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On Sharing Quantitative Trait GWAS Results
in an Era of Multiple-omics Data and the Limits
of Genomic Privacy

Hae Kyung Im,1,* Eric R. Gamazon,2 Dan L. Nicolae,2,3,4 and Nancy J. Cox2,3,*

Recent advances in genome-scale, system-level measurements of quantitative phenotypes (transcriptome, metabolome, and proteome)

promise to yield unprecedented biological insights. In this environment, broad dissemination of results from genome-wide association

studies (GWASs) or deep-sequencing efforts is highly desirable. However, summary results from case-control studies (allele frequencies)

have been withdrawn from public access because it has been shown that they can be used for inferring participation in a study if the

individual’s genotype is available. A natural question that follows is how much private information is contained in summary results

from quantitative trait GWAS such as regression coefficients or p values. We show that regression coefficients for many SNPs can reveal

the person’s participation and for participants his or her phenotype with high accuracy. Our power calculations show that regression

coefficients contain as much information on individuals as allele frequencies do, if the person’s phenotype is rather extreme or if

multiple phenotypes are available as has been increasingly facilitated by the use of multiple-omics data sets. These findings emphasize

the need to devise a mechanism that allows data sharing that will facilitate scientific progress without sacrificing privacy protection.
Introduction

Homer et al.1 showed that it is possible to detect an individ-

ual’s presence in a complex genomic DNA mixture even

when the mixture contains only trace quantities of his or

her DNA. The study considered the implications of its find-

ings, motivated originally as an application to forensic

science, in the context of genome-wide association studies

(GWASs) fromwhich aggregate allele frequencies for a large

number of markers were being made publicly available.

Shortly after this publication, a reduction in open access

to aggregate GWAS results was implemented. Jacobs et al.2

presented an improved method using a likelihood

approach and showed that disease status could be inferred

for participants of the study. Visscher et al.3 and Sankarara-

man et al.4 calculated power estimates to understand the

limits of individual detection from sample allele frequen-

cies. They showed that the power to detect membership is

determined by the ratio between the number of markers

and the number of participants in the study.

Wepresent amethod that can infer an individual’s partic-

ipation in a study when regression coefficients from

quantitative phenotypes are available. This problem is

especially relevant now that genome-wide system-level

measurements of quantitative phenotypes (transcriptome,

proteome, and metabolome) are being widely collected

and analyzed. Undoubtedly, disseminating results from

quantitative GWAS and deep-sequencing efforts could be

of enormous benefit to research groups working on related

traits. We explore several statistics that can discriminate

study participants from nonparticipants. Notably, we find

that the use of only the direction of effects (signs of the
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coefficients) enables membership inference with good

accuracy. We show the results from applying the statistics

to the Genetics of Kidneys in Diabetes (GoKinD) data

set5,6 to illustrate the level of information contained in

aggregate data. We also provide quantification of the infor-

mation content by computing the power of the method.

Furthermore, we discuss a general framework that can be

used for integrating our findings and earlier studies of

genomic privacy based on sample allele frequencies. With

the increasing use of high-throughput technologies to inte-

gratemultiple-omics data sets, these various statistics result

in a more powerful approach to the identification problem

than with the use of a single phenotype.
Material and Methods

Let us assume that we have the estimated regression coefficients

for M independent SNPs, that we use data on n individuals in a

GWAS (test sample), and that we also have the allelic dosage for

n� individuals from a reference population such as HapMap7,8 or

1000 Genomes Project.9
Membership Inference Method
We define a statistic (a function of available data) that has a

different distribution depending on the membership status and

use this difference to infer membership. We compute this statistic

for the individual of interest, I, and for all individuals in the refer-

ence population. If the statistic falls well within the reference

distribution we will conclude that the individual is not likely to

have participated in the study, and if the statistic falls in the

extremes of the distribution, we will conclude that the individual

did participate in the study.
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Let bY be defined as

bYI ¼ n

M

XM
j¼1

bbj

�
XI;j � bXj

�
; (Equation 1)

where XI;j is the allelic dosage of individual I at SNP j, bbj is the

estimated coefficient from fitting the model Yi ¼ aj þ bjXi;j þ ei,

and bXj is the estimated mean of allelic dosage (twice the allele

frequency) for SNP j computed with the reference group.

