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Review
Virus infection initiates a number of cellular stress
responses that modulate gene regulation and compart-
mentalization of RNA. Viruses must control host gene
expression and the localization of viral RNAs to be
successful parasites. RNA granules such as stress gran-
ules and processing bodies (PBs) contain translationally
silenced messenger ribonucleoproteins (mRNPs) and
serve as extensions of translation regulation in cells,
storing transiently repressed mRNAs. New reports show
a growing number of virus families modulate RNA gran-
ule function to maximize replication efficiency. This
review summarizes recent advances in understanding
the relationship between viruses and mRNA stress gran-
ules in animal cells and will discuss important questions
that remain in this emerging field.

Stress granule formation and composition
Eukaryotic cells can contain multiple types of cytoplasmic
mRNA-containing bodies, including processing bodies
(PBs, also known as GW bodies) [1], exosome bodies
[2,3], neuronal bodies [4,5] and stress granules (SGs)
[6,7]. PBs and exosome granules are foci that are constitu-
tively present in cells and contain components involved in
mRNA decay [3,8]. Neuronal granules are also constitu-
tively present in neurons but are instead associated with
the concentration and transport of translationally silenced
messenger ribonucleoproteins (mRNPs) moving along the
axons to dendrites [5]. SGs are not constitutively present in
cells, but similar to neuronal granules, SGs are concentra-
tions of stable, translationally silent mRNA [9] that are
thought to be sites of mRNA storage and triage [10]. SGs
and PBs are found in the widest number of cells types.
Although PBs are known to be modulated by some viruses,
this review will focus on the many more publications
describing viral modulation of stress granules.

Based on immunofluorescent microscopic analysis of SG
constituents, SGs are defined as macromolecular aggre-
gates of stalled 48S initiation complexes that form in
response to stress conditions [11]. The best described
pathway of SG formation initiates with phosphorylation
of eukaryotic translation initiation factor (eIF) 2a (eIF2a)
by the eIF2 kinases PKR, PERK, GCN2 or HRI [12–14],
although alternative pathways exist such as inhibition of
eIF4A RNA helicase [15–17] or viral infection [15]. PKR, a
Corresponding author: Lloyd, R.E. (rlloyd@bcm.edu)
Keywords: stress granule; antiviral response; translation silencing; G3BP; TIA-1;
eIF4G.PKR..

* Current address: Department of Pathology and Immunology, Washington
University School of Medicine, St. Louis, MO 63110, USA.

0966-842X/$ – see front matter � 2012 Elsevier Ltd. All rights reserved. doi:10.1016/j.tim.2012.
component of the interferon response, is commonly acti-
vated by RNA viruses producing double-stranded RNA as
replication intermediates and PERK is activated by endo-
plasmic reticulum (ER) stress associated with a smaller
group of viruses, many that express membrane glycopro-
teins (e.g. herpes viruses and others). HRI, activated by
heme deprivation and oxidative stress, and GCN2, which is
activated by nutrient starvation, are not commonly linked
to virus infection, although GCN2 binding to Sindbis virus
RNA induces its activation [18]. SG are foci of concentrated
48S translation preinitiation complexes, thus SGs are
defined by the presence of translation initiation machinery
including 40S ribosome subunits, eIF2, eIF3, eIF4A,
eIF4B, eIF4E, eIF4G and eIF5 [13,15,19,20]. SGs are also
defined by certain key marker RNA binding proteins
(RBPs) such as T-cell restricted intracellular antigen 1
(TIA-1), TIA-1-related protein (TIAR) and RasGAP SH3-
domain binding protein 1 (G3BP1) [14,21], however, SGs
contain many other RBPs (Figure 1). Because SGs contain
stable inert mRNA, they represent an intermediate step in
the equilibrium between active translation that occurs on
free polysomes and mRNA decay, which takes place in PBs.
As such, they dynamically release contents for active
translation [22–25] as well as interact with PBs in a
process that is thought to result in the exchange of mRNA
‘cargos’ [23]. The movement of RBPs between compart-
ments is rapid, with a full replacement of some SG contents
occurring in well under a minute [22,23]. Other evidence
suggests that association of mRNA with the ER renders the
mRNA resistant to inclusion in SGs [26]. Frequent inter-
action of SGs with PBs is observed in cells that are actively
forming SGs and live cell imaging shows that this process
is dynamic and transient [23]. Little is known about the
mechanism or purpose of this interaction other than the
proposed mRNP cargo exchanges (Figure 1), but the over-
expression of tristetraprolin (TTP) and related protein
BRF1 is known to promote and stabilize the association
of SGs and PBs [23].

