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Linkage-Disequilibrium-Based Binning
Affects the Interpretation of GWASs

Andrea Christoforou,1,2,16,* Michael Dondrup,3,16 Morten Mattingsdal,4,5,16 Manuel Mattheisen,6,7,8,9,16

Sudheer Giddaluru,1,2 Markus M. Nöthen,6,7,10 Marcella Rietschel,11 Sven Cichon,1,6,7,12

Srdjan Djurovic,4,13,14 Ole A. Andreassen,4,14 Inge Jonassen,3,15 Vidar M. Steen,1,2 Pål Puntervoll,3

and Stéphanie Le Hellard1,2

Genome-wide association studies (GWASs) are critically dependent on detailed knowledge of the pattern of linkage disequilibrium (LD)

in the human genome. GWASs generate lists of variants, usually SNPs, ranked according to the significance of their association to a trait.

Downstream analyses generally focus on the gene or genes that are physically closest to these SNPs and ignore their LD profile with other

SNPs. We have developed a flexible R package (LDsnpR) that efficiently assigns SNPs to genes on the basis of both their physical position

and their pairwise LD with other SNPs. We used the positional-binning and LD-based-binning approaches to investigate whether

including these ‘‘LD-based’’ SNPs would affect the interpretation of three published GWASs on bipolar affective disorder (BP) and of

the imputed versions of two of these GWASs. We show how including LD can be important for interpreting and comparing GWASs.

In the published, unimputed GWASs, LD-based binning effectively ‘‘recovered’’ 6.1%–8.3% of Ensembl-defined genes. It altered the

ranks of the genes and resulted in nonnegligible differences between the lists of the top 2,000 genes emerging from the two binning

approaches. It also improved the overall gene-based concordance between independent BP studies. In the imputed datasets, although

the increases in coverage (>0.4%) and rank changes were more modest, even greater concordance between the studies was observed,

attesting to the potential of LD-based binning on imputed data as well. Thus, ignoring LD can result in the misinterpretation of the

GWAS findings and have an impact on subsequent genetic and functional studies.
Over the past decade, genome-wide association studies

(GWASs) have revolutionized the analysis of human

complex genetic traits. By scanning hundreds of thou-

sands of genetic variants, typically SNPs, in hundreds or

thousands of individuals, they search for the variant(s)

that associate with a particular disease or trait. Critical to

the development and evolution of GWASs has been the

creation of the International HapMap Project,1 which

has cataloged the common patterns of human genetic vari-

ation, including the linkage disequilibrium (LD) between

SNPs. Knowledge of this LD, or nonrandom association

of alleles at multiple loci, has made it possible to identify

informative subsets of SNPs (i.e., ‘‘tagging SNPs’’) that

capture the bulk of genome-wide variation and has re-

sulted in affordable genome-wide genotyping. To date,

almost 1,000 GWASs have been published and have tested

hundreds of human traits and reported thousands of

significant associations (Catalog of Published Genome-

Wide Association Studies2). Previously known associations

have been confirmed, and new candidates have been

implicated.3 However, a general sense of disappointment

lingers because GWASs have fallen short of the initial
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expectation that they would unravel the genetic basis of

complex traits.4,5 Recent analyses reveal that a large

proportion of the ‘‘missing heritability’’5,6 can be ex-

plained by a polygenic model that considers all GWAS

SNPs simultaneously,7–9 but these studies provide no clues

about the identity of the susceptibility variants or the

underlying biology of the trait.6 Thus, much attention

has been given to uncovering and characterizing this

‘‘missing’’ or ‘‘hidden’’ heritability.6,10

In a conventional GWAS, each SNP is considered sepa-

rately (the ‘‘single-marker’’ approach), resulting in a list

of variants ranked according to the statistical significance

of their association to the trait (i.e., their p value).11 The

‘‘top hits’’ are typically reported, and the relevance of

each finding, as well as the focus of future work, is

primarily based on the functional unit(s), namely gene(s),

implicated by the associated SNP. Furthermore, gene-based

methods are increasingly being applied as complementary

approaches to the analysis of GWAS data. These methods

take the gene instead of the individual SNP as the basic

unit of association and thus allow aggregation of SNPs of

smaller effect, potentially increasing power and reducing
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Table 1. Study Descriptions and Summary of Coverage for Positional-Binning and LD-Based-Binning Approaches for Original, Unimputed
Datasets

