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ABSTRACT

Purpose: To describe the most common in vivo imaging-based research tools used to assess bone properties that are influenced by mechanical loading
associated with exercise, habitual physical activity, or disease states. Bone is a complex metabolically active tissue that adapts to changes in mechanical
loading by altering the amount and spatial organization of mineral. Method: Using a narrative review design, the authors provide an overview of bone
biology and biomechanics to emphasize the importance of bone size scale, porosity, and degree of mineralization when interpreting measures acquired
using quantitative ultrasound (QUS), dual-energy X-ray absorptiometry (DXA), computed tomography (CT), magnetic resonance imaging (MRI), and finite
element analysis (FEA). For each imaging modality, basic imaging principles, typical outcome measures associated with changes in mechanical loading,
and salient features for physiotherapists are described. Main Results: While each imaging modality has strengths and limitations, currently CT-based
methods are best suited for determining the effects of mechanical loading on bone properties—particularly in the peripheral skeleton. Gonclusions:
Regardless of the imaging technology used, the physiotherapist must carefully consider the assumptions of the imaging-based method, the clinical context,
the nature of the change in mechanical loading, and the expected time course for change in bone properties.
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RESUME

Objectif : Décrire les outils de recherche en imagerie in vivo les plus couramment utilisés pour I'évaluation des propriétés des os qui sont influencés par la
charge mécanique associée a I'exercice, a I'activité physique habituelle ou aux problémes de santé. Les os sont des tissus actifs complexes sur le plan
métabolique, qui s'adaptent aux changements de la charge mécanique en modifiant la quantité et Iorganisation spatiale des minéraux. Méthode : A I'aide
d’un modéle de revue narrative, un apergu de la biologie et de la biomécanique osseuse est produit en vue de mettre I'accent sur I'importance de I'échelle
de la dimension des os, de la porosité et du degré de minéralisation au moment d’interpréter les mesures recueillies a I'aide d’ultrasons quantitatifs (QUS),
d’absorptiométrie a rayons X biphotonique (DXA), de tomographie informatisée (CT), d’imagerie par résonance magnétique (IRM) et d’analyse par éléments
finis (FEA). Pour chaque modalité d’imagerie, les principes d'imagerie de base, les mesures typiques de résultats associés aux changements de charge
mécanique et les caractéristiques principales pour les physiothérapeutes ont été décrits. Principaux résultats : Bien que chaque modalité d’imagerie ait
ses forces et ses limites, les méthodes a base de tomographie informatisée sont les mieux adaptées pour déterminer les effets de la charge mécanique sur
les propriétés osseuses — particulierement dans le squelette périphérique. Conclusions : Sans égard a la technologie d’imagerie utilisée, le physiothérapeute
doit analyser soigneusement les hypothéses de la méthode fondée sur I'imagerie, le contexte clinique, la nature du changement de charge mécanique et le
délai attendu de changement des propriétés osseuses.

At entry to practice, physiotherapists need to under-
stand the principles of medical imaging to interpret X-
rays and radiology reports pertaining to the people on
their caseload. Recently, physiotherapy scope of practice
in several Canadian provinces has been expanded to in-
clude ordering musculoskeletal imaging studies such as
ultrasound (US), X-ray, and magnetic resonance imaging

(MRD). In this clinical context, physiotherapists must under-
stand the indications and diagnostic utility of different
imaging procedures used for routine clinical investiga-
tions to incorporate these tools into practice. With re-
spect to bone health in adulthood, diagnostic imaging is
used to identify osteoporosis and the risk or presence of
fracture. However, diagnostic imaging of bone is beyond
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Bone Properties
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QUS = quantitative ultrasound; DXA = dual-energy X-ray absorptiometry; MRl = magnetic resonance imaging; QCT = quantitative computed tomography;
pQCT = peripheral QCT; HR = high resolution; uFEA = micro finite element analysis.

the scope of this review. (Readers interested in diagnos-
tic imaging related to bone health are referred to several
reviews describing advances in bone-imaging techniques
for diagnosing osteoporosis, classifying fracture risk, and
assessing fracture healing.'~3) The current review focuses
on in vivo imaging methods and novel research tools de-
veloped to assess changes in bone properties in the adult
skeleton that may be influenced by mechanical loading.
Several recent reviews have described the effects of in-
creased mechanical loading (exercise, functional elec-
trical stimulation, etc.) on bone properties in individuals
during normal ageing or with injuries or disease states
associated with reduced mechanical loading and/or ac-
celerated bone loss (primary osteoporosis, spinal-cord
injury, stroke, cancer, etc.).*-® For example, a systematic
review of trials using peripheral quantitative computed
tomography (pQCT) to evaluate the effect of exercise and
physical activity on bone in postmenopausal women con-
cluded that high loads, novel loading directions, and/or
direct loads on bone have modest, site-specific benefits—
particularly noted in cortical bone.® The current review de-
scribes the imaging-based measures used in these trials
and some emerging methods that may be incorporated
in future clinical trials. It is important to note that the
precision of these in vivo measures varies from 2% to
5% and that few studies to date are of sufficient dura-
tion (at least 2 years) to determine the effect of increased
mechanical loading on bone when the rate of change

is relatively slow (i.e., with ageing*-® or cancer’). While
adaptations to mechanical loading may be observed within
6 to 12 months among individuals with injuries or disease
states associated with accelerated bone loss (e.g., in the
knee region following spinal-cord injury),® the long-term
benefits of increased mechanical loading in these individ-
uals are not clear. Properties of bone can be measured—
at different scales—using tools based on US, dual-energy
X-ray absorptiometry (DXA), computed tomography (CT),
and MRI. Figure 1 illustrates the resolution and associated
scale of the bone properties as a function of the radiation
exposure associated with each method reviewed. For each
imaging modality, we discuss the imaging principles, ex-
amples of bone properties linked with changes in mechan-
ical loading that can be estimated, and the salient features
for physiotherapists to consider.

