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Mutations in ROGDI Cause Kohlschütter-Tönz Syndrome

Anna Schossig,1,3,14 Nicole I. Wolf,2,4,14 Christine Fischer,3 Maria Fischer,5 Gernot Stocker,5

Stephan Pabinger,5 Andreas Dander,5 Bernhard Steiner,6 Otmar Tönz,6 Dieter Kotzot,1 Edda Haberlandt,7

Albert Amberger,1 Barbara Burwinkel,8,9 Katharina Wimmer,1 Christine Fauth,1

Caspar Grond-Ginsbach,10 Martin J. Koch,11 Annette Deichmann,12 Christof von Kalle,12

Claus R. Bartram,3 Alfried Kohlschütter,13 Zlatko Trajanoski,5 and Johannes Zschocke1,3,*

Kohlschütter-Tönz syndrome (KTS) is an autosomal-recessive disease characterized by the combination of epilepsy, psychomotor regres-

sion, and amelogenesis imperfecta. The molecular basis has not yet been elucidated. Here, we report that KTS is caused by mutations in

ROGDI. Using a combination of autozygosity mapping and exome sequencing, we identified a homozygous frameshift deletion,

c.229_230del (p.Leu77Alafs*64), in ROGDI in two affected individuals from a consanguineous family. Molecular studies in two addi-

tional KTS-affected individuals from two unrelated Austrian and Swiss families revealed homozygosity for nonsense mutation

c.286C>T (p.Gln96*) and compound heterozygosity for the splice-site mutations c.531þ5G>C and c.532-2A>T in ROGDI, respectively.

The latter mutation was also found to be heterozygous in the mother of the Swiss affected individual in whom KTS was reported for

the first time in 1974. ROGDI is highly expressed throughout the brain and other organs, but its function is largely unknown. Possible

interactions with DISC1, a protein involved in diverse cytoskeletal functions, have been suggested. Our finding that ROGDI mutations

cause KTS indicates that the protein product of this gene plays an important role in neuronal development as well as amelogenesis.
Kohlschütter-Tönz syndrome (KTS, MIM 226750) is a rare

genetic disorder characterized by the combination of

epilepsy, psychomotor delay and regression, and amelogen-

esis imperfecta. So far, 24 individuals with the clinical diag-

nosis of KTS have been reported.1–9 Pedigrees suggest an

autosomal-recessive mode of inheritance, but genetic

heterogeneity cannot be excluded. The molecular basis of

KTS has not yet been elucidated. The most striking feature

is global enamel deficiency (amelogenesis imperfecta) of

the hypoplastic or hypocalcified type; this deficiency affects

primary as well as permanent teeth right from the moment

of eruption. The enamel is very thin, rough, prone todisinte-

gration, and stained in various shades of brown. Onset of

epilepsy usually occurs in the first year of life; seizures are

difficult to treat or might be refractory to therapy. Affected

children show severe psychomotor delay or regression,

which might be present after birth but more frequently

develops after the onset of seizures. Both gross and fine

motor skills are usually impaired, and intellectual disability

might be severe. The natural course is variable; several

affected individuals developed spastic tetraplegia, and

somedied in childhood.There arenoconsistentdysmorphic

features or metabolic abnormalities, although nonspecific

facial anomalieshavebeenreported insomeaffected individ-

uals. Cranial imaging frequently shows mild brain atrophy.

In order to identify the genetic basis of KTS, we investi-

gated four affected children from three families as well as
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healthy members of the index family reported in 1974.1

Clinical features of the affected individuals are summa-

rized in Table 1. Family A is a consanguineous Moroccan

family with two affected children (A-IV:3 and A-IV:4;

Figure 1);9 the parents are first cousins. Initial development

of the affected boy (A-IV:3) appeared normal, but treat-

ment-resistant epilepsy started when he was 4 months

old and led to loss of fixation and global developmental

delay. The affected younger sister (A-IV:4) showed psycho-

motor delay from birth onward. Epileptic seizures, which

were difficult to treat, started when she was 12 months

old. The first teeth in both children erupted when they

were 13 and 14 months old, respectively; from the begin-

ning, their teeth were lusterless and had a brownish dis-

coloration. Family B has been reported previously;8 the

parents of the affected boy (B-II:1) are not knowingly

related but come from neighboring villages in East Tyrol

(Austria). Epilepsy started when the boy was 5 months

old but later improved; there were no seizures after 7 years

of age, and medication was discontinued when he was

15 years old. Primary and permanent teeth were yellow,

hypoplastic, and crowded. Family C has one affected girl

(C-XI:2) who has not yet been reported. Left-sided hemi-

convulsive seizures started when she was 6 months old

and were initially difficult to treat, but when she was

6 years old, anticonvulsive treatment could be discontin-

ued. Primary and secondary dentition showed enamel
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Table 1. Clinical Features of KTS and ROGDI Genotypes in the Affected Individuals

