
The histone- and PRMT5-associated protein COPR5
is required for myogenic differentiation
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Myogenic differentiation requires the coordination between permanent cell cycle withdrawal, mediated by members of the cyclin-
dependent kinase inhibitor (CKI) family, and activation of a cascade of myogenic transcription factors, particularly MYOGENIN
(MYOG). Recently, it has been reported that the Protein aRginine Methyl Transferase PRMT5 modulates the early phase of
induction of MYOG expression. Here, we show that the histone- and PRMT5-associated protein COPR5 (cooperator of PRMT5) is
required for myogenic differentiation. C2C12 cells, in which COPR5 had been silenced, could not irreversibly exit the cell cycle
and differentiate into muscle cells. This phenotype might be explained by the finding that, in cells in which COPR5 was
downregulated, p21 and MYOG induction was strongly reduced and PRMT5 recruitment to the promoters of these genes was also
altered. Moreover, we suggest that COPR5 interaction with the Runt-related transcription factor 1 (RUNX1)–core binding factor-b
(CBFb) complex contributes to targeting the COPR5–PRMT5 complex to these promoters. Finally, we present evidence that
COPR5 depletion delayed the in vivo regeneration of cardiotoxin-injured mouse skeletal muscles. Altogether, these data extend
the role of COPR5 from an adaptor protein required for nuclear functions of PRMT5 to an essential coordinator of myogenic
differentiation.
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Coordination between permanent cell cycle exit and initiation
of terminal differentiation is critical during tissue development,
a process that requires a controlled balance between cell
proliferation, apoptosis and differentiation. The regulated
expression of the cyclin-dependent kinase inhibitors (CKIs)
p21Cip1/Waf1 (p21), p27Kip1 (p27) and p57Kip2 (p57) has a key
role in promoting and maintaining cell cycle arrest in quiescent
cells and during differentiation of many cell types.1 Impor-
tantly, only quiescent cells, and not terminally differentiating
cells, retain the ability to reverse the proliferation block
induced by p21. Moreover, quiescent cells are less likely
to differentiate than proliferating cells, indicating that they
employ active mechanisms to prevent the adoption of a non-
dividing status (i.e., differentiation) associated with permanent
cell cycle withdrawal.2 Skeletal muscle formation is charac-
terized by the fusion of myoblasts into myotubes and
increased synthesis of muscle contractile proteins. Differen-
tiating myoblasts strongly accumulate CKIs3–6 and the
differentiation programme is initiated by the ordered expres-
sion of several bHLH transcription factors of the myogenic
regulatory factor family.7 Among them, MYOD1, which is
expressed in proliferating, undifferentiated committed
myoblasts, and MYOGENIN (MYOG), which is expressed
early during the differentiation programme, are essential for
inducing muscle cell differentiation.7 In the C2C12 myoblast
cell line, MYOD1-dependent differentiation involves induction
of MYOG while cells are still proliferating, followed by

p21-dependent exit from the cell cycle.3,5 Coupling the onset
of differentiation with cell cycle withdrawal involves the direct
activation by MYOD1 of genes involved in the regulation of the
cell cycle, such as p21, RB and CYCLIN D3 (CCND3).3,4

A growing body of evidence suggests that members of the
Protein aRginine Methyl Transferases (PRMTs) family parti-
cipate actively in the regulation of cell proliferation. Indeed,
they modulate chromatin dynamics, transcriptional regulation,
RNA metabolism, signal transduction and cell cycle check-
point controls through methylation of histone and non-histone
proteins.8,9 Particularly, PRMT5 is essential for cell prolifera-
tion and PRMT5 deficiency triggers cell cycle arrest in G1.10

Conversely, stable expression of PRMT5 stimulates
cell proliferation and transforms NIH3T3 cells, which can then
grow in an anchorage-independent manner.11 Moreover,
PRMT5 is an important cytosolic factor, as evidenced by a
recent study that implicates PRMT5 in the maintenance of ES
cell pluripotency.12 However, PRMT5 associates also
with nuclear complexes to mediate mainly transcriptional
repression,13–17 although a recent work has reported that
PRMT5 facilitates the activation of the MYOG promoter during
MYOD-induced muscle differentiation.18