WTCCCa TOPb Germanc

Sample size
(cases/controls)

1,868/2,938 198/336 682/1,300

Platform used Affymetrix 500K Affymetrix6.0 Illumina HumanHap550v3

Number of post-QC
SNPs for binning

468,648 615,396 511,978

Binning data Positional
binning

LD-based
binning

Differenced Positional
binning

LD-based
binning

Differenced Positional
binning

LD-based
binning

Differenced

Number of genes
coverede

30,610
(83.4%)

33,443
(91.1%)

2,833
(9.3%)

31,823
(86.7%)

33,905
(92.4%)

2,082
(6.5%)

31,708
(86.4%)

33,861
(92.3%)

2,153
(6.8%)

Number of post-QC
SNPs binned

237,869
(50.8%)

277,534
(59.2%)

39,665
(16.7%)

307,949
(50.0%)

363,570
(59.1%)

55,621
(18.1%)

272,914
(53.3%)

308,634
(60.2%)

35,720
(13.1%)

Number of SNPs
binned to only 1 gene

199,752
(84.0%)

178,544
(64.3%)

21,208
(10.6%)

259,223
(84.2%)

234,036
(64.4%)

25,187
(9.7%)

228,098
(83.6%)

209,458
(67.9%)

18,640
(8.2%)

Number of SNPs
binned to ten or more

135
(0.057%)

2,537
(0.91%)

2,402 174
(0.057%)

3,106
(0.85%)

2,932 141
(0.052%)

2,072
(0.67%)

1,931

Mean number of SNPs
per bin (median)

9.4 (4) 15.2 (10) 6.6 (4) 11.7 (5) 19.4 (13) 8.4 (6) 10.5 (5) 15.4 (10) 5.6 (4)

Range (min–max) 1–514 1–515 0–87 1–687 1–701 0–112 1–655 1–665 0–64

Number of genes
with only one SNP

4,830
(15.8%)

1,531
(4.6%)

3,299
(68.3%)

3,604
(11.3%)

992
(2.9%)

2,612
(72.5%)

3,647
(11.5%)

595
(1.8%)

3,052
(83.7%)

The following abbreviation is used: QC, quality control.
aThe UK-based Wellcome Trust Case Control Consortium (WTCCC) BP GWAS.17
bThe Norwegian Thematically Organized Psychosis (TOP) BP GWAS.18
cA German BP GWAS.19
dPercentages indicate percent increase or decrease from positional to LD-based binning.
eEnsembl 54 (May 2009) genes (total N ¼ 36,693) tagged by at least one SNP.
the multiple-testing burden.12–14 They enable the incorpo-

ration of biological knowledge for greater insight into the

mechanisms underlying the trait and are essential for

subsequent pathway-based approaches.13 Gene-based

methods also facilitate direct comparison of independent

studies because they are unaffected by allelic heterogeneity

and potential differences in SNP coverage and LD

patterns.15

The success of both single-marker and gene-based

approaches is critically dependent on the correct assign-

ment of SNPs to genes. At the single-marker level, the

aim is to identify the gene(s) that the associated SNP is

tagging. At the gene level, the aim is to attribute all SNPs

tagging a particular gene to that gene. Although LD can

span hundreds of kilobases,16,17 when GWAS results

emerge, the SNPs of interest are typically assigned to the

nearest gene or transcript within a specified distance.14

In turn, genes are typically represented only by the SNPs

that are physically located within the transcribed region

or predefined flanking region.13 It is not systematically

taken into consideration that an associated SNP might be

in high LD with another SNP (genotyped or not) located

hundreds of kilobases away in a different gene or that

a genotyped SNP positioned outside the defined bound-

aries of a gene is tagging that gene. Here, we show that

ignoring LD discards valuable information and potentially
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leads to the incorrect localization of the association signal

and might mislead the interpretation of GWAS data.