BACKGROUND

Bone tissue has a mechanical sensing apparatus that
adjusts bone properties in response to the forces im-
posed on the skeleton. That is, bone remodels to meet
the functional needs of the body and has the capacity
for repair. Muscle activity produces the mechanical forces
experienced by the skeleton, which are critical to the
maintenance of bone health in adulthood.® Several bone
properties contribute to whole-bone strength; bone den-
sity, size, shape or distribution of the mineral, rate of
turnover, damage accumulation, and extent of mineral-
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ization are important determinants.'® Medical-imaging-
based research methods enable the quantification of ana-
tomic features of bone at various resolutions and scales
to estimate skeletal adaptations to altered mechanical
loading in vivo.

Bone composition

The skeleton serves several important mechanical and
metabolic functions. Mechanically, bones protect vital
organs from injury, amplify sound waves, and provide a
stable framework that enables muscle contractions to
generate force and movement. Metabolically, the skele-
ton provides mineral storage capacity (99% of calcium
and 85% of phosphorus in the body are stored in the
bones) and traps toxic minerals such as lead. Bone tissue
is composed of organic and inorganic materials, which
makes it well suited to perform these functions. The or-
ganic component (primarily collagen) provides a compli-
ant matrix that balances the brittle inorganic component
(primarily hydroxyapatite, an insoluble salt of calcium
and phosphorus) to better resist fracture. Although many
factors must be considered when bone fails to meet
metabolic demands, failure to meet mechanical demands
is typically indicated by fracture. Simply put, a bone
breaks when the loads applied to it exceed its strength.
(In this review strength is defined as the competence of
the whole bone to absorb energy, dissipate it, and repair
the fatigued material, unless otherwise noted.) The balance
between organic and inorganic materials differs according
to the skeletal site, metabolic demands, and primary me-
chanical function(s) of the bone.

Ongoing repair, mobilization of mineral stores, and
adaptive (re)shaping of the skeleton occur through bone
turnover. In adults, bone turnover primarily involves a
process called “remodelling,” which is tightly coupled
in time and space to repair fatigued bone that is unable
to withstand typical loads and to adapt the bone in
response to altered metabolic demands or mechanical
loads.!* The rate of bone turnover is determined by the
number of remodelling units within a given space. This
process of remodelling in response to mechanical stimuli
is summarized briefly below; for a detailed animated
review see the American Society for Bone and Mineral
Research Web site.!?

Bone turnover is triggered by microcracks that form
to dissipate absorbed energy and by significant varia-
tions in the rate of fluid flow through the bone matrix
(modulated by mechanical loading).>!! The major res-
ponders are three types of bone cells: osteocytes, osteo-
clasts, and osteoblasts. The osteocytes (cells embedded
in the mineralized bone tissue) in proximity to the micro-
cracks or altered shear forces undergo programmed cell
death (apoptosis) and stop secreting the protein sclero-
stin, which normally acts to inhibit bone turnover.'? The
neighbouring osteocytes detect the altered strain and
secrete factors that, combined with the lack of sclerostin,
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recruit precursor cells from the marrow to form osteo-
clasts.!? Osteoclasts create a tunnel through cortical bone,
or a ditch on the surface of trabecular bone, that is
approximately 200 pm in diameter and progresses at an
estimated 40 um/day over the course of 2 to 3 weeks.11:13
Osteoblasts are then recruited to the resorbed cavity to
produce proteins that form the organic matrix. Mineral-
ization is delayed by approximately 10 days after the
organic matrix is laid down, but it occurs rapidly during
the primary phase, so that 50-70% of maximum mineral-
ization is achieved within 3 to 4 months.'? The second-
ary phase of mineralization slows exponentially as the
radius of the cavity decreases and mineral density of the
cavity slowly increases, perhaps taking several years to
complete.!3

It is estimated that 5% of cortical bone and 25% of tra-
becular bone in the young-adult skeleton is remodelled
each year.' The rate of turnover increases in direct rela-
tionship with the age-related reduction in mechanical
loading, and the loss or gain in bone is determined by
the relative activity of osteoclasts and osteoblasts.’>~17
The rate of bone turnover has a dramatic effect on bone
strength, fracture risk, and the interpretation of mea-
sures acquired using medical imaging. For physiothera-
pists who aim to improve bone strength through exer-
cise, it is important to remember that bone remodelling
and the rate of turnover affect almost all determinants of
bone strength, from the micro to the macro level.1?

Bone size scale

Shapes of the various bones in the human skeleton
differ considerably, yet we can generally recognize a mam-
malian vertebra or femur across species quite easily. This
consistency in bone shape may suggest that bones are
static structures, and, on the scale of centimetres, this
assumption holds. However, when we consider bone on
the scale of angstroms, microns, and millimetres, as we
did in the previous section, we recognize the highly dy-
namic nature of bone and its capacity for adaptation
and repair.