The molecular mechanism(s) [27] by which SGs form is
undefined, but appears complex and involves several steps
that include the self-oligomerization of certain constituent
RNA-binding proteins, post-translational modifications of
proteins and mRNP transport on microtubules (Table 1,
Figure 1). Theoretically, viral inhibition of any of these
important steps may block or modulate SG formation in
cells. Self-oligomerization of TIA-1 or TIAR and G3BP
may play a crucial early role in the SG aggregation process
and overexpression of these proteins induces spontaneous
SG formation [21,28]. Expression of the C-terminal
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Figure 1. Stress granules (SGs) are intermediate compartments in mRNA metabolism. Inhibition of translation initiation leads to the disassembly of polysomes and the

formation of stalled 48S initiation complexes. These messenger ribonucleoprotein (mRNP) complexes are recognized via an unknown mechanism and are remodeled,

marking them for inclusion in SGs despite continued association with pro-translation initiation factors. SG components such as RasGAP SH3-domain binding protein 1

(G3BP1), Fragile X mental retardation protein (FMRP) and others are post-translationally modified, and small dispersed aggregates of remodeled mRNP complexes are

transported by microtubule-associated motor proteins into larger SGs. The brackets around this central step indicate that it is not currently known which process is initially

undertaken. SGs are thought to be sites of storage of stabilized mRNA, although it is known that mRNA can be released for translation or transported to processing bodies

(PBs) for active decay by an unknown mechanism. Multiple virus systems (in red) have been found to interfere with the process of SG and PB formation and the points of

interaction with the process are indicated. Stress granules also dock with PBs where mRNP modification and cargo exchange takes place. Initiation factors are lost except

eukaryotic translation initiation factor (eIF4E) and deadenylase complexes (Pan2/3, Caf1/Ccr4) decapping complexes (Dcp1a/2) and exonucleases (Xrn1) become associated.

Some viruses inhibit PB formation as indicated and poliovirus (PV) antagonizes specific PB components [43,45,71].
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glutamine-rich prion related domain (PRD) of TIA-1 inhi-
bits the formation of SGs and overexpression of TIA-1
lacking the PRD does not spontaneously induce SGs
[28]. Additionally, murine embryonic fibroblasts (MEFs)
that are null for TIA-1 or TIAR display deficient SG
Table 1. Stress granule mechanistic processes that viruses can p
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Cell Insult

Inhibit translation ternary complex formation Phosphorylate eIF2a 
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aAbbreviated list only, particularly in terms of factors that infiltrate SGs.
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formation in response to various stressors [28]. G3BP
can self-oligomerize in a phosphorylation-dependent man-
ner and overexpression of the central domain of G3BP
containing the arginine-rich and PxxP domains inhibits
SG formation [21]. As is the case with TIA-1, cells with
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G3BP repressed by siRNA treatment [29] and G3BP–/–

MEFs are also deficient in the formation of SGs [21].
Additionally, G3BP sequestration by the inactive kinase
MK-STYX inhibits the formation of SGs in response to
arsenite and G3BP overexpression [30], further confirm-
ing the importance of G3BP in SG formation. The ability of
G3BP to mediate the formation of SGs is regulated by the
phosphorylation of serine 149 by an unknown kinase.
Overexpression of a phosphomimetic mutant, G3BPS149E,
inhibits the formation of SGs whereas an exogenously
expressed non-phosphorylatable mutant, G3BPS149A,
localizes to SGs similarly to wild type [21]. Viral interfer-
ence with G3BP and TIA-1 will be discussed below.