Conditional Mean and Variance of bY
The expected value and the variance of the statistic bYI conditional

on the individual’s genotype XI and demeaned phenotype YI � m

and membership status (in or out) are as follows:

E½bY jXI ;YI ; in�zðYI � mÞ
E½bY jXI ;YI ; out�z0

Var½bY jXI ;YI ; in�zs2 n

M

Var½bY jXI ;YI ; out�zs2 n

M

; (Equation 2)

where s2 is the variance of the phenotype, and m is the population

mean of the phenotype Y. Note that for the method to work we do

not need to make use of these expressions nor do we need to know

s2 and m because we rely on the empirical distribution from the

reference population to determine membership. These expres-

sions will serve to estimate the power of the method.

Unconditional on YI, the variance of the statistic bY is given by

Var
�bY� jXI ; inzs2:

In computing these quantities we assume that the number of

markers is much larger than the number of individuals in the

test sample and the number of individuals in the reference group:

M >> n >> 1 andM >> n� >> 1. Hardy Weinberg equilibrium is

assumed. To derive these expressions, we used standard Taylor

expansions and the law of iterative expectations. We tested the

validity of these for finite samples (n between 100 and 1,000 and

M=n between 1,000 and 50,000) by fitting linear regressions

with simulated genotypes and phenotypes and computing the

sample mean and variances of the bY statistic. See Supplemental

Data, available online, to find plots of the validation.

Power of the Method
To compute power, we define the null and alternative hypothesis.

Under the null hypothesis the individual did not participate

in the study (nor did any relatives of the individual), whereas under

the alternativehypothesis, the individual didparticipate.Using the

mean and variance under the null hypothesis and the correspond-

ingmean and variance under the alternative hypothesis computed

in Equation 2 and assuming M >> n >> 1; M >> n� >> 1,

normality of the statistic bY , and the sign of YI � m to be known,

the power will be approximately given by

powerzF

 
jYI � m j

s

ffiffiffiffiffi
M

n

r
� za

!
; (Equation 3)

where a is the type I error, zx ¼ F�1ð1� xÞ is the ð1� xÞ-quantile of
the normal distribution, and F is the normal cumulative distribu-

tion function. If the sign of bY � m is not known, a two-sided test

will be used in the derivation and the power will be given by

powerzF

 
jYI � m j

s

ffiffiffiffiffi
M

n

r
� za=2

!
: (Equation 4)
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See derivation in Appendix A. Because F is a strictly increasing

function the power

d increases when M, the number of SNPs, increases

d decreases when n, the study’s sample size, increases

d increases when the individual’s phenotype deviates more

from the mean (scaled by the standard deviation)

d increases when a, the type I error, increases

To facilitate comparison with Visscher et al.3 and Sankararaman

et al.,4 let us express the one-sided power Equation 3 with the

following (equivalent) implicit formula

ðza þ zbÞ2z
�
YI � m

s

�2
M

n
; (Equation 5)

where 1� b is the power (note that in Sankararaman et al.4 b is

defined as the power). Recall that in Visscher et al.3 and Sankarara-

man et al.4 power was given implicitly by

ðza þ zbÞ2zM

n
: (Equation 6)

Thus, the only difference between Equations 5 and 6 is the factor

ððYI � mÞ=sÞ2. If the phenotype of the person deviates more than

one standard deviation away from the mean, i.e., jYI � mj > s

and the sign of YI � m is known, the power when regression

coefficients are used is larger than it is when allele frequencies

are used. If the person’s phenotype is close to the mean, then

the power will be much diminished. Although expectations are

computed conditional on YI � m, we do not need to know its

magnitude in order to achieve this power. However, we do need

to know the sign of YI � m in order to keep the test one-sided.