On a macro level, the skeleton is described as having
two major types of bone—cortical and trabecular—which
have similar tissue compositions but differ in terms of
how the bone material is organized and its degree of
porosity. These factors contribute to differences in rela-
tive density, defined as the ratio of porous bone density
to the physiologic density of nonporous bone tissue—
approximately 2.0 g/cm>.2 Cortical bone, also called com-
pact bone, is composed of osteons, cylindrical layers that
surround longitudinally oriented Haversian canals (40—
50 um in diameter).'®1? Porosity of cortical bone ranges
from approximately 5% to 30%'4; thus, its relative density
typically varies from 1.8 to 2.0 g/cm?®. In contrast, trabe-
cular bone, also called cancellous bone, is organized in
longitudinal layers forming plate- and rod-like structures.
Porosity of trabecular bone varies from 30% to more than
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90%, because of the presence of large pores filled with
bone marrow and blood vessels'#; as a result, the relative
density of trabecular bone typically varies from 0.1 to
1.0 g/cm®. In both types of bone, fluid-filled canaliculi,
number of microcracks, and number and size of resorp-
tion cavities contribute to the degree of porosity.'* An im-
portant determinant of bone strength, porosity is chal-
lenging to measure in vivo because of the size scale of
the pores.’%1* At the macro level, the distinction between
highly porous cortical bone and minimally porous tra-
becular bone becomes ambiguous.

Cortical bone forms a thick shell in the shaft of long
bones, a thin shell at the ends of long bones, and a thin
envelope around the vertebral bodies. Trabecular bone is
found in cuboid bones, vertebral bodies, and flat bones
(e.g., the iliac crest) and at the ends of long bones to re-
inforce the thinning cortical shell. Recall that the accrual
and release of mineral from bone during adulthood oc-
curs primarily through remodelling on bone surfaces, as
described above. Because trabecular bone is more porous
than cortical bone—accounting for 80% of the surface
area of the adult skeleton—it is more metabolically
active than cortical bone and responds earlier to factors
that change the rate of bone turnover.'-'? For example,
women experience rapid bone loss from late perimeno-
pause (after the first missed period) to early menopause
(approximately 4 years after the final menstrual flow) be-
cause of the increased rate of bone turnover and in-
creased resorption at the cortical and trabecular bone
boundary (endosteal surface).2%2! Thus, the ability to
assess trabecular bone in vivo is likely to be particularly
helpful in assessing early changes in bone. A barrier to
achieving this aim is the size of the trabecular elements
in the adult skeleton: trabecular thickness can vary from
100 to 300 pm, and spacing between the elements can
vary from 700 to 2,000 um with healthy ageing.?? Fur-
thermore, it may be difficult to appreciate the contribu-
tion of the cortical bone to whole-bone strength when
the shell can be as thin as 0.38 + 0.24 mm, according to
measures of cadaveric femoral necks from older men.??

Bone biomechanics and adaptations to mechanical loading

Bone adapts to habitual mechanical stresses by chang-
ing its size and shape—adjusting the amount and spatial
distribution of the mineral—to minimize strain in a
manner that also improves efficiency of the structure.?*
Bones are (re)shaped to equalize the stresses as much
as possible, such that elements carrying no stress are
removed and those carrying high levels of stress are rein-
forced.?* Adding bone tissue in regions with high me-
chanical stress is a strategic way to improve bone strength
while adding minimal bulk and weight. Indeed, the skele-
ton responds to both increased and decreased mechanical
loading by increasing the rate of bone turnover and redis-
tributing mineral to normalize the stresses.’

C — ultimate strength
™ yield strength

- elastic (Young’s) modulus

Stress (MPa, force per area)

Strain, (e, % length change/original length)

Figure 2 Stress—strain curve for tensile or compressive loading of bone.

Bone specimens have been studied in mechanical test-
ing laboratories to identify the material and geometric
properties critical for bone to withstand the loads applied
to it. Information about intrinsic bone strength (tissue,
not whole) is obtained by using engineering formulae to
convert load to stress and deformation to strain to gener-
ate a stress—strain curve (see Figure 2).22 The slope of
the stress—strain curve for bone, known as the elastic (or
Young’s) modulus, provides a measure of the intrinsic
stiffness of the bone. The area under the stress—strain
curve provides a measure of the amount of energy re-
quired to cause material failure (the modulus of tough-
ness). The height of the curve is the measure of the ulti-
mate intrinsic material strength of the bone and defines
the ultimate strain. Bone-mineral density is highly corre-
lated with material strength and stiffness; the relation-
ship between stiffness and ultimate strain is inverse,
however, because highly mineralized bone is brittle.?? It
is important to note that intrinsic bone strength is pre-
sented in units of stress and may differ from measures
of load or force required to break the bone, since the
latter are influenced by several factors extrinsic to the
tissue.

Bigger bones absorb more energy before breaking than
smaller bones do. Areal bone mineral density (aBMD),
measured in g/cm?, primarily measures the quantity of
bone and is a strong predictor of bone strength.?4 In ad-
dition, bone geometric properties have established asso-
ciations with mechanical strength.?* Interest in evaluating
the spatial distribution of bone mineral, rather than
aBMD alone, was motivated by the observation that
drug therapies for osteoporosis reduced the incidence of
fracture by 50% while the corresponding change in
aBMD was in the range of 5%.2> Mechanical testing has
demonstrated that a bone’s ability to withstand com-
pression and tensile loading is directly proportional to
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Figure 3 Resistance to bending force in two bone shafts with identical
cross-sectional areas, elastic modulus, and stress from axial force but
differing in the distance of the material from the centre of the “cylinder.”
The arrows indicate the magnitude of deformation associated with the
same bending force, demonstrating that the shaft on the left cannot resist
as much bending force as the one on the right. The midsections of the
long bones in the arms and legs gradually become wider and thinner as
adults age, becoming more like the bone on the right.