In addition to the steps described above, SG formation
involves post-translational modifications of several other
proteins that regulate SG dynamics in complex, possibly
hierarchical stages. These modifications include O-linked
N-acetylglucosamine (O-Glc-Nac) modification, methyla-
tion, acetylation and phosphorylation and are summarized
in Table 1. Some of these steps are less well characterized
and have not yet been investigated by virologists in their
systems, however, are potential targets for viral manipu-
lation. Finally, multiple reports indicate that SG formation
is mediated by microtubules (MTs) and its associated
motor proteins dynein/dynactin and kinesin [31–36]. Dis-
assembly of microtubules by pharmacological treatment
abolishes the formation and dissolution of SGs, resulting
in the formation of small, dispersed SGs at the onset of
stress and prolonging their presence in cells recovering
from stress [32,33]. However, MTs do not affect their
Table 2. Phenotypes of virus–SG interactions

Virus Phenotype 

Virus induces then inhibits SGs

Mammalian orthoreovirus SG formation induced by 

Semliki Forest Virus SG formation corresponds

Hepatitis C virus SG components localize to

Poliovirus SGs induced early, correla

Poliovirus SG inhibition due to G3BP

Poliovirus Virus-induced vs. stress-in

Poliovirus G3BP cleavage unlinks TIA

Virus inhibits SGs

Junin virus Inhibition of eIF2a phosph

Rotavirus RV infection induces exten

Cardiovirus Inhibition due to expressio

West Nile and dengue virus TIA-1 interaction with vira

Cricket paralysis virus Poly(A) mRNA form foci w

Herpes simplex 1 TIA-1 localizes to cytoplas

Herpes simplex 1 Vhs mutant viruses induce

HIV-1 Staufen–Gag interaction b

HTLV-1 Tax protein sequesters HD

Influenza A virus NS1 protein blocks eIF2a p

Virus tolerates or exploits SG responses

Respiratory syncytial virus SG induction associated w

Respiratory syncytial virus SG induction is PKR-depen

Respiratory syncytial virus No SGs in wild-type infect

Mouse hepatitis coronavirus SG formation corresponds

Transmissible gastroenteritis virus PTB localization to SGs co

Mammalian orthoreovirus SG induction is strain-spec

Vaccinia virus SG-like bodies form in pro

Vaccinia virus Antiviral SG bodies form w
maintenance once formed [31,32]. Inhibition of the motor
proteins dynein/dynactin and kinesin similarly resulted in
small dispersed puncta and extended SGs maintenance
during stress recovery [34,35]. Taken together, the mech-
anism of SG formation appears to be multifactorial and
may involve multiple types of protein modifications on key
targets and RBP interactions with the cellular cytoskele-
ton. Many of these steps may be modulated by viruses.

Viral interactions with stress granules
The basic role of SGs and PBs in translation suppression
and RNA decay suggest these processes will impact virus
replication and force viral adaptation. Virus infection will
induce stress responses on multiple levels as host process-
es are interrupted or co-opted. Indeed, numerous types of
RNA viruses are now reported to manipulate SGs, reflect-
ing the fact that SGs are involved in RNA silencing and
storage, however DNA viruses also modulate SG
responses. Viral interactions with the SG pathway produce
varying phenotypes (Table 2). In general, most viruses
appear to antagonize SG formation during infection, al-
though some induce and may exploit portions of SG
responses as part of the infectious cycle. For broad under-
standing of readers, we have provisionally categorized
these virus systems discussed below into three classes
according to the phenotype of virus interaction with the
SG machinery. However, because there are conflicting data
in some cases and overall the interactions are not yet
probed in depth in most virus systems, these groupings
may require revision with time.
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Viral inhibition of SGs in the mid-phase of infection
Mammalian orthoreoviruses (MRV) induce the formation
of SGs via an eIF2a phosphorylation-dependent mecha-
nism in a strain and cell-type-dependent manner, a phe-
notype due to the ability of strains to differentially enter
cells. SGs are triggered by viral entry because infection
with UV-inactivated particles or intermediate subvirion
particles (ISVPs) induces SGs in a dose-dependent manner
[37]. Further, viral gene expression was not required for
SG formation but instead led to the inhibition of SGs as
infection progressed [37]. Several strains of MRV inhibited
SG formation in response to arsenite and other treatments
despite producing high levels of eIF2a phosphorylation
that should trigger SG formation, thus indicating MRV
inhibits the formation of SGs downstream of eIF2 [38]. The
ability of MRV to translate under stress conditions created
by exogenous stressors correlated with the absence of SGs.
Both cellular and viral translation was inhibited early
when SG form, but viral translation was not blocked late
when SGs were inhibited.