We previously reported that the adaptor protein COPR5
(cooperator of PRMT5) strongly binds to PRMT5 and histone
H4, and that its silencing in proliferating U2OS cells reduces
PRMT5 recruitment to the promoter of CCNE1, a key
regulator of proliferation.19 We now investigated whether
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COPR5 could play a role in muscle cell differentiation by
modulating the recruitment of PRMT5 to the promoter of
genes involved in the coordination between cell cycle exit,
such as p21, and differentiation, for instance, MYOG.
We show that C2C12 cells in which COPR5 is downregulated
exit the cell cycle in a state which is not permissive for
differentiation due to imbalanced CKI and MYOG expression.
COPR5 silencing impaired the recruitment of PRMT5 to the
p21 and MYOG promoters early during differentiation. Finally,
we observe that in vivo downregulation of COPR5 delayed
skeletal muscle regeneration in mice following cardiotoxin
(CTX)-induced injury. Collectively, these data suggest
that COPR5 is a coordinator of PRMT5 activity targeted to a
subset of key differentiation genes.

Results

COPR5 silencing interferes with myogenic
differentiation. To investigate the role of the chromatin-
and PRMT5-associated protein COPR5 during myogenic
differentiation, C2C12 myoblasts, which can be induced to
differentiate into muscle cells ex vivo,20 were transduced with
retroviral vectors that express COPR5 shRNA (shCOPR5) or
as control Luciferase shRNA (shLUC). As expected, upon
shift to differentiation medium (DM), control shLUC cells
stopped proliferating, aligned and fused to form multinuclear
myotubes (Figure 1a, upper panels). In contrast, shCOPR5
cells failed to form differentiated myotubes (Figure 1a, lower
panels). COPR5 downregulation in shCOPR5 cells could be
confirmed by quantitative RT-PCR (RT-qPCR) analysis
(Figure 1b), but not by western blotting because the used
antibody did not react with the mouse protein. Similar results
were obtained with two other COPR5 shRNAs, as well as
with an shRNA directed against PRMT5 (Supplementary
Figures S1A and S1B). The failure of shCOPR5 cells
to differentiate was also confirmed by RT-PCR and immuno-
fluorescence studies that showed the very low expression
of the myogenic marker Myosin (MHC) in comparison with
those detected in shLUC cells soon after shifting to DM
(Figure 1b, Supplementary Figures S1A and S1C). Similar
results were obtained by silencing COPR5 expression in
primary human myoblasts (Figures 1c–e). Importantly,
although we observed that ectopic COPR5 expression did
not promote obviously by itself the differentiation phenotype
in C2C12 cells (Supplementary Figure S1D), myotube
formation was restored in shCOPR5 C2C12 cells upon
transduction with viral particles encoding human COPR5,
the expression of which is not affected by the mouse
anti-COPR5 shRNAs (Figure 1f). Collectively, these data
indicate that COPR5 is required for myogenic differentiation
of C2C12 cells.

C2C12 cells in which COPR5 has been downregulated
fail to irreversibly exit the cell cycle. Differentiating
myoblasts must arrest in the G1 phase of the cell cycle
to terminally differentiate.21 Thus, to address whether the
differentiation defect observed in shCOPR5 C2C12 cells
could be due to a failure to irreversibly exit the cell cycle, we
compared growth curves, cell cycle profiles and reversibility

of cell cycle arrest in control shLUC and shCOPR5 C2C12
cells. In growth medium (GM), both cell populations behaved
similarly (Figures 2a and b). Similarly, no differences were
observed when cells were cultured in DM (Figures 2a and b),
or in the presence of methylcellulose (þMeC) to promote G1
or G0 arrest (Supplementary Figure S2). Conversely, when
cells were first growth arrested in DM and then switched back
to GM (DM-GM), a significant fraction of shCOPR5 cells
started to proliferate again and entered S phase, whereas
most of control shLUC cells remained arrested, as indicated
by the growth curves and FACS analysis of BrdU-labelled
cells (Figures 2c and d). These results show that shCOPR5
cells can exit the cell cycle when transferred to DM, but not in
a permanent way, suggesting that COPR5 controls indirectly
or directly a subset of genes required for establishing the G1
arrest compatible with induction of myogenic conversion.