We have therefore developed a flexible R package

(LDsnpR) that systematically assigns SNPs to genes (or rele-

vant predefined genome ‘‘bins’’) by using SNP association

results (e.g., p values), bin definitions, and precalculated

pairwise LD data (e.g., r2 values) provided by the user

(Figure S1, available online). By default, LDsnpR assigns

a SNP to a bin if that SNP is located within the physical

boundaries of that bin (i.e., the ‘‘positional-binning’’

approach). Then, as a unique feature of this package, the

user has the option of also assigning a genotyped SNP to

a bin if that SNP is in high pairwise LD with another SNP

(genotyped or not) located within the physical boundaries

of that bin (i.e., ‘‘LD-based-binning’’ approach). Although

a genotyped SNP cannot be assigned to a particular gene

more than once, it can be assigned to more than one gene.

As proof of principal, we used LDsnpR to assess the

impact of the LD-based-binning approach (versus the posi-

tional-binning approach) on the results of three published

GWASs on bipolar disorder (BP), each unimputed and gen-

otyped on a different platform. The three GWASs are (1)

the UK-based Wellcome Trust Case Control Consortium

(WTCCC) BP GWAS,18 (2) the Norwegian Thematically

Organized Psychosis (TOP) BP GWAS,19 and (3) a German

BP GWAS20 (Table 1). Each GWAS had been previously
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Table 2. Study Descriptions and Summary of Coverage for Positional-Binning and LD-Based-Binning Approaches for Imputed Datasets

TOPa Imputedb Germanc Imputedb

Sample size (cases/controls) 198/336 657/1,308

Imputation reference
panel

HapMap Phase III (CEU) 1,000 Genomes (pilot 1, CEU) and HapMap Phase III (CEU)

Post-QC SNPs for binning 992,161 4,825,148

Binning data Positional
binning

LD-based
binning

Differenced Positional
binning

LD-based
binning

Differenced

Number of genes coverede 33,242 (90.6%) 34,193 (93.2%) 951 (2.9%) 32,116 (87.5%) 32,259 (87.9%) 143 (0.4%)

Number of post-QC SNPs
binned

521,720 (52.6%) 612,316 (61.7%) 90,596 (17.4%) 2,394,441 (49.6%) 2,613,493 (54.2%) 219,052 (9.1%)

Number of SNPs binned
to only one gene

431,808 (43.5%) 367,671 (37.1%) 64,137 (14.9%) 1,979,660 (41.0%) 1,855,413 (38.5%) 124,247 (6.3%)

Number of SNPs binned
to ten or more

267 (0.03%) 7,967 (0.8%) 7,700 1,272 (0.03%) 16,807 (0.3%) 15,535

Mean number of SNPs per
bin (median)

19.3 (9) 35.9 (25) 17.1 (12) 91.6 (44) 130.6 (84) 39.5 (26)

Range (min–max) 1–1,046 1–1,062 0–214 1–5,570 1–5,573 0–573

Number of genes with
only one SNP

1,795 (5.4%) 651 (1.9%) 1,144 (63.7%) 241 (0.8%) 208 (0.6%) 33 (13.7%)

The following abbreviation is used: QC, quality control.
aThe Norwegian Thematically Organized Psychosis (TOP) BP GWAS.18
bImputation details: the Norwegian TOP dataset was imputed according to the ENIGMA protocol with the use of MACH imputation software38 and HapMap Phase
III (CEU) as the reference panel. The German dataset was imputed with IMPUTE2 software39 and the 1,000 Genomes Project (Pilot 1, CEU) and HapMap Phase III
(CEU) as reference panels.
cA German BP GWAS.19
dPercentages indicate percent increase or decrease from positional to LD-based binning.
eEnsembl 54 (May 2009) genes (total N ¼ 36,693) tagged by at least one SNP.
approved by the relevant local research ethics committees,

and all participants had provided written informed

consent.18–20 In addition, we assessed the impact of LD-

based binning on imputed versions of the TOP and

German GWASs, in which ungenotyped markers had

been statistically inferred11 on the basis of LD from

different reference panels (i.e., HapMap Phase III for TOP;

HapMap Phase III and 1,000 Genomes21 for German)

(Table 2).