its cross-sectional area (CSA).2%2* This type of testing has
also shown that resistance to bending and torsional
loading is proportional to the “second area moment of
inertia”’—the distance of the mass from the neutral
bending axis.?> The loads typically experienced by the
skeleton, particularly the peripheral skeleton, combine
compression and tension forces, which generate bending
and torsional moments.>* The skeleton adapts to age-
related bone loss by adding bone to the outer (periosteal)
surface of long bones and vertebral bodies, thus increas-
ing the bone CSA. This adaptation is more apparent in
men; in women, variations are observed based on meno-
pausal status.?® This adaptive strategy increases the CSA
around the neutral axis of bending or torsion (i.e., in-
creases the second area moment of inertia) and pre-
serves strength while requiring a minimal amount of
bone mineral (see Figure 3). Increases in mechanical load-
ing preferentially increase mineral accrual on the perios-
teal bone surfaces in the regions where the mechanical
stresses are highest.?* A recent systematic review con-
cluded that physical activity and/or exercise has a prefer-
ential effect on cortical bone size (increased bone-mineral
content) and shape (improved spatial distribution of
mineral) in postmenopausal women.> It is important to
note that both of these adaptations are associated with
site-specific increases in bone strength.

In the spine, loads on the vertebral bodies are pri-
marily compressive.2* With ageing, horizontally oriented
rod-like trabeculae become thinner and more suscep-
tible to elimination by remodelling activities,?”-*¢ while
vertically oriented plate-like trabeculae are readily per-
forated by remodelling cavities and become more rod-
like in structure.?” This pattern of loss is detrimental
because, for the same decrease in bone mass, loss of tra-
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becular connectivity reduces mechanical strength two to
five times as much as simple thinning of the trabecular
elements,?® and the plate-like trabeculae may buckle as
a result of losing horizontal supports.?® Several ex vivo
studies have shown that the structural arrangement of
the trabecular network, not the volume of bone present,
determines the mechanical strength of the vertebrae.30-32
In patients undergoing heart transplantation, changes in
the structural arrangement of the trabecular network,
not bone-mineral content per unit area, distinguished
those with vertebral fracture from those without.?? Eval-
uation of trabecular connectivity may provide important
information on the ability of the vertebrae to withstand
loads—particularly if the forces applied are not of the
compressive type that the structure of the trabecular net-
work is designed to resist best.

MEDICAL-IMAGING-BASED METHODS FOR IN VIVO
ASSESSMENT OF BONE STRENGTH

Bone strength can be estimated using quantitative
ultrasound (QUS) and X-ray-based technologies, includ-
ing DXA and CT (see Figure 1). MRI can be used to esti-
mate apparent trabecular bone structure and, like QUS,
involves no exposure to ionizing radiation (see Figure 1),
but current methods do not provide estimates of density.
Both CT and MRI technologies yield three-dimensional
(3D) images and permit the separate assessment of corti-
cal and trabecular compartment bone properties, which
is expected to offer distinct advantages for the reasons
described above. There are limited options for imaging
determinants of bone strength at the structural level in
vivo. To date, properties such as spacing and thickness
of trabeculae and intra-cortical porosity have been eval-
uated in bone biopsies taken from the iliac crest and im-
aged using micro-CT. This approach is invasive, how-
ever, and does not permit repeated measurement of
the same bone tissue. Post-processing of high-resolution
pQCT (HR-pQCT) images and finite element analysis
(FEA)-based methods of assessing geometric bone models
constructed from whole-body QCT, HR-pQCT, and high-
resolution MRI (HR-MRI) are being developed to esti-
mate bone strength at the structural level. These emerg-
ing technologies will improve our understanding of the
site-specific spatial organization of bone mineral changes
in response to altered mechanical loading and its impact
on bone strength.

Quantitative ultrasound (QUS)

Measures acquired using QUS relate to bone elastic-
ity, structure of trabeculae, and apparent density.3* A
common measurement site is the non-dominant calca-
neus, through which a laterally projecting piezoelectric
transducer transmits US energy toward a receiving trans-
ducer (which detects the attenuated US signal) on the
other side. The velocity and degree of penetration of
the sound waves depends on the material they are travel-
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ling through.3* For example, more porous bone allows
greater penetration (less attenuation) and lower velocity
(slower wave). The calcaneus has several advantages as a
QUS measurement site: the bone can be imaged through
two nearly plane-parallel surfaces; it consists mainly of
trabecular bone, which is more metabolically active than
cortical bone; the overlying layer of soft tissue is thin; and
it is a weight-bearing bone.?> QUS devices using a parallel
transmitter-receiver probe configuration have been devel-
oped to assess transduction of US energy through long
bones minimally covered by soft tissue.

Measures of composite bone properties are typically
characterized in terms of broadband ultrasound attenua-
tion (BUA, m/s), ultrasound velocity (speed of sound—
SOS, dB/MHz), and a calculated stiffness index based on
the product of BUA and SOS adjusted by three different
constants. Although limited ability to detect change over
time in women on drug therapy for osteoporosis has pre-
vented widespread use of QUS,! calcaneal BUA did ap-
pear to increase in postmenopausal women following
6 months of either weight-bearing or aquatic exercise.3®
In young submariners who experienced limited physical
activity (as well as relatively high levels of CO,, limited
exposure to sunlight for vitamin D metabolism, and other
changes in lifestyle factors linked with bone health),
mid-tibia SOS was decreased after being submerged for
30 days and returned to baseline levels 6 months after
returning to shore.3” Similarly, the stiffness index was
significantly lower in the non-affected calcaneus of insti-
tutionalized postmenopausal women who had suffered a
single-hemispheric stroke more than 6 months previously
than in the right calcaneus of healthy age- and gender-
matched community-dwelling postmenopausal women.!”