The expression of a subset of myogenic inducers and
cell cycle regulators is altered in C2C12 cells, in which
COPR5 has been downregulated. To understand the
mechanisms underlying the defects observed in shCOPR5
C2C12 cells induced to differentiate, we first examined
the expression of the cell cycle regulators involved in the
tight control of the permanent G1 arrest required for
differentiation.21 As expected, quantification of the protein
levels of the CKIs p21, p27 and p57 as well as of RB and
CCND3 showed a significant increase in control shLUC cells
after switching to DM (Figure 3a). Conversely, in shCOPR5
cells, expression of p21 and p27 was significantly lower,
whereas the level of RB, CCND3 and p57 was only slightly
affected (Figure 3a). Similar analysis of the main myogenic
inducers MYOD1 and MYOG showed that both protein
expression levels increased significantly during differen-
tiation of shLUC cells (Figure 3b). Conversely, in shCOPR5
cells, MYOG induction was strongly reduced, while MYOD1
level was largely unaffected (Figure 3b). Moreover, the
mRNA level of both the myogenic and cell cycle-regulated
genes affected by COPR5 knockdown showed that it
followed the protein variation level (Figure 3c). Interestingly,
expression of PRMT4 and PRMT5, the two PRMTs involved
in C2C12 differentiation,22 was not altered by COPR5
downregulation (Figure 3c). By contrast, mRNA level of p8,
which encodes an HMG protein involved in the mechanisms
that restrict myogenic differentiation to the G1 phase,23 was
reduced, while those of HES1 and HES6, which are involved
in the control of cell cycle exit and myogenic differentiation,
respectively,24,25 remained unaltered (Supplementary Figure
S3A). Finally, COPR5 expression in shLUC cells increased
during muscle differentiation, reinforcing the hypothesis of a
role of COPR5 in this process.

Altogether, these results indicate that the differentiation
defect observed in shCOPR5 cells is associated with reduced
expression of p21, p27 and p8 (but not of RB, CCND3 and
p57) and of MYOG (but not MYOD1), thus suggesting that
only a subset of the differentiation programme is modulated by
COPR5.

Early recruitment of PRMT5 to the p21 and MYOG
promoters requires COPR5, which can associate with
the RUNX1 complex. We next investigated how COPR5
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controls the expression of p21 and MYOG. As COPR5 is a
histone- and PRMT5-associated protein,19 we first tested
whether it was present in the chromatin environment of the
genes encoding these factors. To address this question, we
performed chromatin immunoprecipitations (ChIPs) using an
anti-HA antibody on C2C12 cells that had been stably
transfected with a plasmid expressing HA-tagged COPR5.