BP is a severe complex psychiatric disorder that shows

high heritability (60%–80%) but for which clear genetic

risk factors remain elusive.4 Although several GWASs on

BP have been performed (Catalog of Published Genome-

Wide Association Studies2), the findings have shown little

overlap at both the SNP and gene levels. Also, only a hand-

ful of SNPs have achieved genome-wide significance

(<~10�8), and these SNPs only explain less than 3% of

the heritability,4,22 suggesting that psychiatric disorders,

such as BP, might be less amenable to GWASs than other

disorders.5,23 However, systematic LD-based gene binning

has not been applied to these datasets, possibly contrib-

uting to the apparent lack of success. Thus, we assessed

the effects of the LD-based-binning approach relative to

the traditional positional-binning approach with respect

to (1) gene coverage, (2) changes in the results and, poten-

tially, the interpretation of findings, and (3) pairwise

concordance of the findings among the BP GWASs.
The Am
In brief, for LDsnpR, gene bin definitions were based on

the Human Ensembl release 54 (May 2009) gene identifiers

with unambiguous positional information (N ¼ 36,693).

We extended these gene bins by another 10 kb on either

side to best capture potential regulatory regions.24,25 The

LD data were based on HapMap Phase II release 27 and

were restricted to that of the CEU (Utah residents with

ancestry from northern and western Europe from the

CEPH collection) sample. We set the pairwise LD at the

widely accepted threshold of r2 R 0.826 to limit the loss

of power needed for the detection of association at the

linked locus.27

We first compared the extent of coverage between the

positional-binning and LD-based-binning approaches in

the published, unimputed datasets (Table 1). By allowing

us to identify the intergenic SNPs that tag genes, LD-based

binning resulted in a ~13%–18% increase in the number of

SNPs included in the gene-binning process. Intergenic

SNPs represent ~40% of GWAS trait-associated SNPs.3

Notably, LD-based binning ‘‘recovered’’ >2,000 genes

(>6%) in all three datasets, increasing the proportion of

Ensembl 54 genes tagged by at least one SNP from ~83%

to>91%. Furthermore, there was an increase in the density

of coverage; an average of 5.6 to 8.4 (median of four to six)

SNPs were added per gene, and there was an overall

decrease (>68%) in the number of genes tagged by only

one SNP.
erican Journal of Human Genetics 90, 727–733, April 6, 2012 729



Table 3. Effect of LD-Based Binning on Ranks of Genes within Each
GWAS

WTCCC TOP German
TOP
Imputed

German
Imputed

Correlationa of
gene ranks

0.79 0.83 0.83 0.83 0.92

Number of genes
moving into top 2,000
with LD-based binning

681
(34.0%)

601
(30.0%)

538
(26.9%)

558
(27.9%)

309
(15.5%)

aSpearman rank correlation (i.e., rho).
The imputed datasets also yielded increased coverage

(Table 2) but, as expected, to a lesser extent depending

on the reference panel used for imputation. Although

HapMap II (i.e., LDsnpR reference panel) is denser than

HapMap III28 (i.e., reference panel for the TOP and

German studies), imputation on the 1,000 Genomes data

(i.e., reference panel for the German study) potentially

gives the densest coverage. For the TOP and German

imputed datasets, LD-based binning resulted in an increase

of 17.4% and 9.1%, respectively, in the number of SNPs

included in the gene-binning process and the recovery of

951 (2.9%) and 143 (0.4%) genes, respectively. Although

this is only a small proportion of the total gene coverage,

the recovery of these genes enables them to be considered

as candidates for BP association and might lead to a better

understanding of the biology should the true association

stem from them. Also of note, in the German GWAS, LD-

based binning alone achieved an overall gene coverage of

92.3% (imputation achieved 87.5% coverage, and imputa-

tion combined with LD-based binning achieved 87.9%

coverage), suggesting that under some scenarios, LD-based

binning alone can offer the most coverage. As with the

original GWASs, there was an increase in the density of

coverage; an average of 17.1 and 39.5 (median 12 and

26) SNPs were added per gene for the TOP and German

imputed datasets, respectively. There was also a decrease

in the number of genes tagged by only one SNP (63.7%);

the decrease was not as notable for the German imputed

dataset (13.7%).