A-IV:3 A-IV:4 B-II:1 C-XI:2

ROGDI genotype homozygous for
c.229_230del
(p.Leu77Alafs*64)

homozygous for
c.229_230del
(p.Leu77Alafs*64)

homozygous for
c.286C>T (p.Gln96*)

compound heterozygous
for c.531þ5G>C
and c.532-2A>T

Age at time of last
evaluation

12 years 9 years 18 years 9 years

Growth parameters mild microcephaly normal normal normal

Initial development normal until onset
of seizures

developmental
delay since birth

normal until onset
of seizures

normal until onset
of seizures

Language skills and
social interaction at
time of last evaluation

no expressive
language

some words;
deterioration of social
interaction after
onset of seizures

35 single words and
sentences with two words;
social and friendly behavior

competent to talk in
short and simple sentences

Age of walking
without support

4.5 years 2.2 years 2.5 years 2 years

Age of seizure onset 4 months 12 months 5 months 6 months

EEG findings
(generalized or
partial traits)

multifocal epileptic
activity and poorly
developed background
activity

focal epileptic activity
and poorly developed
background activity

multifocal epileptic
activity (later generalized)
and abnormal background
activity

focal epileptic activity;
normalization at
6 years of age

Seizure type and
frequency

episodes of cyanosis
and apnea; later
generalized tonic-clonic
seizures (1–5 per day);
only seizures with
fever since start of
levetiracetam at
3.5 years of age

mostly myoclonic
seizures (1–5 per day);
only seizures with
fever since start of
levetiracetam
at 1.8 years of age

focal and generalized
seizures (1–5 per day);
seizure free since 7 years
of age and no medication
since 15 years of age

left-sided hemiconvulsive
seizures and various
anticonvulsants; seizure
free without treatment
since 6 years of age

Hearing normal normal normal normal

Vision loss of visual fixation
after onset of seizures

normal normal normal

Dentition eruption of first teeth
at 13 months of age;
discoloration from
the beginning

eruption of first teeth
at 14 months of age;
lusterless and rapid
discoloration

primary and permanent
teeth with discoloration
and enamel defects

primary and permanent
teeth with discoloration
and enamel defects

The following abbreviation is used: EEG, electroencephalography.
abnormalities typical of KTS (Figure 2). Genealogical

studies revealed that this girl is distantly related to the

mother of the affected individuals (C-IX:3) reported in

19741 via both the maternal line (six generations ago)

and the paternal line (nine generations ago). The parents

of individual C-XI:2 are also eighth cousins (see family C

in Figure 1).

In order to identify the candidate gene for KTS, we per-

formed linkage analysis and autozygosity mapping in

family A. Analyses of all families were carried out with

informed consent and were approved by the institutional

review board at Medical University Innsbruck. Affected

individuals, siblings, parents, and grandparents were in-

vestigated. We analyzed 250 ng of genomic DNA from

each individual on the SNP-based mapping-chip Gene-

Chip HumanMapping 10K Array (Affymetrix, Santa Clara,

CA, USA); we used the operating software (Affymetrix

GCOS 1.4) and genotyping-analysis software (Affymetrix

GTYP 4.0) according to the manufacturer’s instructions.

A multipoint LOD score was calculated with the software
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programs Allegro10 and ALOHOMORA.11 The haplotype

analysis and the LOD-score estimation based on the model

of autosomal-recessive inheritance showed four possible

linkage regions in chromosomal regions 3q13.31–q13.32,

11q24.1–q24.2, 16p13.3, and 17q25.1–q25.3 (Figure 3A).

LOD scores in these regions ranged between 1.05 and

2.06. The autozygous regions had a total size of 15.83 Mb

and contained 326 known protein-coding genes (see

Table S1).

Considering the large number of genes in the autozy-

gous regions, we decided to use whole-exome sequencing

(carried out by ServiceXS, Leiden, The Netherlands) for

the genetic analysis of one affected individual (A-IV:4)

from family A. Exome capturing was performed with the

Agilent SureSelect Human All Exon Kit (Agilent, Santa

Clara, CA), and the sample was sequenced on an Illumina

Genome Analyzer II platform (Illumina, San Diego, CA).