Consistent with the effect of COPR5 silencing on p21, MYOG
and p8 expression, transient recruitment of HA–COPR5 to
the p21, MYOG and p8, but not to the p57 and MYOD1,
promoters was detected at day 1 (D1) after switching to DM
(Figure 4a and Supplementary Figure S3B). Interestingly,
reCHIP experiment using the anti-HA and anti-PRMT5
antibodies as first and second antibody, respectively,
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Figure 1 COPR5 downregulation with shRNA interferes with myogenic differentiation. (a) Phase-contrast micrographs of proliferating (pro), confluent (day 0; D0) and
differentiating (D1 and D3) C2C12 cells that express control (shLUC) or COPR5 (shCOPR5) shRNAs. (b) Expression analysis of COPR5 and myosin heavy chain (MHC) was
performed by RT-qPCR. Results were normalized to S26 RNA and values are expressed as the fold change compared with control cells. Values are the means±SD of three
independent experiments. (c) Phase-contrast micrographs of proliferating (pro) and differentiating (D1 and D3) human skeletal myoblasts transduced either with LUC- or
COPR5-shRNA encoding viral particles. (d) Expression of MHC mRNA in primary human skeletal myoblasts transduced as in a and induced to differentiate (is shown at D3).
The effect of COPR5 downregulation on MHC1 expression was monitored by RT-qPCR and results were normalized to RPLP0 expression; analysis was performed as in b.
(e) Protein extracts from LUC or COPR5 shRNA-transduced human primary myoblasts were analysed by western blotting using an anti-COPR5 antibody. (f) Human
HA-tagged COPR5 was expressed in mouse C2C12 cells in which endogenous COPR5 was silenced. The phenotype in differentiating conditions is presented and visualized
by the formation of myotubes (left panels) at D3 after induction of differentiation. Detection of HA–COPR5 by western blotting confirmed its resistance to the effects of shRNAs
specific for mouse COPR5 (right panels)
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showed on the p21 promoter, but not the MYOG promoter,
that COPR5 and PRMT5 were detected as part of a same
complex (Supplementary Figure S4). As PRMT5 regulates
the early phase of MYOG activation,18 we then assessed
whether COPR5 downregulation could hinder the recruitment
of PRMT5 to the MYOG, but also p21 and p8 promoters.
ChIPs using differentiating shLUC and shCOPR5 C2C12
cells showed the presence of PRMT5 at the p21 as well as
MYOG and p8 promoters in shLUC cells at D1 after the
switch to DM, whereas the recruitment of PRMT5 to these
promoters was strongly reduced in shCOPR5 cells
(Figure 4b and Supplementary Figure S3C). Consequently
to this observation we analysed whether the detection
level of two PRMT5-mediated histone methylation marks
(H3R8me2s and H4R3me2s) was affected as well. Strikingly,
we failed to detect the presence of the H3R8me2s mark on
both the MYOG and p21 promoters on chromatin from
C2C12 cells infected with a CTL shRNA (LUC), while
the presence of the H4R3me2s mark was detected
(Supplementary Figure S5). Interestingly, the detection of
the latter mark decreased at D1 and D3 on the MYOG
promoter only in COPR5 shRNA-treated cells, probably
consequently to the decreased recruitment of PRMT5
observed at D1 on this promoter. However, this mark could
not be considered as a full readout of PRMT5 activity (see D0
with the MYOG promoter and results with the p21 promoter).

A very slight increase, if any, in the detection of the
H3R8me2s mark was observed in COPR5 shRNA-treated
cells at D3. We next tested whether COPR5 silencing could
affect the pool of PRMT5 associated with chromatin
during differentiation. A fractionation assay showed that a
small amount of PRMT5 was associated with the chromatin-
enriched fractions (P3) in control shLUC cells during
differentiation. Conversely, the PRMT5 level in the P3
fraction of shCOPR5 cells was strongly reduced, while it
remained unchanged in the soluble cytosolic (S1) and
nuclear (S2) fractions (Figure 4c). This effect is specific for
PRMT5 as no alteration in the cellular distribution of another
PRMT family member, PRMT1, was observed. Moreover,
those of the chromatin remodeler BRG1 and MEKK1, used
as controls of the S1 and P3 fractions, respectively, did not
vary in shLUC and shCOPR5 cells (Figure 4c). Altogether,
these results indicate that COPR5 downregulation affects the
activation of genes that play a key role during muscle cell
differentiation by hindering the recruitment of PRMT5 to
their promoters. We then asked whether COPR5 or the
COPR5–PRMT5 complex could bind to specific factors
present on these promoters. As both the p21 and MYOG
promoters are characterized by the presence of adjacent
Runt-related transcription factor 1 (RUNX1) and MYOD1
functional DNA binding sites26 and because MYOD1 is
known to interact with PRMT5,22 we assessed whether the
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Figure 2 COPR5-silenced cells exit the cell cycle in a refractory state for differentiation. (a) Proliferation curves of selected C2C12 myoblast populations transduced with
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COPR5–PRMT5 complex could interact with RUNX1 and its
partner protein core binding factor-b (CBFb), which
cooperate with MYOD1 in regulating target genes
in myoblasts.26 GST pull-down experiments using
GST–COPR5 (GC) and protein extracts from U2OS cells
transfected with HA–RUNX1 or Flag–CBFb confirmed that
COPR5 interacts with PRMT5, as expected,19 as well as with