If the sign is not used, jYI � mj would need to be 1þ �ðza=2�
zaÞ=

ffiffiffiffiffiffiffiffiffiffi
M=n

p �
times greater than the standard deviation in order

to achieve greater power than the allele frequency case. As an

example, if a ¼ 0:05 and M=n ¼ 100, jYI � mj would need to be

greater than 1.031 times s.
Individual Contribution to the Regression Coefficient
In order to get an intuitive understanding of the contribution

of each individual from the sample, we can decompose the esti-

mated regression coefficient into roughly the sum of individual

contributions:

bbj ¼
�
~X

0
j
~Xj

��1
~X

0
j
~Y

bbj z
1

ns2
j

~XI;j
~YI þ 1

ns2
j

X
isI

~Xi;j
~Yi

bbj z ~bI;j þ
P
isI

~bi;j

; (Equation 7)

defining ~bi;j ¼ ð1=ns2j Þ ~Xi;j
~Yi as the individual contribution to the

regression coefficient and s2j as the variance of the allelic dosage

(under Hardy Weinberg assumption s2j ¼ 2pjð1� pjÞ where pj is

the minor allele frequency of SNP j). We use the tilde ~X for the

demeaned variable that uses themean from the sample. It is worth

comparing with the decomposition for the case whenminor allele

frequencies for the sample are available: bpjzðpI;j=nÞ þ
P

isI ðpi;j=nÞ,
where bpj is the sample minor allele frequency and pi;j is the allelic

dosage divided by 2 of individual i for SNP j. This similarity gives

an intuitive understanding of the corresponding similarity in the

dependence of power on the ratio of the number of SNPs and

sample size of the study.
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Combining Multiple Phenotypes
If results from multiple phenotypes such as eQTL (or other omics

data) results are available, we can combine the information

regarding the individual’s membership by using a Fisher type of

method (the sum of logarithms of p values).10

For each phenotype k, we can compute an empirical p value, pk,

defined as the proportion of reference individuals with magnitude

of the jbY j greater than the individual’s jbYI j. We can combine

p values across different phenotypes by computing

�2
Xnpheno
k¼1

log10 pk

where npheno is the number of phenotypes to be combined. In

addition to accumulating evidence across phenotypes, this

method avoids the problem of lack of power due to one particular

phenotype being close to the population mean.

Covariate Adjustment
Usually other covariates such as age, sex, etc. are adjusted for

when performing GWASs. If the allelic dosage is independent of

the covariates (as will likely be the case for most SNPs) bY will

converge to the covariate-adjusted phenotype instead of the actual

phenotype. The standard deviation might change if the covariates

explain a substantial portion of the phenotypic variability.

However, the method will still work because under no participa-

tion bY will still be around 0, whereas if the individual participated

in the study, bY will converge to the covariate-adjusted phenotype.

Themethod does not require knowing the actual phenotype and it

will work relative to this adjusted phenotype. For the purpose of

re-identification using our method, the presence of covariates is

only a nuisance and no additional power is achieved when they

are present.

Sample Correlation Statistic
Equation 7 suggests that the sample correlation between the esti-

mated beta and the individual’s genotype might be useful because

we would expect the correlation to be 0 if the individual was not in

the sample and different from 0 if the individual was part of the

study.

bC ¼

PM
j¼1

�bbj � b
��
XI;j � bXj �XI � bX�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j

�bbj � b
�2P

j

�
XI;j � bXj �XI � bX�2s ;

where the long bar above an expressionmeans the samplemean of

the expression.

Sign Statistic
Equation 7 also shows that the sign of the correlation coefficient

will be slightly more likely to match the sign of the demeaned

allelic dosage if the person participated in the study than other-

wise. Let bS be defined as:

bS ¼
XM
j¼1

sign
�bb� sign�Xi;j � bXj

�
We expect that strictly more than 50% of the times the product

signðbbÞ signðXi;j � bXjÞ will be positive (or negative) if the indi-

vidual participated in the study and his or her phenotype is above

(or below) average. By looking at the absolute value of the sign
The Am
statistic we expect to gain information on whether the individual

was part of the study or not.

Analysis Details
We used the PLINK software11 and filtered out SNP markers that

were not in Hardy Weinberg equilibrium (p < 0.001) and those

that had minor allele frequencies less than 5%. Receiver operating

characteristic (ROC) curves were generated by using the absolute

value of the statistic as the predicting variable and membership

in the sample as the labels by using the ROCR12 package for the

R statistical package.13 We used only individuals who self-reported

as white both for sample and reference.
Results

We show the performance of the statistics defined inMate-

rial and Methods ðbY ; bS; bCÞ by using data from the GoKinD

(Genetics of Kidney Disease) study.5,6 The data set was

downloaded from dbGaP14 and consisted of more than

1,800 probands with long-standing type 1 diabetes, over

300 dichotomous and quantitative phenotypes, and geno-

type from Affymetrix Genome-Wide Human SNPArray 5.0

platform.We used a subset of 1,644 individuals reported to

be Caucasian.