Commercially available QUS devices are small, porta-
ble, and relatively inexpensive and require minimal op-
erator training. Moreover, QUS is non-invasive and can
be performed quickly and without exposure to ionizing
radiation (see Figure 1). There is emerging evidence that
outcomes obtained using QUS are responsive to changes
in mechanical loading. However, the integral assessment
of bone properties is a major drawback, because it limits
our interpretation of the mechanisms contributing to ob-
served changes in BUA, SOS, and/or stiffness index.

Dual-energy X-ray absorptiometry (DXA)

DXA scans are obtained by projecting two X-ray beams
with different energies through the part of the body being
measured.33° The person lies on the scanner bed with
the body part being measured positioned between the
X-ray source (located below) and the detector array
(positioned above). Attenuation of the beam depends on
the interaction between the X-rays and the tissues within
the X-ray beam. With appropriate X-ray energies, and as-
suming that the object being measured consists of two
radiologically distinct materials (e.g., bone mineral and

soft tissue; lean tissue and fat tissue), the mass of min-
eral and soft tissue within the beam can be measured.
From an assessment of the total projected area of the
bone under investigation, aBMD 1is calculated as the
ratio of bone mineral content (BMC, or mass of mineral)
per unit projected area (g/cm?. Commercial software
enables skeletal assessment of the hip, spine, forearm,
and whole body, as illustrated in Figure 4.

The clinical diagnosis of osteoporosis is based on T-
scores calculated for aBMD at the hip and lumbar spine,
because aBMD measured by DXA provides a good estimate
of fracture risk in Caucasian postmenopausal women at
the population level.° The T-score is reported as the
number of standard deviations the measure aBMD is
from race- and gender-matched young adults at peak
aBMD. A T-score < —2.5 falls into the category of osteo-
porosis, as defined by the World Health Organization
based on aBMD in white women.'° In Canada, the 10-
year absolute fracture risk for a particular individual is
estimated based on the lowest T-score (hip or lumbar
spine) in combination with clinical risk factors.#! De-
creased aBMD has been observed in older adults as a con-
sequence of ageing*® and following hemiplegic stroke.*? It
is worth noting that aBMD is influenced by changes in
bone size.*? For example, in the presence of a compres-
sion fracture in a lumbar vertebra (a hallmark of a weak
bone), BMC will not be changed, but the smaller bone
area will produce an apparent increase in aBMD. Fur-
thermore, site-specific change in spatial distribution of
mineral is not estimated by aBMD.

Bone geometry in terms of area (cm?) can be extracted
for regions of interest within DXA scans (Figure 4A-D).
Methods have been developed to extract information
about bone shape (spatial distribution of bone mass) at
the hip and spine, providing insight into the strength of
the whole bone. Hip structural analysis (HSA) software
uses the X-ray attenuation profile from the standard two-
dimensional (2D) DXA scan of the proximal femur to
estimate geometric properties.*+*> Since 2007, HSA algo-
rithms have been incorporated into the analysis software
accompanying DXA scanners manufactured by Hologic
Inc. (Bedford, MA). Proximal hip properties such as total
surface area of bone, section modulus, cross-sectional
(area) moment of inertia, cortical shell thickness, neck
shaft angle, and sub-periosteal width can be estimated.*®
Face validity is provided by several large prospective
studies reporting that measures of femoral bone geo-
metry derived using this method are predictive of hip
fracture.*’*8 However, femoral aBMD and structural
properties derived using HSA are very highly correlated,
as these measures are based on the same attenuation
profile, and thus their independent contributions to risk
of hip fracture cannot be distinguished.*® Clinically per-
tinent information about shape and size of vertebrae can
be obtained from vertebral fracture assessment scans
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Figure 4 Sample DXA images. Bone density, mass, and area are calculated for each region of interest (defined by semi-automatic line placement) and
the total region of interest in scans of the whole body (A), distal forearm (B), lumbar spine (C), and proximal femur (D). Measures of vertebral heights
and type and severity of vertebral deformity are derived from semi-automated marker placement on Vertebral Fracture Assessment images of L4 to T4 (E).
(All images were acquired using the Hologic Discovery A scanner, except the forearm scan, which was acquired using the Hologic QDR 4500A.)

combined with semi-automatic measures of vertebral
body heights. This DXA-based method was used to detect
a slower rate of decline in vertebral heights in postmeno-
pausal women with severe osteoporosis of the spine who
completed a 12-month home exercise programme relative
to the rate in non-exercisers.>®

DXA is an important clinical tool because of its avail-
ability and low levels of radiation exposure, but it is
poorly suited to assessing bone adaptations to mechani-
cal loading because of the limitations of projected 2D
technology. Moreover, as with any X-ray-based tech-
nology, the measured outcomes reflect the amount of
mineralized bone. The rate of bone turnover has a direct
relationship with the magnitude of increase or decrease
in mechanical loading.>* Over the long term, changes in

bone turnover will result in corresponding changes in
aBMD, but the initial resorption of mineralized tissue
within each remodelling site and the lag time required
for remineralization may produce an early decrease in
aBMD. It must be noted that aBMD is falsely high in the
presence of degenerative joint changes and/or calcifica-
tion within the vasculature in addition to compression
fractures.*? Finally, it is unclear whether the DXA-based
measures of femoral and vertebral bone geometry pro-
vide important information in addition to aBMD with
respect to bone adaptations to mechanical loading.