CBFb and RUNX1 (Figure 4d). Moreover, when using a
GST–COPR5 deletion mutant (DC4), which does not interact
with PRMT5,19 only the interaction with CBFb was observed
(Figure 4d). The capacity of COPR5 to associate with CBFb
was confirmed by ChIP experiments (Figure 4e), suggesting
that COPR5 could be targeted via the RUNX1 complex to
promoters. Conversely, no RUNX1 DNA binding site was

β-actin

RB

p21

shLUC shCOPR5

pro D0 D1 D3 pro D0 D1 D3

p27

p57

a.u.

0

1

2

3 p21

0

1

2 p57

0
1
2
3 p27

0

1

2

0

RB

0.4

0.8

1 CCND3

pro D0 D1 D3 pro D0 D1 D3

shLUC shCOPR5

MYOG

MYOD1

pro D0 D1 D3 pro D0 D1 D3

β-actin

shLUC shCOPR5

pro D0 D1 D3 pro D0 D1 D3

shLUC shCOPR5

MYOD1

0
2
4
6

0
2
4
6

MYOG
a.u.

0

5

10

15 P21

0

1

2

3

4
RB

MYOD1

1

2

3

4 COPR5

0
20
40
60
80 MHC

P27

0
1

2
3

40

80

120

160 P57

0

0

10

20

0

100

200 MYOG

0

0

10

30

50
CCND3

p ro D 0 D 1 D 3 p ro D 0 D 1 D 3

sh L U C sh C O P R 5

0

0.4

0.8

1.2

1.6 PRMT4

0

0.5

1
PRMT5

m
R

N
A

 r
el

at
iv

e 
le

ve
l

CCND3

Figure 3 The expression of some cell cycle regulators and myogenic inducers are altered in COPR5-depleted cells. (a) Protein extracts from LUC or COPR5
shRNA-transduced C2C12 cells were recovered at different time points (pro, D0, D1 and D3 of differentiation) and analysed by western blotting using antibodies against
different cell cycle regulators involved in myogenic differentiation (upper panel). Quantification of the western blot is shown in lower panel. (b) The same analysis as in a was
performed to analyse the protein level of different myogenic markers or inducers, as indicated. (c) The expression profile of different cell cycle regulators was assessed by
RT-qPCR with RNA from shLUC and shCOPR5 C2C12 cells at different differentiation time points, as indicated. Results were normalized to S26 RNA and values are
expressed as the fold change compared with control cells (means±SD of three independent experiments)

COPR5 is required for myogenic differentiation
C Paul et al

904

Cell Death and Differentiation



found in the p27 promoter, although COPR5 binds to this
promoter and recruits PRMT5 at a later stage of differen-
tiation (data not shown), suggesting that alternative
mechanisms are involved in COPR5 regulation of p27
transcriptional activity.

Collectively, these results indicate that COPR5 regulates
recruitment of PRMT5 to the promoters of p21 and MYOG, a
subset of genes that play key roles during muscle cell
differentiation.