By contrast, another group analyzed different reovirus
strains, two that inhibit host cell translation [clone 8 (c8)
and c87] and the Dearing strain that does not, and found
that SGs persist throughout infection. Additionally, they
found that the ability of the reovirus strains to induce SG
formation correlated with the strength of eIF2a phosphor-
ylation and host cell translation inhibition, with the
Dearing strain inducing the least eIF2a phosphorylation
and a lower level induction of SG formation [39].
Together, these results indicate different virus strain–
cell combinations may score differently in controlling
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SG responses, providing experimental tools to probe the
most important governing mechanisms.

The alphavirus Semliki Forest virus (SFV) also induces
SGs early during infection in an eIF2a phosphorylation-
dependent manner, concomitant with the inhibition of host
protein synthesis [40]. Infection of TIA-1-null MEFs
resulted in delayed kinetics of host translation inhibition,
suggesting that SFV permits some SG formation to aid
translation shutoff. Like MRV, SFV prevented the forma-
tion of SG by exogenous stressors at late times post-infec-
tion. Contrary to MRV, SFV induction of SGs required viral
replication, and there was a correlation between the levels
of viral RNA (vRNA) staining and SGs. Interestingly, in
cells with low vRNA content, SGs were still present in
cytoplasmic areas that were not in close proximity to
vRNA, suggesting SG formation was inhibited by a process
closely linked to viral replication [40].

Poliovirus (PV) induces the formation of SGs in some
cells early during infection in an eIF2-independent man-
ner, unlike MRV and SFV. Formation of SGs containing
G3BP and eIF4GI peaked between 2 and 3 hours post-
infection (hpi) [15,29] and then declined as infection ma-
tured [29] by a mechanism that requires viral replication.
Similar to MRV and SFV, PV inhibits the formation of
canonical SGs in response to exogenous stressors such as
arsenite. In a report thought to be contrary to previously
described PV-induced inhibition of SG, TIA-1-containing
foci were observed late in virus infection and correlated
with stable SGs [41]. However, it was later shown that TIA-
1-positive foci persisting in PV-infected cells are actually
devoid of other SG defining components such as initiation
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factors and most mRNA and thus do not represent canoni-
cal SGs [42]. Thus, PV gene products are able to unlink the
process of TIA-1 aggregation from sequestration of stalled
translation initiation complexes, thereby releasing seques-
tered translation apparatus to support viral translation.
PV inhibition of SG is primarily mediated by the viral
3Cpro-mediated cleavage of the SG component G3BP,
which separates the G3BP RNA-binding and protein-in-
teraction domains (Figures 1 and 2). Rescue of formation of
bonafide SG containing initiation factors and mRNA via
the expression of cleavage-resistant G3BPQ326E led to an
approximately sevenfold decrease in viral replication, in-
dicating a potential antiviral role for SGs [29,42].

Hepatitis C virus (HCV) is also reported to induce SGs
in response to infection, but inhibits their formation in
response to exogenous stress stimuli as infection proceeds
[43]. Unlike MRV, SFV and PV, HCV specifically recruits
components of SGs to the viral replication factories (RFs)
and several SG markers continue to co-localize with the
HCV core protein even in the presence of stress [43]. This is
likely due to the fact that G3BP1, and possibly other
factors, interact with the viral NS5B protein and the 50

terminus of the (–) strand RNA during HCV infection to
mediate efficient replication of the viral genomic RNA [44].
Interestingly, SG constituents G3BP and ataxin2, plus PB
component DDX6 and HCV core protein can be recruited to
ring-like structures surrounding lipid droplets in cells [43].