We show results for two of the phenotypes: cholesterol

level and body mass index (BMI). We also tested the

method on a third simulated phenotype and found at least

as good performance. The latter demonstrates that the

method does not depend on any real effect of genotype

on phenotype.

We randomly sampled 100, 500, and 1,000 individuals

from each study’s cohort and performed a GWAS including

only individuals from each random sample. The remaining

individuals were used as reference group. The statistics

ðbY ; bS; bCÞ were computed for both sample and reference

individuals.

Identifiability Statistic and Phenotype Reconstruction

Figure 1 shows bY versus the actual phenotype (rank

normalized cholesterol levels). The blue dots correspond

to individuals in the sample and the black dots correspond

to individuals in the reference group. For individuals in the

sample, bY lies close to the one-to-one line (perfect predic-

tion line), whereas the individuals in the reference popula-

tion lie close to a flat line around 0 (consistent with our

calculations of mean and variances). The sample size was

n ¼ 1; 000 and the number of SNPs was M ¼ 300;000.

The number of reference individuals was 644.

This demonstrates that for individuals who participated

in a study, their phenotype can be reconstructed with high

accuracy using the bY statistic, whereas for nonparticipants

what we get is mostly noise.

Distribution of Statistic by Membership Status

and ROC Analysis

The left panel in Figure 2 shows the distribution of the

absolute value of bY by membership status. As in Figure 1
erican Journal of Human Genetics 90, 591–598, April 6, 2012 593
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Figure 1. bY versus YbY versus the actual phenotype (cholesterol levels with normal-
izing transformation applied). The blue dots correspond to indi-
viduals in the sample and the black dots correspond to individuals
in the reference group. For individuals in the sample bY lies close to
the one-to-one line, whereas the individuals in the reference pop-
ulation lie close to a flat line around 0. The sample size was 1,000
and number of SNPs was 300,000.
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Figure 2. bY Distribution by Membership Status and
Performance
(Left panel) The distribution of the absolute value of bY by
membership status. As in Figure 1 nonmembers’ values lie close
to 0, whereas the values for participants are distributed similar to
the actual phenotype.
(Right panel) The ROC curve, the true positive rate (sensitivity)
versus the false positive rate (1-specificity) when we use jbY j
to predict membership. A good test should yield a high true posi-
tive rate (sensitivity) while keeping the false positive rate low
(1-specificity); ideally the AUC should be close to 1. For 300,000
SNPs and a sample size of 1,000, the AUC was 0.83, which is
reasonably close to 1.
nonmembers’ values lie close to 0, whereas members’

values are distributed in a large range of values. This differ-

ence in distributions is what will allow us to discriminate

between members and nonmembers.

The right panel shows the ROC curve, the true positive

rate (sensitivity or power) versus the false positive rate

(1-specificity or type I error) when we use jbY j to predict

membership. A good test should yield a high true positive

rate (¼ sensitivity or power) while keeping the false posi-

tive rate low (¼ 1-specificity or type I error); ideally the

area under the curve (AUC) should be close to 1. For

300,000 SNPs and a sample size of 1,000, the AUC was

0.83, which is much greater than 0.5, showing clear

discrimination power. The poor performance relative to

the allele frequency case is due to the fact that we do not

assume the sign of the deviation from the mean to be

known and that the phenotype values of some of the indi-

viduals in the test sample are close to the mean. Recall

from Equation 3 that power (which is not equal to AUC

but is a related measure of performance) is an increasing

function of the absolute value of the difference between

the phenotype and the mean. For average individuals

(phenotype close to the mean) this method does not

provide discrimination power.

Predictive Performance as Function of M/n

Figure 3 shows the area under the curve for different values

of sample size (n) and number of SNPs (M). Consistent with

our power calculation, we observe increasing performance

as the ratio of number of SNPs to sample size increases.
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SNPs were chosen randomly from the full set of available

SNPs. The lower AUC for larger sample sizes is probably

because the independence of markers assumption fails

more dramatically as the total number of markers

increases.