Data analysis was carried out with the SIMPLEX pipeline,

which uses the Burrows Wheeler Aligner12 to map the

reads to the human reference-genome sequence (USCS
012



Figure 1. Pedigrees of Investigated Families
The pedigree for family A shows a consanguineous Moroccan family9 in which linkage analysis and exome sequencing were performed.
The pedigree for family B shows a Tyrolean family affected by KTS,8 and the parents are not knowingly related. The pedigree for family
C shows the newly diagnosed Swiss family (the parents are X:1 and X:2) and its relationship with the distantly related index family
reported in 1974 (parents IX-3 und IX-4).1 Note that the parents in the newly identified family are distantly related to each other,
but the affected child is compound heterozygous for two different mutations.
hg19, February 2009, Genome Reference Consortium

GRCh37). For SNP and DIP (deletion-insertion polymor-

phism) calling, as well as for realignment around indels,

we applied the Genome Analysis Toolkit (GATK).13 Exon

boundaries were specified by the Consensus Coding

Sequence (CCDS).10 An exome coverage depth of 233

was achieved: 46% of exons showed high coverage

(R203), and around 10% of exons showed low coverage

(%53). Variant detection identified 20,454 SNPs as well

as 1,208 DIPs. We annotated all variants with additional

information by using GATK and ANNOVAR14 to facilitate

the identification of disease-causing mutations. Subse-

quently, we applied the auto_annovar functionality to

filter variants against dbSNP (build 132), the 1,000

Genomes Project (Nov 2010), and previously assigned

conservation scores (for filtering details, see Table S2). After

all filtering steps, only a single strong candidate gene,

ROGDI (rogdi homolog [Drosophila], RefSeq accession

number NM_024589.1) in chromosomal region 16p13.3,

remained in the autozygous regions of interest. In exon 4

of this gene, we found a homozygous frameshift deletion,

c.229_230del (p.Leu77Alafs*64), which is predicted to

disrupt the amino acid structure and cause a premature

stop codon (Figure 3B). The filtering algorithm also called

a missense variant, c.2273G>C (p.Cys758Ser), in EVPL

(envoplakin [MIM 601590]) in the linkage region of
The Am
17q25.1; this variant (rs142251448) was included in build

134/135 of dbSNP and had a heterozygote frequency of

0.3% in the North American population.

After completing exome sequencing, we found a PhD

thesis that reports the results of autozygosity mapping in

five families affected by KTS.15 That study identified 30

candidate genes, including ROGDI, but did not find any

linkage to chromosomal region 17q25.1. There is no

other report on a possible link between KTS and ROGDI

or EVPL. Also considering the expected severity of the

frameshift deletion found in family A, we focused our

subsequent studies on ROGDI (Ensembl accession number

ENSG00000067836). This gene stretches over 5.98 kb in

chromosomal region 16p13.3 and contains 11 exons, all

of which are coding. Bioinformatics analysis showed that

the transcript of ROGDI codes for 287 amino acids and

results in a molecular weight of 32 kDa (RefSeq accession

number NP_078865.1). There is only one known func-

tional transcript. Dye-terminator sequencing of all exons

and adjacent intron sequences of ROGDI (NM_024589.1)

(ABI Prism 7000 sequence detection system, Applied Bio-

systems, Carlsbad, CA; primer sequences are available in

Table S3) confirmed the homozygous presence of the

mutation c.229_230del in both affected siblings of family

A (Figure 3C). As expected, both parents were found to

be heterozygous. Sequence analysis in family B revealed
erican Journal of Human Genetics 90, 701–707, April 6, 2012 703



Figure 2. Dental Phenotype in the So Far Unreported Individual
C-XI:2
Tooth discoloration due to global enamel defect (amelogenesis im-
perfecta).
a homozygous nonsense mutation, c.286C>T, in exon 5 of

ROGDI in affected individual B-II:1 (Figure 3D). This muta-

tion is predicted to change a CAG triplet that codes for

glutamine into a TAG stop codon, denoted p.Gln96*.

