isoflurane in oxygen to 
induce anesthesia. During imaging, mice remained anesthetized using 
1.5% isoflurane in oxygen. Mice were imaged at the baseline and then 
injected with a contrast agent (Fenestra VC) at a dose of 20 ml/kg via the 
tail vein. All micro-CT image data were acquired using live, free-breathing, 
anesthetized mice.

Statistical analysis. We performed statistical analysis using a paired, 
one-tailed Student’s t-test. Statistical comparisons between experimental 
groups in the mouse hindlimb ischemia model were performed by Fisher’s 
exact test. We considered data to be statistically significant when P value 
was <0.05.

suPPleMentArY MAterIAl
Figure S1. Effect of the conditioned media on growth of HUVECs.
Figure S2. VEGF and FGF-2 are involved in tubule formation of 
HUVECs.
Figure S3. Effect of the conditioned media on invasiveness of HUVECs.
Figure S4. Effect of Ad-F-UCP on outgrowth of vessel-like structures 
in the explanted muscle.
Figure S5. Verification of the mouse hindlimb ischemia.
Figure S6. Primer sequences for RT-PCR.
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