Computed tomography (CT)
CT-based methods used to estimate bone properties
include whole-body CT, pQCT, and HR-pQCT. Whole-
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Figure 5 Examples of distal radius images: Cross-sectional image of radius and ulna using whole-body CT (Aquilion CX, Toshiba) (A); improved resolu-
tion using pQCT (XCT 960, Stratec) (B); analysis of (B) using OsteoQ software to facilitate analysis of cortical shell thickness (C) and trabecular connectivity
(D); ultradistal radius imaged by HR-pQCT (Xtreme, Scanco) (E); and (E) sectioned for analysis of the trabecular network (F)

body CT scanners with spiral technology enable synchro-
nous rotation of the X-ray source and the 64 or 256 multi-
detector row, which quantifies (in Hounsfield units) the
attenuation of the photon energy as it passes through the
body. The inclusion of hydroxyapatite-equivalent calibra-
tion standards in the scan acquired using the whole-body
CT permits conversion of Hounsfield units to bone-
density measurements (g/cm?®); this is referred to as QCT.
Volumetric BMD (vBMD, g/cm®) can be quantified using
commercially available packages (QCT Pro, Mindways
Software Inc., Austin, TX; Image Analysis Inc., Columbia,
KY) or university-based research tools.>>->* pQCT is spe-
cifically designed for assessment of the peripheral skele-
ton. In Canada, there is no billing code for pQCT, which
is therefore used exclusively for research. The most com-
mon pQCT models in use today are the XCT 2000(L),
which measure the lower leg and forearm, and the XCT
3000, which has a larger bore and accommodates more
proximal sites of the peripheral skeleton (both Stratec
Medizintechnik, Germany). The HR-pQCT device, the
XtremeCT (Scanco Medical, Switzerland), is specifically
designed to image bone properties at the ultradistal radius
and ultradistal tibia. The pQCT and HR-pQCT scanners
are internally calibrated for automatic conversion of
Hounsfield units to vBMD values typical of the long bones
in the peripheral skeleton.

Any skeletal site can be imaged using the whole-body
CT scanner, whereas the peripheral devices are limited
by the diameter of the bore (pQCT: 3000 = 00 mm,
2000(L) = 140 mm; HR-pQCT = 126 mm) and the dis-
tance from the distal end of the long bone (pQCT: 3000 =

350 mm, 2000L = 400 mm; HR-pQCT = 150 mm). All CT
imaging modalities are capable of measuring cortical
and trabecular bone compartment properties separately
at each site. Typical measures extracted from pQCT scans
include vBMD, BMC, and CSA of the total bone com-
partment and of cortical and trabecular bone/medullary
compartments separately. Several cross-sectional geo-
metric properties can be estimated, including average
thickness of the cortical shell, second area moment of
inertia, and polar moment of inertia.>> In addition, varia-
bles that combine estimates of bone density and geome-
try, the strength-strain index and bone strength index,
are computed to reflect the bone’s ability to resist bend-
ing along the neutral axis and to resist compression, re-
spectively.”®>7 These geometric measures can be extracted
from whole-body CT images—albeit at lower resolutions,
and excluding the measures that combine estimates of
vBMD—using commercially available dedicated software
(BonAlyse, Oy, Jyvaskyla, Finland; OsteoQ reader service,
Dundas, ON). Figure 5C illustrates the use of OsteoQ to
estimate geometric properties of the cortical shell at the
distal radius. OsteoQ also provides estimates of apparent
structure of the trabecular network, such as trabecular
thickness, spacing and connectivity (Figure 5D), and pore
size (average and maximum). As shown in Figure 1, visu-
alization of smaller-scale bone outcomes is enhanced
using HR-pQCT, thanks to its nominal spatial resolution
of 82 um>. Moreover, because the voxels are cubes rather
than rectangular prisms (as in whole-body CT and pQCT),
the bone properties remain consistent even when they are
examined in planes other than the axial plane in which
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they were imaged. Typical bone outcomes generated by
the Scanco analysis software module include cortical shell
thickness, ratio of trabecular bone volume to total tissue
volume (trabecular bone volume fraction), trabecular
thickness, trabecular spacing, and trabecular number.
Custom post-processing software has been developed to
quantify cortical thickness and porosity from HR-pQCT
images.>8

In a 12-month trial that used QCT to image the proxi-
mal and mid-femur and the tibia in late perimenopau-
sal women randomly assigned to one of four groups—
hormone-replacement therapy (HRT), exercises (primar-
ily a progressive high-impact strengthening programme),
HRT and exercise, or usual physical activity (control)—
an increase in BMC was observed in all three treatment
groups.>® Despite poor adherence in the exercise group,
a positive effect was observed in the posterior aspect of
the proximal tibia.>® The combination of HRT and exer-
cise produced the greatest positive adaptations at almost
every site measured, since the spatial distribution of
mineral was increased in the anterior—posterior regions
in those taking HRT only and in both the anterior-lateral
and posterior-medial regions in those exercising.>® The
small but significant spatial redistribution of mineral
may be very important, given that the bone is strength-
ened in the weakest direction for resisting bending. In a
study using pQCT to image the radii of individuals with
residual weakness more than 1 year following a stroke, a
reduction in vBMD and BMC was observed in the paretic
limb at the distal radius (4% the length of the ulna, where
trabecular bone is abundant) and in the cortical bone
compartment at the distal third of the radius relative to
the non-paretic limb.%%¢1 In the paretic lower limb of in-
dividuals with chronic stroke, mineral content in the tra-
becular compartment increased in those who completed
a 19-week progressive resistance exercise programme.%?