We next assessed the effects of the LD-based-binning

approach on the results of the three GWASs at both the

single-marker and gene levels. At the single-marker level,

we used the positional-binning and LD-based-binning

approaches to compare the genes tagged by the most

significant SNPs reported in the original publications18–20

(Table S1). Although LD-based binningmade no difference

to the results of the TOP BP study, three of the 14 SNPs in

the WTCCC BP study and three of the eight SNPs in the

German BP study implicated additional or alternative

genes. Interpreting GWAS single-marker results demands

fastidious consideration because when given only the

p value, it is not immediately clear where the true source

of the association originates17 and thus which is the true

candidate gene. The overall potential for mislocalizing the

association signal was underscored by the reduced number
730 The American Journal of Human Genetics 90, 727–733, April 6, 2
of SNPs tagging only one gene and the increased number of

SNPs tagging ten or more genes after LD-based binning

(Tables 1 and 2). Further investigations, such as expression

studies,20 are therefore warranted before attributing puta-

tive causality to a gene and, as a result, nominating it as

the focus of future fine-mapping, functional, and other

expensive and time-consuming follow-up studies.29

As previously stated, gene-based analyses are ideal for

pathway approaches, which aid in the interpretation of

GWAS results by exploiting prior biological annotation to

determine whether certain biological functions are en-

riched (i.e., overrepresented) among the more significant

genes in a dataset. These methods require one measure of

association (or score) for each gene on the basis of the indi-

vidual SNP association signals. Here, we used a function in

LDsnpR to score each gene with the most significant

p value (i.e., the minimum p value approach), which was

adjusted for the number of SNPs tagging that gene by

a modification of Sidak’s correction.30 The minimum

p value approach is the most widely used gene-scoring

approach31 and assumes an underlying genetic architec-

ture in which a single SNP, or locus, within the gene

contributes to the disorder. The modification performs at

least as well as a powerful regression-based method in cor-

recting for the bias due to SNP number.32 In this study, the

correlation between the gene score and the number

of SNPs in the bin was reduced from Pearson r2 > 0.30 to

r2 < 0.020 in all three datasets after the modified Sidak

correction was applied. Also, permutation-based gene-set

analysis, as implemented in PLINK,33 on the German

GWAS confirmed the high correlation between modified

Sidak-corrected p values and permutation-based p values

(r2 > 0.95). The genes were scored for both the posi-

tional-binning and LD-based-binning approaches and

were compared.

The overall correlation in the ranks of the genes between

the two approaches was <0.83 in the three original data-

sets and the TOP imputed dataset, indicating that LD-

based binning altered the scores and the subsequent ranks

of the genes. Although not as large, changes in rank were

also observed in the German imputed dataset (Table 3).

When a resampling analysis was performed on the unim-

puted WTCCC dataset (it randomly excluded 5% of the

samples [20 repetitions]), the average overall correlation

in ranks due to LD-based binning (0.80) was lower than

that resulting from random fluctuations in the datasets

(>0.87), indicating greater changes due to LD (Table S2).