Finally, cricket paralysis virus (CrPV), a member of the
Dicistroviridae family, also modulates SG formation dur-
ing infection by preventing the inclusion of Rox8 and Rin
(Figure 1), the Drosophila homologues of TIA-1 and G3BP,
respectively, but not polyadenylated mRNA or poly(A)-
binding protein (PABP) [45]. Even after treatment with
various stressors, CrPV-infected cells still maintain a dif-
fuse distribution of Rox8 and Rin while forming polyA- and
PABP-positive granules, indicating that modifications me-
diated by CrPV leads to selective inhibition of distinct SG
markers [45]. Although there are differences, these results
show that a basic phenotype of virus induction and repres-
sion of SGs is highly conserved between insect and animal
viruses.

Viral inhibition of SGs throughout infection
In many viral systems, SGs are not readily observed during
infection with wild-type virus and infection inhibits the
formation of SGs in response to eIF2a phosphorylation and
treatment with exogenous stressors. In some cases a viral
mediator of SG inhibition has been implicated, but detailed
mechanisms are lacking.

Rotavirus (RV) infection activates phosphorylation of
eIF2a but not SG formation and infected cells do not form
SGs in response to arsenite treatment [46]. Interestingly,
eIF2a phosphorylation was not required for efficient RV
replication but could be used to inhibit host cell protein
synthesis at the expense of viral efficiency [46,47] because
infected MEFs expressing phosphorylation-null mutant
eIF2aS51A translate more efficiently.

Cardioviruses, specifically Theiler’s murine encephylo-
myelitis virus (TMEV), were similar and inhibited SG
formation both in response to infection as well as to exoge-
nous stress [48]. The TMEV leader protein (L) was linked
to SG inhibition because viruses with mutant L proteins
induce SG formation throughout infection. Ectopic expres-
sion of the L protein alone inhibited SGs in response to
exogenous stress, and L proteins from other cardioviruses
(Mengovirus and Saffold virus) also blocked SG formation
[48].

Acute Junin virus infection blocks phosphorylation of
eIF2a in response to arsenite treatment by an undefined
mechanism that was dependent on the expression of the
nucleoprotein (N) or glycoprotein precursor (GPC) [49].
However, persistently infected Vero cells expressing trun-
cated N and low levels of GPC displayed SG formation
phenotypes similar to uninfected cells [49].

Influenza A virus infection fails to induce SGs unless
viruses with NS1 mutations are used. In this case, SGs
form readily in a PKR-dependent fashion. Influenza virus
NS1 protein inhibits PKR activation. Formation of SG was
linked to repression of virus replication, but this could not
be unlinked from negative effects of eIF2a phosphorylation
on virus translation [50].

West Nile virus (WNV) and dengue virus (DV), both
members of the Flaviviridae family, inhibit SG formation
in response to exogenous stress by sequestering TIA-1 and
TIAR through specific binding of either protein to the
minus strand 30-terminal stem loop structure (30(–)SL)
[51], an interaction that is required for viral replication
[52] (Figure 2). DV 30 UTR and 50 UTR pulls down SG
proteins G3BP1, caprin1 and USP10 as well as PB marker
protein DDX6 (RCK/p54), and all these proteins were
found to weakly colocalize with dsRNA that marked viral
replication sites. However, SG marker proteins were not
found aggregated in SG-like foci. Functional roles for the
other SG proteins were not described but DDX6 interaction
with the 30UTR was required for replication [53].

The effects of two retroviruses on SG formation have
been investigated and both have been found to be inhibi-
tory. Human immunodeficiency virus 1 (HIV-1) inhibits
the formation of SGs in response to arsenite treatment
despite activating elevated levels of phosphorylated eIF2a

but, paradoxically, not in response to puromycin treatment
[54]. This indicates that the inhibition of SGs occurs at a
step downstream of eIF2a phosphorylation. Another SG
marker protein, Staufen1, interacts with the viral Gag
protein, forming stable HIV-1 ribonucleoproteins (RNPs)
destined for encapsidation instead of SG translation si-
lencing (Figure 2) [54].