COPR5 downregulation delays in vivo muscle
regeneration. To provide evidence of the role of COPR5
in myogenic differentiation in vivo, the two tibialis anterior
muscles of mice were damaged by injection of CTX to
reactivate satellite cells, which are considered the adult stem
cells responsible for post-natal growth, regeneration
and repair of skeletal muscle. Two days later, COPR5 or
control LUC shRNA (contralateral muscle) plasmid DNA
was electroporated and then mice were killed at different
time points to follow muscle regeneration. At D2 after
electroporation, muscle tissue sections showed increased

cellularity attributable to both proliferation of satellite cells
and recruitment of inflammatory cells to damaged fibres
(Figure 5a; haematoxylin–eosin staining). At this stage no
obvious difference could be detected between control shLUC
and shCOPR5 muscles. In contrast, at D5, high level of
necrosis was only observed in muscles in which COPR5 was
silenced in comparison with control muscles (Figure 5a). At
D7.5, regeneration had largely taken place in control muscles
and many newly regenerated fibres were present with central
nuclei, a known hallmark of recent muscle regeneration
(Figure 5a). Such fibres were detected also in muscles in
which COPR5 was downregulated, but to a lesser extent
than in controls. In accordance with results in C2C12 cells,
the mRNA levels of MYOG and p21 were reduced
significantly in COPR5-depleted muscles compared with
control but transiently (Figure 5b), probably due to a milder
efficiency of the knockdown in vivo in the muscle compared
with an in vitro-infected cell population. Consistently,
immunohistochemical analysis using an anti-MYOG
antibody on muscle sections performed at D5 showed less
myofibres stained compared with control (Supplementary
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Figure 6). To assess whether this phenotype was due to a
reduction in the pool of satellite cells activated following CTX-
induced muscle injury, muscles were injected with retroviral
particles expressing LUC or COPR5 shRNAs that could only
transduce activated and proliferating cells. An enriched
satellite cell/isolated myoblast preparation was recovered
from the tibialis anterior muscle at D3 after injury and the
effect of COPR5 downregulation on satellite cells was
monitored by quantifying the number of CD34-positive (a
satellite cell marker) cells that normally remains steady
during homeostasis and injury-induced regeneration.27

The number of CD34-positive cells in COPR5 shRNA-
transduced muscles was lower than in control muscles,
indicating that the pool of satellite cells to generate
committed myogenic progenitors was reduced following
downregulation of COPR5. In accordance with the delayed
regeneration observed in CTX-treated muscles, these
findings strongly suggest that COPR5 plays a role during

muscle regeneration, probably at the level of the satellite cell
amplification and/or differentiation programme.