Both parents in the family were heterozygous for this

mutation. In family C, two heterozygous splice-site muta-
Figure 3. Linkage and Genomic Sequence Analyses
(A) Linkage analysis in family A revealed four autozygous regions in
(B) Exome sequencing in family A revealed a homozygous 2 bp dele
(C–F) Identification of mutations by Sanger sequencing. Homozygo
nonsense mutation c.286C>T (D) is present in family B, and hetero
are present in family C.
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tions, c.531þ5G>C and c.532-2A>T, in intron 7 of ROGDI

were identified in affected individual C-XI:2 (Figures 3E

and 3F). In silico analysis indicated that both mutations

destroy the respective splice donor and acceptor sites of

intron 7 (Alamut [Interactive Biosoftware, Rouen, France],

data not shown). The mother (C-X:2) was found to be

heterozygous for c.532-2A>T, and the father (C-X:1) was

found to be heterozygous for c.531þ5G>C, confirming

compound heterozygosity in the affected child. The unaf-

fected sister (C-XI:1) was found to be heterozygous for

c.531þ5G>C. Finally, we acquired archival DNA from

the unaffected mother (C-IX:3) and four healthy siblings

(C-X:3, C-X:8, C-X:10, and C-X:13) of the original family

reported by Kohlschütter et al.1 (family C in Figure 1);

none of these individuals have epilepsy and all have

normal intelligence and normal teeth with intact enamel.

The affected family members as well as the father of that

family are deceased, and their DNA samples are not avail-

able. The mother and all investigated siblings are heterozy-

gous for splice-site mutation c.532-2A>T, which is also

found in the mother of affected individual C-XI:2. It can

be assumed that the mothers from both family branches

have a common ancestor who lived in the Swiss valley of

Schächental in the 18th century and who was a carrier

for this mutation (family C in Figure 1).
chromosomes 3, 11, 16, and 17.
tion, c.229_230del, in exon 4 of ROGDI.
us deletion c.229_230del (C) is present in family A, homozygous
zygous splice-site mutations c.531þ5G>C (E) and c.532-2A>T (F)
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Figure 4. cDNA Analyses
(A) RT-PCR analysis of ROGDI in family C. Note the absence of the wild-type amplicon as well as the presence of two aberrant bands in
affected individual C-XI:2. One of the aberrant bands is approximately 100 bp shorter than the wild-type band and is also found in the
father (C-X:1) and sister (C-XI:1), who are both heterozygous for c.531þ5G>C. The other aberrant band is weak, approximately 80 bp
larger than the wild-type band, and is also observed in the mother (C-X:2), who is heterozygous for c.532-2A>T.
(B) RT-qPCR analysis of ROGDI in affected individuals, healthy family members, and controls shows markedly reduced mRNA transcript
in affected individual B-II:1. Heterozygosity for c.532-2A>T in C-X:2 is associated with a cDNA reduction of approximately 50%, most
likely reflecting nonsense-mediated decay of that allele. In contrast, heterozygosity for c.531þ5G>C is not associated with the loss of
cDNA in C-X:1 and C-XI:1. The fact that affected individual C-XI:2 has half normal cDNA reflects the combination of both alleles.
The error bars represent means and standard deviations of three independence measurements of the probands and four controls.
(C) cDNA sequence analysis of the RT-PCR product of exons 6–9 in individual C-X:1, heterozygous for c.531þ5G>C, shows skipping of
in-frame ROGDI exon 7.
All mutations identified were frameshift, nonsense, or

splice-site mutations that are expected to either cause

premature mRNA degradation by nonsense-mediated

decay or dramatically alter protein structure and conse-

quently cause complete loss of protein function. They are

not listed in publicly available genome-variant databases

and are absent from the 1,000 Genomes Project. In order

to assess the functional effects of the different mutations,

we obtained fresh peripheral-blood samples from the

affected individuals in families B and C. Peripheral-blood

mononuclear cells (PBMC) were isolated from blood

samples and cultivated in the presence of phytohemagglu-

tinin (Quantum PBL by PAA Laboratories GmbH, Pasch-

ing, Austria) for three days. Thereafter, RNA was isolated,

and cDNA synthesis was performed by standard methods.

RT-PCR amplification spanning exons 6–9 of the tran-

scripts in affected individual C-XI:2 (primer sequences

are available as Table S4) showed that the wild-type

amplicon (386 bp) was absent but that a strong shorter

band (approximately 290 bp) and a weak band somewhat

larger than the wild-type band were present (Figure 4A).