The anticipated age-related decreases in femoral-neck
CSA, cortical shell thickness, cross-sectional moment of
inertia, and section modulus were observed over a 2-
year period in postmenopausal women assessed using
QCT.%3 Measures of cortical shell thickness derived using
pQCT are inversely related to prevalent fracture,®* re-
duced with disuse due to stroke,®%-%! and responsive to
a 19-week exercise programme in the paretic lower
limb of individuals with chronic stroke.®? In a group of
older adults with hemiplegia due to chronic stroke, the
strength—strain index at the tibial shaft was associated
with muscle quality.®> These data demonstrate the ad-
vantage of assessing geometric properties for the cortical
and trabecular compartments separately to characterize
adaptations to altered mechanical loading.

The measures of bone geometry described above cannot
describe the critical contribution of spatial distribution
of bone in the trabecular network. Because of the limited
resolution of whole-body CT and pQCT (see Figure 1)
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and the size of the trabecular elements (trabecular thick-
ness: 100-300 pum; trabecular spacing: 700-2,000 pm),!122
the true architecture of the trabecular network cannot be
measured using CT and pQCT. However, the measures
of apparent structure demonstrate face validity. Gordon
and colleagues (1998) quantified the apparent trabecular
structure of the spine using whole-body CT and found
that the average marrow pore size (representing trabe-
cular spacing) distinguished women with fractures from
those without.®® Estimates of average marrow pore size
at the distal radius, derived from pQCT images (XCT960,
Stratec) with an in-plane resolution of 0.3 mm? and a
slice thickness of 2.5 mm, also distinguished women
with wrist fractures from those with no fractures after
controlling for vBMD.%” Using the same measures of
apparent trabecular bone structure to investigate side-
to-side differences at the distal radius, another study
found that average marrow pore size was larger and
trabecular connectivity was poorer in the radius of the
non-dominant arm than in the dominant one.®® Using
an earlier HR-pQCT model manufactured by Scanco,
with an in-plane resolution of 0.35 mm? (at the radius)
to 0.45 mm? (at the tibia) and a slice thickness of 1.5
mm, Riggs and colleagues observed the expected age-
and sex-related differences in apparent bone structure
in the Minnesota population.®® Using the latest model
of the HR-pQCT, the Xtreme, the same investigators
were able to show that the rate of bone-volume loss is
the same for men and women, but the pattern of loss
differs’?: women have increased trabecular spacing and
decreased trabecular number with age, while men have
slow trabecular thinning with little net change in trabecu-
lar spacing and trabecular number.”® To date, research us-
ing HR-pQCT has focused on estimating fracture risk.”'-73
Studies are needed to determine whether these measures
detect change resulting from altered mechanical loading.

Observing compartmental bone tissue adaptations
that result from mechanical (un)loading is an important
advantage of imaging with CT technology. Nonetheless,
CT image acquisition and assessment are not without
limitations. Image acquisition using CT may be limited
by factors such as high equipment costs, required opera-
tor training, physical dimensions of the device, image
resolution, or effective radiation dose. Improved reso-
lution minimizes the error attributable to the partial-
volume effect (when a voxel represents more than one
tissue type), but the trade-off for increased resolution is
increased radiation exposure (see Figure 1). Promising
methods of image post-processing have been developed
to minimize the impact of partial volume and noise arte-
facts.”* At present, and in the foreseeable future, CT is
the method of choice for determining the effects of
mechanical loading on bone properties, particularly in
the examination of peripheral skeletal sites.



Maclintyre and Lorbergs Imaging-Based Methods for Non-invasive Assessment of Bone Properties Influenced by Mechanical Loading 211

Magnetic resonance imaging (MRI)

Magnetic resonance imaging uses a strong magnetic
field and a sequence of radiofrequency pulses to encode
the spatial frequency of protons within the gradient
fields to produce 3D images. Hydrogen is the component
most frequently studied when MRI is used to image
bone. Bone tissue has very low water content, and the
protons have a very short T2 relaxation time (an MRI
measure reflecting the chemical environment of pro-
tons), which means that bone gives no signal in standard
MRI and there is no way to estimate bone density. How-
ever, water and fat content in the marrow spaces within
the trabecular network provide a strong signal, so that
T2-dependent MRI can provide indirect images of the
trabecular bone in vivo.”> High-resolution MRI (HR-MRI)
is typically performed using surface coils at peripheral
sites such as the heel, knee, and wrist to minimize the
signal-to-noise ratio, and in vivo methods to quantify
the apparent structure of the proximal femur have been
developed.”®

Nikander and colleagues compared MRI-based mea-
sures of femoral-neck geometry in athlete populations ex-
posed to different types of loading impacts.””-”® Athletes in
groups classified as odd-impact loading (e.g., soccer and
squash) and high-impact loading (e.g., triple jump and
high jump) demonstrated 15% and 30% greater cortical
area, respectively, relative to the reference group.”® Reso-
lution approximating that achieved in vivo (156 x 156 x
300 um?) is in the order of trabecular thickness, but partial-
volume effects confound measures such that bone-volume
fraction and trabecular thickness are overestimated.”®8°
Nevertheless, in vivo measures of apparent trabecular
bone structure using HR-MRI in the radius have detected
changes associated with ageing, aBMD, and osteopo-
rosis.81:82 To date, longitudinal studies of adaptations in
bone geometry and apparent structure of the trabecular
network in response to altered mechanical loading have
not used MRI.