Discussion

Here we show that the PRMT5 adaptor COPR5 plays a role in
myogenic differentiation of cultured C2C12 cells and modu-
lated the transcriptional regulation of genes that are important
for the control of cell cycle exit (p27 and p21) and muscle
differentiation (MYOG). Increased levels of p27 and p21 have
been correlated with the irreversible growth arrest required for
differentiation.3,4 Indeed, the level of p27 expression is critical
for initiating growth arrest in differentiating myoblasts and
in maintaining this arrest in terminally arrested mature
myotubes, while in the presence of differentiation signals,
p21 and p57 enhance cell survival.28 C2C12 cells, in which
COPR5 was downregulated, could exit the cell cycle when
switched to DM (Figure 2), suggesting that the residual levels
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Figure 5 COPR5 silencing slows down muscle regeneration in vivo. (a) Haematoxylin–eosin (HE) staining of paraffin-embedded muscle sections from tibialis anterior (TA)
muscles of mice in which muscle necrosis was induced by cardiotoxin (CTX) injection, followed 2 days later by electroporation of LUC or COPR5 shRNA-encoding plasmids.
Bars: 200mm. (b) mRNA level of COPR5, p21 and MYOG genes was analysed by RT-qPCR after RNA extraction at D5 from muscle that had been treated as in a. Results
were normalized and expressed as in Figure 3. Error bars of the means correspond to two independent experiments, except at D5. (c) Cells from muscles were injured and
infected with ecotropic Moloney-based retroviral particles encoding either LUC or COPR5 shRNAs, recovered at D3 and analysed by flow cytometry to quantify the CD34þ
population (i.e., satellite cells). x-axis: CD34; y-axis: SSC (side scatter)
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of the CKIs p21 and p27, and or a compensatory increase of
p57 expression, are sufficient to trigger cell survival and this
initial growth arrest. Consistent with this, while p21 and p27
expression was strongly reduced, p57 expression was slightly
increased in differentiated COPR5-silenced cells (Figure 3). A
similar MYOD1-mediated upregulation of p57 was previously
reported in cells lacking p21.29 Noteworthy, commitment to
terminal differentiation is confined to the G1 phase of the cell
cycle in differentiating myoblasts.21 Strikingly, we also
observed a decreased mRNA level of the G1-induced
p8 gene, which encodes an HMG protein involved in the
mechanism to restrict myogenic differentiation to the G1
phase.23 These findings together with our previous report that
the COPR5–PRMT5 complex represses the CCNE1 gene in
U2OS cells13 suggest that this complex is involved in
coordinating CKI and p8 activation, while repressing CCNE1
expression as required for a stable cell cycle exit competent
for differentiation. Consistent with this, we found that
HA–COPR5 is recruited to the p21, MYOG and p8 promoters
(Figure 4a, Supplementary Figure S3). Moreover, the reduc-
tion of PRMT5 recruitment to these promoters in C2C12 cells,
in which COPR5 had been silenced (Figure 4b, Supplemen-
tary Figure S3), positions COPR5 centrally within the
transcriptional regulatory mechanism that coordinates cell
cycle exit and terminal muscle differentiation, and future
studies will aim at identifying additional components and
the upstream signalling that control this novel network.
Our reCHIP data suggest that the accessibility of PRMT5
within COPR5-containing complex is different on the p21 and
MYOG promoters and might reflect a difference in the BRG1-
mediated chromatin remodelling regulation at these promo-
ters. In accordance with this, previous work supports that
BRG1 is required for the induction of all muscle-specific gene
expression by MyoD, thus including MYOG, whereas induc-
tion of the cell cycle regulators, p21, Rb, and cyclin D3
occurred independently of SWI/SNF function.30 Our data also
showed that COPR5–PRMT5 complex can interact with the
transcription factor RUNX1–CBFb complex, suggesting how
COPR5 could target PRMT5 activity to a subset of genes,
including p21 and MYOG. Both the p21 and MYOG promoters
are characterized by the presence of adjacent RUNX1
and MYOD1 functional DNA binding sites. Interestingly, the
interaction between the RUNX1 complex and MYOD1
participates in regulating the balance between proliferation
and differentiation.26 Moreover, the methylation of RUNX1 by
PRMT1 regulates its interaction with SIN3A and modulates
RUNX1-inducible gene expression.31 Furthermore, crystal
studies indicate that another GRG motif resembling those
methylated by PRMT5 in other proteins is important for DNA
binding.32 Although we failed to methylate RUNX1 by
COPR5–PRMT5 in vitro (data not shown), we do not exclude
the possibility that such methylation could exist in a chromatin-
dependent context to dissociate RUNX1 complex from
MYOD1 and/or from DNA, allowing promoter activation.

Finally, consistent with a key role of COPR5 in myogenic
conversion, its downregulation in CTX-injured muscles in vivo
delayed muscle regeneration by reducing the pool of
CD34-positive satellite cells (Figure 5). The presence of
residual COPR5 indicated the in vivo depletion of COPR5
was milder than those obtained in vitro. Interestingly, muscle

regeneration is also impaired in p21�/� mice,33 thus
stressing again the importance of COPR5 as a regulator of
the expression of p21 and reinforcing the notion that PRMT5 is
essential for myogenesis. Accordingly, beyond its impact on
histone methylation, PRMT5 was shown recently to methylate
Ash2L, a factor associated with PAX in a complex that directly
controls entry into the myogenic programme of satellite cell-
derived myoblasts.34,35 Whether COPR5 downregulates
directly the expression of satellite cell-driver genes such as
PAXs or whether the phenotype due to COPR5 silencing is an
indirect consequence of the dysfunction of other myogenic
regulators remains to be investigated.