Such changes in rank are likely to impact threshold-free,

rank-based pathway approaches, such as gene-set-enrich-

ment analysis,34 which aims to determine whether a prede-

fined set of genes is enriched at the top of a ranked list. By

inspecting the top 2,000 genes emerging from the two

binning approaches, we found a 27%–34% difference

between the two gene lists in the three unimputed and

the TOP imputed datasets and a 15.5% difference in the

German imputed dataset. Here, the resampling analysis

in the WTCCC GWAS found that random fluctuations in
012



Table 4. Pairwise Concordance between GWASs at SNP and Gene Levels

WTCCC vs. TOP WTCCC vs. German TOP vs. German
TOP Imputed vs.
German Imputed

SNP level 0.0066 (0.00018) 0.0037 (0.31) �0.0018 (0.51) �0.00023 (0.83)

Gene level (positional binning) 0.030 (1.78 3 10�7) �0.0017 (0.78) 0.023 (4.78 3 10�5) 0.068 (<2.2 3 10�16)

Gene level (LD-based binning) 0.077 (<2.2 3 10�16) 0.027 (7.24 3 10�7) 0.053 (<2.2 3 10�16) 0.098 (<2.2 3 10�16)

The Spearman rank correlation and p value (in parentheses) are shown for each pairwise comparison.
the dataset led to a 25.6% change in the top 2,000 genes,

whereas LD-based binning resulted in a 30.7% difference

(Table S2). For threshold-based approaches, such as Inge-

nuity Pathway Analysis and ALIGATOR,35 in which a list

of genes meeting a specified threshold is tested for overrep-

resentation of a particular biological function, LD-based

binning could result in the submission of a substantially

different list. Changes in the ranks of the genes are thus

likely to impact the outcome of these analyses and possibly

the overall biological interpretation of the findings. The

extent to which these LD-based changes are meaningful

will also depend on the study design and resulting power,

given that the resampling analysis shows that substantial

changes in results can also occur as a result of slight

changes in the dataset.

Finally, we assessed whether LD-based binning

improved the concordance of results across studies, espe-

cially in light of the aforementioned changes in the ranks

of the genes. We compared the positional-binning and LD-

based-binning approaches by performing pairwise rank-

correlation analyses of the three GWAS datasets at both

the SNP level and the gene level (Table 4). When the posi-

tional-binning approach was used, little to no correlation

was observed at both the SNP and gene levels. However,

with LD-based binning, the overall rank correlation

increased by ~3% and was more significant for all pairwise

comparisons, including the imputed datasets. Interest-

ingly, the greatest concordance was observed when LD-

based binning was combined with imputation, high-

lighting the complementary nature of the two methods.

Although there was no obvious increase in overlap in the

top gene hits (data not shown), this increase in overall

concordance warrants the use of the LD-based-binning

approach for the reanalysis of these and other datasets in

the search for common functional gene sets and pathways.

The observed increase in correlation persisted even when

regions of high LD, such as the MHC (major histocompat-

ibility complex) region on chromosome 6, were excluded

(data not shown).

Our study illustrates the importance of systematically

accounting for LD in the interpretation of GWAS results.

To the best of our knowledge, our study is the first to quan-

tify the added value of LD-based binning; in particular, it

shows an increase in the concordance of results across

independent GWASs of a trait as complex as BP. Excluding

LD defies the basic premise of the GWAS approach by dis-

carding valuable genetic information and risking the
The Am
incorrect localization of the association signal and the

misinterpretation of the biology of the findings. Our find-

ings call for a reanalysis of previously published GWAS

data via the LD-based-binning approach and for future

GWASs to adopt this method automatically. LDsnpR facil-

itates this process by efficiently assigning SNPs to genes

and provides the option of scoring the genes for direct

entry into pathway-analysis tools. LDsnpR’s flexible frame-

work allows the application of different gene-scoring

methods; the application of such methods is necessary

for detecting gene-based associations under different

genetic architectures for the traits.31 The user-definable r2

parameter enables the scanning of a greater range of allele

frequencies at the linked locus.27 Bin definitions and pre-

calculated pairwise LD information can be updated on

the basis of the user’s interests and the information avail-

able. LD-based binning might also serve as a complemen-

tary and/or alternative approach to imputation. In partic-

ular, as high-quality LD data from the 1,000 Genomes

Project21 emerges, all GWASs, including those previously

subjected to imputation, might benefit from simple and

efficient LD-based binning at no extra cost. As we show

here, LD-based binning can further enhance imputed

GWASs, albeit to a lesser extent than unimputed datasets.