Performance of Other Statistics and Their Information

Content

Figure 4 shows the distribution and performance of the

sign statistic. The left panel shows the distribution of the

sign statistic by membership status. The right panel shows

the ROC curve when we use the absolute value of the sign

statistic to predict membership. Notice that the area under

the curve is 0.75, which still shows good discrimination

power. This result suggests that a large portion of the

information regarding the individual’s participation is

contained in the signs.

The performance of the correlation statistic is almost

identical to the performance of bY as one might have ex-

pected.

Covariate Adjustments

Figure 5 shows the ROC curve for bY with rank normalized

cholesterol levels as phenotype and sex and age as

covariates in addition to allelic dosage. Note that the

performance has not changed by adding the additional

covariates. This was expected because our method is based

on ‘‘over fitting’’ of the data.

In general access to the covariates or phenotypes for the

participants is not available and so we did not attempt to

improve our method by using them. If the allelic dosage

is independent of the covariates (as will likely be the case

for most SNPs), bY will converge to the covariate-adjusted
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Figure 3. Performance by Sample Size and Number of Markers
The plot shows the area under the curve for different values of
sample size (n) and number of SNPs (M). Consistent with the
power calculation, we observe increasing AUC as the ratio of
number of SNPs to sample size increases. The lower AUC for
sample sizes of 1,000 is probably due to a more pronounced effect
of linkage disequilibrium as we use more markers.
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Figure 4. Sign Statistic Distribution and Performance
The left panel shows the distribution of the sign statistic by
membership status. The right panel shows the ROC curve when
we use the absolute value of the sign statistic to predict member-
ship. The area under the curve is 0.75, a bit lower than the AUC
when the actual estimated coefficients are used, but it still shows
good discrimination. This suggests that a large portion of the
information regarding individual’s membership is contained
in the signs rather than in the absolute value of the regression
coefficient.
phenotype, and our method will work relative to this

adjusted phenotype. We do not expect the inclusion of

covariates to affect the performance of the method. Also

note that our method relies on ‘‘over fitting’’ of the data

that occurs for individuals in the sample and not on any

real relationship between genotype and phenotype. As

previously mentioned, we found that the method worked

equally well when a simulated phenotype was used.

Multiple Phenotypes

To illustrate the effect of combiningmore than one pheno-

type, we applied the Fisher type method (the sum of the

log of empirical p values, see details in Methods) to choles-

terol and Body Mass Index (BMI) regression coefficients.

Figure 6 shows the ROC curves when single phenotypes

were used compared to the curve when both were com-

bined. Clearly, the combined method outperforms both

single-phenotype methods. The AUC for each phenotype

was 83% and 87%, whereas the combined AUC is 95%.

The performance should improve as the number of pheno-

types increases.
Discussion

Given the increasing number of large-scale data sets in

which very large numbers of phenotypes will be subject

to GWAS or sequencing studies, it is of great interest to
The Am
quantify the level of participant’s private data contained

in aggregate results. The insights gained from our study

should be helpful in devising methods to facilitate broad

dissemination of study results without compromising the

participant’s privacy.