Human T-cell leukemia virus type-1 (HTLV-1) also
inhibits SG formation through expression of the viral
Tax protein [55]. Inhibition of SGs is dependent on the
cellular localization of Tax, as cells displaying a nuclear
Tax signal contain SGs even in the absence of stress
whereas cells displaying a cytoplasmic Tax signal do not
contain SGs. Legros et al. determined the inhibition of SGs
is due to the interaction of Tax with histone deacetylase 6
(HDAC6), a protein crucial to the formation and mainte-
nance of SGs (Figures 1 and 2) [36].

Finally, DNA viruses such as Herpes simplex virus 1
(HSV1) also induce SGs or SG-like structures, but only
with mutant viruses. Infection with wild type HSV1 results
in cytoplasmic focal localization of TIA-1 and TIAR but not
overt SG formation. However, infection with HSV1 DUL41,
179
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a mutant strain lacking the virion host shutoff (Vhs)
protein, results in SG formation in a cell type-specific
manner [56,57] that did not correlate with eIF2a phos-
phorylation. These initial data suggest HSV, which con-
trols host translation eIF2a phosphorylation, strongly
limits SG formation. Interestingly, these results also stress
that eIF2a phosphorylation is not the only route to initiate
SG formation.

Viral tolerance or exploitation of SG responses?
Viruses are master manipulators of cellular processes so it
is not surprising that some SG components such as G3BP
and TIA-1 may be utilized in virus replication as described
for HCV and flaviviruses above. However, some viruses
may co-opt steps of SG induction to aid virus replication.
This may be suspected where virus infection induces but
does not block aggregation of bonafide SGs or key SG
components. In some cases, there may be unlinkage of
eIF2a phosphorylation and aggregation of some SG com-
ponents that are used for viral functions.

Two RNA viruses, respiratory syncytial virus (RSV) [27]
and coronaviruses [47,58], may benefit from inducing SG
formation as part of the mechanism by which they inhibit
host cell protein synthesis. In the case of RSV, infection
induces SGs in �30% of infected cells at 24 hpi, and this may
promote RSV replication because cells with SGs contained
larger viral inclusion bodies than cells not forming SGs.
Further, the inhibition of SG formation via the stable
knockdown of G3BP resulted in a 10-fold decrease in repli-
cation [27]. A followup report showed SG induction by RSV
was mediated by PKR-dependent eIF2a phosphorylation
and a PKR knockout had a decreased ability to induce SGs in
response to RSV infection. However, unlike the initial find-
ings, the lack of SG formation was not correlated with a
decrease in viral replication [59]. By contrast, Hanley et al.
used the same cell line and RSV strain and found that only
RSV viruses containing mutations or truncations in the 50-
trailer region induce SGs during infection [60]. The trailer is
a region of extragenic RNA that is required for genomic RNA
transcription. The cause of these contrasting results is yet to
be determined and owing to the opposing nature of these
results, the question of the role of SGs in the RSV lifecycle is
unanswered.

Two different coronaviruses, mouse hepatitis coronavi-
rus (MHV) [47] and transmissible gastroenteritis corona-
virus (TGEV) [58] induce SGs that are present during
phases of active virus gene expression, and may persist
throughout much of infection. MHV induces the formation
of SGs and PBs at 6 hpi; this is coincident with partial
eIF2a phosphorylation, shutoff of host translation, but
robust virus translation. However, although SG coexist
with high virus translation rate, it was not reported if
MHV antagonized or inhibited SG at later timepoints in
infection. In contrast to RSV, MHV replication was en-
hanced in cells deficient in eIF2a phosphorylation or SG
formation [47], indicating that although the virus triggers
eIF2a phosphorylation to inhibit host translation, its own
translation is also susceptible to this inhibition but to a
lesser degree. TGEV induces SGs that increase and persist
for at least 16 h, through much of the infection cycle. These
SGs contained TIA-1, TIAR and the nuclear protein PTB
180
and it was shown that formation of these structures corre-
lated with inhibition of viral RNA accumulation. PTB was
shown to bind virus RNA by mass spectroscopy and viral
guide RNA (gRNA) and subgenomic mRNA (sgmRNA) was
included in precipitable complexes with TIA-1 and PTB,
but SG structures with PTB were distinct from other foci
containing (virus) dsRNA or replication complexes. In light
of this, the authors suggest that SG induction and manip-
ulation of PTB localization may play a role in regulating
viral RNA replication, translation or packaging [58]. The
effects of SG inhibition on TGEV mRNA expression were
not analyzed and an antiviral role of the PTB-positive SGs
cannot be ruled out.