The potential of MRI for evaluation of bone properties
lies in its ability to depict fine bone detail without expo-
sure to ionizing radiation. At present, in vivo MRI meth-
ods do not permit assessment of bone mineral; however,
new methods are under development for evaluating the
properties of inorganic and organic bone matrix.®* The
major limitations of this novel imaging method are the
lack of access to MRI scanners and the necessary coils
as well as the time required for imaging and subsequent
analyses.

Finite element analysis (FEA) and micro-FEA (pnFEA)

Research tools are being developed to construct com-
puter-based 3D geometric models of bone derived from
serial transaxial whole-body QCT, HR-pQCT, and HR-
MRI imaging using FEA.234-88 Whole-body QCT images
are post-processed using commercially available software
to generate 1 mm® to 3 mm? bone voxels, which are con-

verted into equally sized “finite elements”—each assigned
homogeneous material elastic properties representative of
human cortical or trabecular bone, as appropriate. Simi-
larly, uFEA models can be constructed from HR-pQCT
and HR-MRI scans of peripheral skeletal sites at even
higher nominal resolution to provide a detailed represen-
tation of the microstructure. For example, pFEA models
constructed according to the method developed by Vi-
layphiou and colleagues, using software available from
Scanco, contain approximately 2 million elements at the
radius and 5 million elements at the tibia.8® “Virtual”
loads (i.e., to simulate forces associated with compres-
sion, bending, single-leg stance, or sideways fall) are ap-
plied to a volumetric region of interest to predict mate-
rial properties such as elastic modulus, stresses, failure
load, and percentage of load carried by different bone
SiteS.84’85’88_90

A study using QCT-derived FEA of thoracic and lum-
bar vertebrae noted gender differences in age-related
changes in vertebral body strength.®* For both men and
women, age was positively associated with the propor-
tion of the load carried by the peripheral compartment of
the vertebra and negatively associated with the predicted
strength of the trabecular compartment.®* In women, the
age-related decrease in vertebral strength was twofold
greater than in men, and there was a significant age-
related decrease in strength of the peripheral compart-
ment.®* FEA of QCT images of the proximal femur was
conducted for cases (n = 77 with hip fracture at follow-
up) and sex- and age-matched controls (n = 249 with no
fracture at follow-up) selected from a population study
of 5,500 men and women.?> After adjustment for total
hip aBMD, FEA-computed strength of the femoral head
under virtual “fall loading” conditions predicted incident
hip fracture in men only.?> Using HR-pQCT-based pFEA
models of the radius and tibia, Vilayphiou and colleagues
observed region-specific differences in load distribution
between trabecular and cortical bone in a prospective
cohort of 1,189 men with and without fractures.3® At
proximal regions, cortical bone sustained more load
(72-82%) than trabecular bone; at distal regions, slightly
more load (53-58%) was sustained by trabecular bone.?8
In this same cohort of men, measures of microarchitec-
ture and biomechanical properties derived from pFEA of
HR-pQCT-based models of the radius and tibia were
associated with all types of fractures.®® “Virtual bone bi-
opsies” for six women taking an anabolic drug treatment
of osteoporosis have been generated from HR-MRI im-
ages (with a voxel size of 137 x 137 x 410 um?) to pro-
duce 3D-rendered “cores” having a volume resolution
of 23 x 23 x 68 pm>.91 Although the sample size was too
small for the researchers to draw definitive conclusions,
the bone cores for four of the six women demonstrated
changes in trabecular architecture®' consistent with the
osteogenic response associated with increased mechani-
cal loading.
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It remains unknown whether the structural level bone
outcomes derived using these imaging-based technolo-
gies will reflect adaptations to altered mechanical load-
ing. However, it is anticipated that these analyses will
contribute new knowledge when the method is applied
to monitor individual changes in bone microarchitecture
and structural properties in response to targeted load-
ing interventions. At this time, apart from the software
modules available for QCT and HR-pQCT, the use of this
imaging-based method is limited to the developers of this
tool, pending further validation.

CONCLUSIONS

Bone is a complex metabolically active tissue that re-
sponds to changes in mechanical loading by altering the
amount and spatial organization of mineral. A variety of
imaging-based research tools are available to estimate
changes in bone properties in response to altered me-
chanical loading. QUS provides estimates of bone quality
in the peripheral skeleton without exposure to ionizing
radiation. CT-based technologies that reconstruct 3D
images are best suited to measure adaptations in mineral
distribution but are restricted to peripheral skeletal sites
because of the trade-off between resolution and radia-
tion exposure. MRI provides 3D images that can be ana-
lyzed to quantify apparent trabecular bone structure in
the peripheral skeleton. Further research using FEA tools
may demonstrate local changes in bone microarchitec-
ture and structural properties in response to targeted
loading interventions.

KEY MESSAGES

Several medical-imaging-based research tools are
capable of measuring bone properties to provide insight
into bone adaptations to exercise and other factors that
alter mechanical loading of the skeleton. Regardless of the
imaging technology used, the rate of bone turnover and
the extent of tissue mineralization influence the measures
obtained. When interpreting research studies reporting
imaging-based estimates of bone properties, physiothera-
pists must also consider the resolution of the imaging
tool; the impact of age, metabolic status, and disease pro-
cess upon which any changes in mechanical loading are
imposed; and the length of time between the onset of
altered loading and assessment.
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