We present three statistics that can discriminate between

individuals who participated in a study and those who did

not. We show the performance of themethod by using real

data from the GoKind GWAS. We also provide an approx-

imate estimate of the power of the method when bY (the

average of the regression coefficients times the allelic

dosage) is used. Power is determined by the ratio between

the number of markers and the sample size of the study,

much like when allele frequencies are available. But the

power is also modulated by the deviation from the mean

of the individual’s phenotype. This indicates that for indi-

viduals with extreme phenotypes (e.g., as expected from

certain study designs), more power can be achieved

(asymptotically) through the use of the regression coeffi-

cients than through the use of allele frequencies. But for

a person with an average phenotype the method provides

no power, which is expected because the average person

contributes very little to the estimate of the regression

coefficients. In an earlier study, Lumley and Rice15 consid-

ered the possibility that aggregate results from GWAS can

reveal a participant’s phenotype with high accuracy, even

for quantitative phenotypes. However, the problem of

phenotype reconstruction (the subject of Lumley et al.’s

Commentary on quantitative traits15) for a participant of

a study and the problem of identifiability are distinct prob-

lems; furthermore, the problem of identifiability was not

theoretically explored. Here we quantified the power of

our identification method for quantitative traits, demon-

strated the existence of various statistics that can detect

the presence of individual genotypes from summary
erican Journal of Human Genetics 90, 591–598, April 6, 2012 595
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Figure 5. Performance with Covariate Adjustment
This figure shows the ROC curve for bY with rank normalized
cholesterol levels as phenotype and sex, age, and allelic dosage
as covariates. Note that the performance is not changed by adding
the additional covariates. False positive rate
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Figure 6. Performance with Multiple Phenotypes
To illustrate the effect of combiningmore than one phenotype, we
applied the Fisher type method (the sum of the log p values) to
cholesterol and BMI regression coefficients. This figure shows
the ROC curves when each one of the phenotypes was used
compared to the curve when both were combined. Clearly, the
combined method outperforms both single-phenotype methods.
The AUC for each phenotype was 83% and 87%, whereas the
combined AUC is 95%.
data, and sought to provide a general framework for

comparing the power with earlier studies3,4 of genomic

privacy based on sample allele frequencies.

The approximate decomposition of an individual contri-

bution to the regression coefficients gives us an intuitive

understanding of the level of information contained in

these aggregate data. This decomposition shows the struc-

tural similarity with the case in which allele frequencies are

used to infer membership.

Even though we do not claim that our method provides

optimal discrimination, the striking similarity between our

expression for power and the one obtained by Visscher

et al.3 and Sankararaman et al.4 leads us to believe that it

might not be far from optimal. In addition, the similarity

between an individual contribution to the regression coef-

ficients and the contribution to the sample allele

frequency adds credence to our hypothesis.

Tests on several other GWAS data sets yielded similar

results. As expected, we also found that the performance

depends on the homogeneity of the study participants.

Population structure would need to be taken into account

if the GWAS results included a heterogeneous cohort.

Although not presented here, we have seen that the bY
has a larger magnitude for relatives of study participants

than for the reference population. Thus, the method pre-

sented here should be applicable to determine whether

relatives of the individual participated in the study, albeit

with reduced power.

We have derived and applied our method to an additive

model but extension to other models (recessive, dominant,

etc.) should be straightforward.

It is interesting to note that by using only the signs of the

regression coefficients, we still maintain a large portion of

the discrimination power of the method. We have seen

similar effects in other data sets. One practical implication

of this finding is that reducing the number of decimals

in the published regression coefficients would not be an

effective method to protect privacy.
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If p values and signs were available, then regression

coefficients could be computed and our method would

identify participants. If only the p values are available,

the absolute values of the regression coefficients can be

calculated. The sign statistic suggests that we might be

able to guess the sign of the regression coefficient slightly

more often than 50% of the times. This would in principle

allow us to compute bY . However, the power is likely to be

substantially reduced.

It is worth noting that the ability to predict the pheno-

type using bY and to infer membership is not related to

any real effect of genotype on phenotype. We have seen

that the method works as well or better with simulated

phenotypes. We note that genotypic information is being

used to infer study membership and to reconstruct trait

value used in the estimates of regression coefficients; no

prediction of phenotypic status in new individuals is being

done.

Sensitivity and specificity give us information on the

probability of false positives or false negatives given the

individual participated in the study. In many cases, it

might be more relevant to look at false positive or negative

rates provided the individual was positive or negative ac-

cording to our testing method. These are represented by

positive or negative predictive values. The positive predic-

tive value can become very small if the prior probability

of the individual participating in the study is very low.

For example, if all we know about the individual is the

person’s gender, this probability could be as low as 10�5

or 10�6 (e.g., 1,000 participants out of 159 million male
012



individuals from the USA). In this context, given that

the individual was positive in the test, the false negative

rate might still be very high. Naturally, because investiga-

tors have no control over how much prior information

someone can come up with, this argument cannot be

used to ignore the possible breach of confidentiality.