Vaccinia virus (VV) is a DNA virus that may exploit
aspects of SG responses by subverting SG components into
novel aggregates that share properties with SG, but cru-
cially differ by not containing translationally silenced
mRNAs. Even though VV can suppress eIF2a phosphory-
lation, during replication SG-like structures form within
and adjacent to its cytoplasmic replication factories (RFs)
[61,62]. These aggregates contained colocalized G3BP and
cytoplasmic activation/proliferation-associated protein-1
(p137 or Caprin1) plus initiation factors eIF4G, eIF4E
and VV RNA. G3BP is an integral protein to the SG
formation process [21] and G3BP:Caprin-1 heterodimer
localizes to SGs [63]. G3BP and translation initiation
factors become highly concentrated within aggregates,
and are deficient elsewhere in the cytoplasm, a situation
which occurs in uninfected cells only when SGs form. G3BP
or Caprin1, may stimulate VV intermediate gene expres-
sion either individually or as a heterodimer through un-
known mechanisms [64]. It was proposed that these sites
were centers of viral translation [62], which is contrary to
typical SGs containing the same proteins that are sites of
stable, non-translating mRNA. Walsh et al. showed that
viral RFs contained aggregates of eIF4E and eIF4G but not
PABP or TIA-1, indicating an incomplete SG structure
assembly [65]. Part of the VV mechanism of subversion
of normal SG response may result from degradation of host
mRNA, freeing aggregating SG components for alternate
tasks.

Infection with a mutant VV lacking the dsRNA binding
protein E3L (VVDE3L) does not block PKR activation and
eIF2a phosphorylation. These infections formed SG-like
bodies that both surrounded and interlaced RFs and con-
tained hallmark proteins G3BP, TIA-1, USP10, initiation
factors and required eIF2a phosphorylation for their for-
mation [61]. Because the formation of these SG were linked
to PKR activation and reduced viral replication, the
authors termed them antiviral granules (AVGs) [61]. It
is likely that PKR activation triggers more complete acti-
vation of functional SGs. Together, the results suggest VV
may steer G3BP and initiation factors into new roles, but
does not silence translation function within SG due to anti-
eIF2a phosphorylation function of E3L and VV-induced
host mRNA degradation, but instead concentrating and
supporting virus translation in or near RFs.

SGs as an antiviral response
Because many virus families antagonize SGs, they can
be viewed as manifestations of an overt and integrated



Box 1. Outstanding questions

� What additional virus systems manipulate SG responses?

� What are the precise mechanisms by which viruses inhibit SG

formation?

� Are there cases of enhanced SG dissolution instead of inhibited

assembly?

� Are other steps in SG formation, such as microtubule transport, a

target for viruses?

� Is sequestration of factors such as G3BP or TIA-1 a result of a

selective pressure to inhibit SGs or a by-product of their

requirement for RNA replication?

� What are the mechanisms of SG-mediated antiviral effects?

� Do viruses alter the content of SG-sequestered mRNAs, e.g.

exclude certain mRNAs?

� What downstream effects does SG inhibition have on mRNA

metabolism or PB formation?