More tools that allow for incorporation of LD into the

interpretation of GWAS data are emerging,36,37 further

testifying to the importance of this approach. Also, for

studies genotyped on different platforms and/or imputed

with the use of different reference panels, LD-based

binning enables uniform comparison at both the gene

and pathway levels.

It is crucial to note that our study, as well as LDsnpR,

only addresses SNP-to-gene assignment. Issues involving

the derivation of the most accurate gene score (which

accounts for gene size and LD between SNPs), the handling

of SNPs that are assigned tomultiple, possibly overlapping,

genes, and the correlation between genes are unresolved

obstacles for pathway-analysis approaches13 and are

beyond the scope of this paper. Furthermore, the benefits

of LD-based binning will be unique to each GWAS depend-

ing on the trait and its true underlying genetic architec-

ture, the study design, and the extent of SNP coverage.
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found with this article online at http://www.cell.com/AJHG.
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M., Miró, X., Strohmaier, J., Steffens, M., Meesters, C., Herms,

S., Weingarten, M., et al; Bipolar Disorder Genome Study

(BiGS) Consortium. (2011). Genome-wide association study

identifies genetic variation in neurocan as a susceptibility

factor for bipolar disorder. Am. J. Hum. Genet. 88, 372–381.

21. 1000 Genomes Consortium. (2010). A map of human genome

variation from population-scale sequencing. Nature 467,

1061–1073.

22. So, H.C., Gui, A.H., Cherny, S.S., and Sham, P.C. (2011). Eval-

uating the heritability explained by known susceptibility vari-

ants: A survey of ten complex diseases. Genet. Epidemiol. 35,

310–317.
012

http://www.1000genomes.org/
http://www.genome.gov/gwastudies/
http://www.genome.gov/gwastudies/
http://enigma.loni.ucla.edu/protocols/genetics-protocols/
http://enigma.loni.ucla.edu/protocols/genetics-protocols/
http://hapmap.ncbi.nlm.nih.gov/
http://may2009.archive.ensembl.org/biomart/martview/11839bb5ec82fb10bf0333540fa09c46
http://may2009.archive.ensembl.org/biomart/martview/11839bb5ec82fb10bf0333540fa09c46
http://mathgen.stats.ox.ac.uk/impute/impute_v2.html
http://mathgen.stats.ox.ac.uk/impute/impute_v2.html
http://www.ingenuity.com/
http://services.cbu.uib.no/software/ldsnpr
http://pngu.mgh.harvard.edu/~purcell/plink/
http://cran.r-project.org


23. Neale, B.M., and Purcell, S. (2008). The positives, protocols,

and perils of genome-wide association. Am. J. Med. Genet.

B. Neuropsychiatr. Genet. 147B, 1288–1294.

24. Blow, M.J., McCulley, D.J., Li, Z., Zhang, T., Akiyama, J.A.,

Holt, A., Plajzer-Frick, I., Shoukry, M., Wright, C., Chen, F.,

et al. (2010). ChIP-Seq identification of weakly conserved

heart enhancers. Nat. Genet. 42, 806–810.

25. Vandiedonck, C., Taylor, M.S., Lockstone, H.E., Plant, K., Tay-

lor, J.M., Durrant, C., Broxholme, J., Fairfax, B.P., and Knight,

J.C. (2011). Pervasive haplotypic variation in the spliceo-tran-

scriptome of the human major histocompatibility complex.

Genome Res. 21, 1042–1054.

26. Spencer, C.C., Su, Z., Donnelly, P., and Marchini, J. (2009).

Designing genome-wide association studies: Sample size,

power, imputation, and the choice of genotyping chip. PLoS

Genet. 5, e1000477.

27. Wray, N.R. (2005). Allele frequencies and the r2 measure of

linkage disequilibrium: Impact on design and interpretation

of association studies. Twin Res. Hum. Genet. 8, 87–94.
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