This study clearly positions the COPR5–PRMT5 complex
as a potential sensor and integrator of differentiation signals
and a novel coordinator of cell cycle exit and differentiation.
Noteworthy, the coupling of these two events is often
perturbed during tumourigenesis and several types of
tumours, including rhabdomyosarcoma, are characterized
by an undifferentiated phenotype. Moreover, PRMT5 expres-
sion is deregulated and/or mislocalized in several types of
cancer.36,37 Therefore, it would be interesting to test whether
alteration of COPR5 could contribute to the abnormal
differentiation of tumours of mesenchymal origin.

Materials and Methods
Cell culture conditions. The C2C12 cell line was cultured in Dulbecco’s
modified Eagle medium supplemented with 15% fetal calf serum using standard
conditions. To induce myogenic differentiation, GM was replaced with DM
containing 2% serum (FetalClone III PerBio, Brebières, France). Primary human
skeletal muscle myoblasts were cultured similar to C2C12 cells in the presence of
Ultroser G (Gibco, St Aubin, France). Generation of retroviral particles and infection
have already been described.19

RNA isolation, cDNA synthesis and RT-qPCR amplification. RNA
isolation, reverse transcription and qPCR were performed as described.38

ChIP. ChIP was carried out essentially as described13 using anti-H4R3me2s
(Abcam, Cambridge, UK), PRMT5 (Euromedex, Mundosheim, France) and anti-HA
(Sigma-Aldrich, St Quentin Fallavier, France) antibodies. H3R8me2s antibody was
a gift from S Sif.

The sequences of the oligonucleotides used for shRNA, PCR and CHIP
experiments are listed in Supplementary Information.

Western blot analysis. Proteins were resolved by SDS-PAGE, transferred to
nitrocellulose membranes (Whatman, Maidstone, Kent, UK), and probed with anti-
PRMT1, PRMT5, BRG1, MYOG, MYOD1, RB, p21 or p27 antibodies (Santa Cruz,
Heidelberg, Germany), as indicated or an anti-HA antibody (12CA5, Sigma-Aldrich).
Membranes were then incubated with the appropriate HRP-conjugated secondary
antibodies. Immunoreactive bands were detected by chemiluminescence. Quantification
was performed using AIDA software (Dalian Software, Dalian, China).

Flow cytometry. For cell cycle analysis, experiments and analysis
were performed as described.38 Briefly, cells were incubated with 300mM BrdU
(Sigma-Aldrich) for 2 h, fixed in 70% ethanol solution and permeabilized with 0.2%
Triton X-100 for 10 min. Then, cells were treated with 0.2 N HCl before incubation
with a mouse anti-BrdU antibody (1 : 30 diluted in PBS with 0.2% Tween 20 and 1%
BSA; BD Biosciences, Le Pont de Claix, France) at room temperature for 1 h
followed by 1-h incubation with an FITC-conjugated secondary antibody (1 : 300; BD
Biosciences). DNA was then counterstained with 7-amino-actinomycin D (1 : 50;
Sigma-Aldrich) in the presence of RNase overnight. Cell cycle profiles were
analysed by flow cytometry (FACScan; BD Biosciences) using the CellQuest
software (BD Biosciences). For CD34 expression, 106 cells were labelled with a
biotinylated anti-CD34 antibody (marker) in 100ml PBS with 0.3% BSA on ice for
45 min, then washed and incubated with a streptavidin-Texas Red-conjugated
secondary antibody for 45 min.
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Cardiotoxin muscle injury. Tibialis anterior of mice (type of mice)
were injected with 10mM CTX (Calbiochem, Nottingham, UK) and processed 2
days later for electroporation, as described.39 At the indicated time points, mice
were killed, tibialis anterior muscles harvested and fixed in 4% formaldehyde
overnight before to be paraffin-embedded for further analysis. For enriched satellite
cell/myoblast preparations, isolation was performed as previously described,22 after
muscles were treated as above with CTX and co-injected with ecotropic Moloney-
retroviral particles that encoded shLUC or shCOPR5.

Mice and animal care. Animal experiments were approved by and performed
in accordance with the guidelines of the Ethics Committee of the Languedoc-
Roussillon region (France).
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