Results from massively parallel sequencing (in the

form of low frequency or rare genetic variations) might

enable increased power of identification. If results from

multiple phenotypes are available, as would be the case

if, for example, gene expression associations were also

conducted (and accompanying results made available),

the information from each phenotype can be combined

to achieve much greater power as suggested by the results

from combining just two phenotypes. Although the

single-phenotype method has no power for individuals

with an average phenotype, it is unlikely a person will

have an average phenotype for all the phenotypes

considered.

A recent study16 of temporal trends in the availability of

results from GWAS classified published studies according

to level of risk for potential misuse and highlights the

ongoing importance of clearer guidelines on how ‘‘data

products’’ can be appropriately shared.

With the increasing trend to collect and analyze

multiple-omics data, the need to share large amounts of

quantitative GWAS results becomes more urgent. In addi-

tion, given our finding that multiple phenotypes can be

combined to increase the power to infer membership, pro-

tecting privacy by limiting the number of significant hits

published is becoming less feasible.

Because fluid sharing of results among researchers for

legitimate scientific use would be highly desirable, our

study emphasizes the urgent need to devise protocols

and methods that facilitate this process without compro-

mising a participant’s privacy.

One mechanism to address this problem would be to

implement an annual certification process, which would

grant the certified researcher unrestricted access to study

results with the condition that the data could only be

used for research goals that do not compromise the partic-

ipants’ privacy. A researcher who does not abide by these

rules could be penalized by withdrawing further access

to data.
Appendix A

Power Calculation

To compute power, we use the same assumptions as for the

conditional mean and variance, i.e., that the number of

markers is much larger than the number of individuals

in the test sample and the number of individuals in the

reference group: M >> n >> 1 andM >> n� >> 1. Hardy

Weinberg equilibrium is assumed. Under these assump-

tions, it can be shown that bY converges to a normal variate

with mean and variance given in Equation 2.
The Am
We define the null and alternative hypothesis as follows.

Under the null hypothesis, the individual did not partici-

pate in the study (nor did any relatives of the individual),

whereas under the alternative hypothesis, the individual

did participate.

If the method uses the sign of the difference YI � m,

and we assume that the difference is greater than 0, we

will reject the null hypothesis if bYI is greater than

zas
ffiffiffiffiffiffiffiffiffiffi
n=M

p
, where a is the type I error and za is the ð1� aÞ

quantile of the normal distribution. The power will be

given by the probability under the alternative thatbYI > zas
ffiffiffiffiffiffiffiffiffiffi
n=M

p
power ¼ Pin

�bYI > zas
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(Equation 8)

¼ 1� F
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s

ffiffiffiffiffi
M

n
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(Equation 9)

¼ F

 
YI � m

s

ffiffiffiffiffi
M

n

r
� za

!
(Equation 10)

where in Equation (8) we have used the fact that bYI is nor-

mally distributed with mean YI � m and variance s2n=M

and in Equation (10) we have used the property of the

normal CDF FðxÞ ¼ 1� Fð�xÞ.
If YI � m < 0, similar arguments will give

power ¼ F

 
�ðYI � mÞ

s

ffiffiffiffiffi
M

n

r
� za

!
:

Thus more generally we have

power ¼ F

 
jYI � m j

s

ffiffiffiffiffi
M

n

r
� za

!
: (Equation 11)

If the sign of the difference YI � m is not used, the rejec-

tion region will be defined as jbYI j > za=2s
ffiffiffiffiffiffiffiffiffiffi
n=M

p
. The

alternative distribution will be an equally weighted

mixture of normal distributions with means jYI � mj and
�jYI � mj. Note that any weight other than 1/2 would

mean that we have information on whether it is more

likely that the sign is positive or negative. For example, if

we knew it was more likely to be positive, then we would

give higher weight to the normal distribution with mean

jYI � mj. The power when we do not make use of the sign

of jYI � mj is given by

power ¼ Pin

�
j bYI j > za=2s

ffiffiffiffiffi
n

M

r �
¼ Pin

�bYI > za=2s

ffiffiffiffiffi
n

M

r �
þ Pin

�bYI < �za=2s

ffiffiffiffiffi
n

M

r �
(Equation 12)
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Supplemental Data

Supplemental Data include two figures and can be found with this

article online at http://www.cell.com/AJHG/.
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