The other family members showed the wild-type ampli-

con, but the father and sister (both heterozygous for
The Am
c.531þ5G>C) also showed the shorter band, and the

mother (heterozygous for c.532-2A>T) also showed the

weak larger band. Dye-terminator sequencing of these

products revealed that the short band reflects an in-frame

deletion of exon 7 caused by mutation c.531þ5G>C

(Figure 4C). The other amplicon associated with mutation

c.532-2A>T was detectable as background sequencing

trace in the mother and the affected child. The aberrant

transcript is a result of the use of an intron 7 cryptic splice

acceptor site that leads to the inclusion of an additional

83 nucleotides before exon 8 (data not shown). The pre-

dicted effect is the inclusion of two abnormal amino acids

followed by a stop codon. cDNA sequence analysis was not

performed in affected individual B-II:1, who is homozy-

gous for the nonsense mutation c.286C>T, which is not

expected to affect splicing.

We quantified the expression of ROGDI with real time

PCR by using specific primers spanning exons 3–4 (primer

sequences are available in Table S4) and Maxima SYBR

Green/ROX qPCR Master Mix (Fermentas) in an Applied

Biosystems Prism 7000 sequence detection system. PCR

reaction was carried out under standard conditions.

The cycle threshold (Ct) values were calculated with
erican Journal of Human Genetics 90, 701–707, April 6, 2012 705



sequence-detection system (SDS) software v1.2 (Applied

Biosystems). We quantified relative gene expression with

the comparative DDCt method by using HPRT1 (RefSeq

accession number NM_000194.2) as a reference gene.

These analyses showed that the amount of ROGDI cDNA

was markedly reduced to 10.6% (much lower than the

mean of the four controls) in affected individual B-II:1

(Figure 4B). The amount of cDNA in affected individual

C-XI:2 was 43.6%, similar to the value of 46.9% in her

mother (C-X:2). The amount of ROGDI cDNA in the father

and sister was in the normal range (86.6% and 100.2%,

respectively).

In summary, the cDNA analyses confirm that the muta-

tions in affected individuals B-II:1 and C-XI:2 severely

disrupt the normal ROGDI transcript. Mutation

c.531þ5G>C causes skipping of in-frame exon 7 but

does not lead to a translational frameshift and is not asso-

ciated with nonsense-mediated decay. In contrast, muta-

tion c.532-2A>T triggers the use of a cryptic intronic splice

acceptor site, explaining both a larger size of the cDNA

amplicon and nonsense-mediated decay. The latter effect

was also observed for nonsense mutation c.286C>T.

Thus, the mutations in all three KTS-affected families are

expected to be severe (null) mutations that are likely to

cause complete loss of ROGDI function.

The exact function of the protein encoded by ROGDI

is unknown. Using ANNIE,16 sequence-structure analysis

showed neither relevant features (e.g., transmembrane

regions or signal peptides) nor relevant protein domains.

Protein prediction methods17 indicate that ROGDI is a

globular protein and that the secondary structure consists

of 45% helixmotifs, 37% loop structures, and 17% strands.

The gene is highly conserved and has orthologs in many

species, including Drosophila melanogaster. It shows partic-

ularly high expression levels in various human brain

regions,18 in line with the CNS phenotype of KTS. A

Drosophila mutant of this gene showed a possible defi-

ciency in olfactory memory.19 Yeast two-hybrid screens20

suggested a possible interaction between ROGDI and

DISC1 (MIM 605210), a protein implicated in the develop-

ment of schizophrenia and involved in processes of cyto-

skeletal stability and organization, neuronal migration,

intracellular transport, and cell division.21 There are no

published studies that examined the role of ROGDI in

tooth development and amelogenesis. Our own data

provide robust information on the clinical effects of the

loss of ROGDI function in humans and provide interesting

perspectives for research into the molecular causes of

epilepsy and other conditions.

In conclusion, we report that KTS is caused by putative

loss-of-function mutations in ROGDI. All mutations

identified are predicted to be severe (null) mutations that

are likely to cause complete loss of protein function.

Heterozygosity for ROGDI-null mutations does not appear

to have any adverse effects. It is possible that individuals

with homozygosity or compound heterozygosity for

hypomorphic missense mutations in ROGDI could present
706 The American Journal of Human Genetics 90, 701–707, April 6, 2
with isolated epilepsy independently from minor enamel

defects or vice versa. Assessing potential genotype-pheno-

type correlations will require molecular studies on addi-

tional affected individuals. Although we found ROGDI

mutations in all KTS-affected individuals investigated so

far, we cannot rule out genetic heterogeneity. Future

work will hopefully elucidate the exact function of ROGDI

in neuronal development and amelogenesis.
Supplemental Data

Supplemental Data include four tables and can be found with this

article online at http://www.cell.com/AJHG.
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