� Do SGs and PBs play a role in the innate immune response?
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cellular stress response that has distinct antiviral aspects.
SGs are potentially antiviral on several functional levels as
they sequester and bind cell components that are vital for
virus replication. For instance, SGs sequester TIA-1 and
TIAR, which are required for flavivirus RNA replication by
binding a 30 stemloop that is complementary to minus
strand RNA [51]. G3BP is also concentrated and utilized
by HCV near replication complexes [43]. Translation initi-
ation factors are required for any virus to replicate effi-
ciently, so sequestration of 40S subunits and eIF4G,
eIF4A, eIF4B and eIF3 can have negative consequences
for virus replication. Further, internal ribosome entry site
(IRES) transactivating factors such as PTB, PCBP2 and
UNR that stimulate picornavirus translation are seques-
tered in SGs [42]. Thus, the act of SG-mediated sequestra-
tion of factors away from general cytoplasmic pools can be
viewed as generally antiviral.

Although there is evidence that inclusion of viral RNAs
into SGs can have inhibitory affects on viral replication
under certain conditions [66], there is not yet evidence in
most virus systems for significant inclusion of viral RNA
into SGs under normal conditions. Therefore, antiviral
activity due to inclusion of required factors is likely limited
to cellular factors. Possible exceptions involve antiviral
APOBEC3G and APOBEC3F proteins that bind mRNP
complexes and shuttle into both SG and PB [67,68]. APO-
BEC3G binds HIV RNA, which also may be shunted into
SG and PBs [69]. Other viral genomes at risk of seques-
tration into SGs are those that bind SG marker proteins.
Examples are TIA-1/TIAR binding to flavivirus RNA and
recent reports that indicate both HCV and DV RNA bind
G3BP [44,53].

Finally, although SGs can be considered a cell stress
response that is largely antiviral, they may serve as an
inhibitor of apoptosis, which is also a stress-induced anti-
viral response of greater negative consequence for viruses.
SG can block apoptosis by negatively regulating the JNK/
SAPK pathway via sequestration of RACK1 and other
apoptosis-promoting factors into SG [7,70]. Thus, viral
manipulation of SG may require fine tuning to sequester
enough pro-apoptotic factors while not excessively deplet-
ing pro-viral factors and translation apparatus.

Concluding remarks
Much work remains to be done to fully understand the
interactions between viruses and SGs, a field that is in its
infancy and pressing questions are summarized in Box 1.
Major questions that currently remain to be answered
center around mechanisms of interference with SGs. Viral
sequestration or cleavage of the SG components G3BP,
TIA-1, Staufen and HDAC6 provide initial clues, but the
function of all these proteins in SG formation and regula-
tion is poorly defined. Other viruses such as cardioviruses
and Junin virus have identified viral products that mediate
SG inhibition, but the targets and molecular details re-
main incomplete. Similarly, in most cases where SGs are
inhibited during infection, the question remains open
whether SG loss is due to inhibition of formation of SGs
or stimulation of SG disassembly. Stimulation of SG dis-
solution as opposed to inhibition of SG formation would
constitute a novel mechanism of SG modulation during
infection and its investigation would provide crucial details
into a largely unresearched stage of the SG process. Still
other steps in SG assembly have not been evaluated during
viral infection, notably microtubule transport or post-
translational modifications. Viral interference in any of
these processes could potentially restrict SG formation and
function. Finally, PV, CrPV and HCV infection also dis-
rupts PBs along with SGs [43,45,71]. It will be important to
determine which viruses block both types of RNA granules
and whether integrated mechanisms are involved.

Further work is also necessary to determine the nature
of antiviral effects mediated by SGs and the nature of the
balancing act between virus induction of SG versus apo-
ptosis. Although sequestration of cellular factors into SG is
suggested for some systems, there has been no definitive
test of this concept and it is clearly not antiviral in some
cases where SG induction increases viral replication.
An attractive hypothesis is that SG formation signals
downstream stress signals that activate innate antiviral
mechanisms as part of an integrated stress response.
Mechanistic details of SG inhibition in other viral systems
would potentially allow for suppression of inhibition,
allowing for further characterization of the antiviral effects
of SGs. Viruses are excellent probes of cellular function. As
further investigation uncovers the mechanisms behind
viral inhibition of SG formation, we will learn a great deal
about the cell biology and biochemistry that supports RNA
granule function.
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