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Abstract
Ductal carcinoma in situ (DCIS)—a significant precursor to invasive breast cancer—is typically
diagnosed as microcalcifications in mammograms. However, the effective use of mammograms
and other patient data to plan treatment has been restricted by our limited understanding of DCIS
growth and calcification. We develop a mechanistic, agent-based cell model and apply it to DCIS.
Cell motion is determined by a balance of biomechanical forces. We use potential functions to
model interactions with the basement membrane and amongst cells of unequal size and phenotype.
Each cell’s phenotype is determined by genomic/proteomic- and microenvironment-dependent
stochastic processes. Detailed “sub-models” describe cell volume changes during proliferation and
necrosis; we are the first to account for cell calcification.

We introduce the first patient-specific calibration method to fully constrain the model based upon
clinically-accessible histopathology data. After simulating 45 days of solid-type DCIS with
comedonecrosis, the model predicts: necrotic cell lysis acts as a biomechanical stress relief, and is
responsible for the linear DCIS growth observed in mammography; the rate of DCIS advance
varies with the duct radius; the tumour grows 7 to 10 mm per year—consistent with
mammographic data; and the mammographic and (post-operative) pathologic sizes are linearly
correlated—in quantitative agreement with the clinical literature. Patient histopathology matches
the predicted DCIS microstructure: an outer proliferative rim surrounds a stratified necrotic core
with nuclear debris on its outer edge and calcification in the centre. This work illustrates that
computational modelling can provide new insight on the biophysical underpinnings of cancer. It
may one day be possible to augment a patient’s mammography and other imaging with rigorously-
calibrated models that help select optimal surgical margins based upon the patient’s
histopathologic data.
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1 Introduction
Ductal carcinoma in situ (DCIS), a type of breast cancer where growth is confined within
the breast ductal/lobular units, is the most prevalent precursor to invasive ductal carcinoma
(IDC). Breast cancer is the second-leading cause of death in women in the United States.
The American Cancer Society predicted that 50,000 new cases of DCIS alone (excluding
other pre-invasive cancers such as lobular carcinoma in situ) and 180,000 new cases of IDC
would be diagnosed in 2007 (Jemal et al., 2007; American Cancer Society, 2007). Co-
existing DCIS is expected in 80% of IDC (Lampejo et al., 1994). While DCIS itself is not
life-threatening, it is clinically important because it can be effectively treated and if left
untreated, it has a high probability of progression to IDC (Page et al., 1982; Kerlikowske et
al., 2003; Sanders et al., 2005). While the detection and treatment of DCIS have greatly
improved over the last few decades, problems persist. DCIS can be difficult to detect by
mammography (the principal modality in breast screening) or to distinguish from other
aberrant lesions (Venkatesan et al., 2009). This can lead to “false positives” of DCIS and
overtreatment, including unnecessary surgery. When excision is warranted, re-surgery is
required in 20–50% of cases to fully eliminate all DCIS (Talsma et al., 2011), highlighting
difficulties in estimating the full DCIS extent from patient imaging (Cheng et al., 1997;
Silverstein, 1997; Cabioglu et al., 2007; Dillon et al., 2007). A solid scientific understanding
of DCIS progression is required to improve surgical and therapeutic planning.

Open questions on DCIS biology contribute to current uncertainty in clinical practice. How
does DCIS progress from a few proliferating cells to detectable lesions potentially including
microcalcifications? Can immunohistochemistry (IHC) and histopathology be used to
estimate important physiological constants? Can mathematical modelling provide new
insight on interpreting these data? What is the relationship between the microcalcifications
observed in mammography and tumour morphology? Can we calibrate patient-specific
models to limited and noisy histopathologic data, often from only a single time point? These
clinically-pertinent scientific questions motivate our work.

Mathematical modelling has already seen use in understanding and predicting the growth
and dynamics of DCIS. Franks et al. (2003a,b, 2005); Owen et al. (2004) used continuum
models to investigate tumour growth in breast ducts, including the impact of volume loss in
the necrotic core, ductal expansion, and the influence of basement membrane (BM)
adhesion; this work can be traced to a long history of work (e.g., Ward and King (1997))
that includes matching to experiments. Rejniak (2007); Rejniak and Dillon (2007); Rejniak
and Anderson (2008a,b); Dillon et al. (2008) applied an immersed boundary method to
individual polarised cells; their model was able to reproduce several complex DCIS sub-
types. Norton et al. (2010) conducted a similar investigation of the relationship between
polarised cell adhesion, intraductal pressure, and DCIS morphology in 2D using a lattice-
free agent model and were able to produce nontrivial (e.g., cribriform) tumour
microstructures. Gatenby et al. (2007); Silva et al. (2010); Smallbone et al. (2007)
investigated the role of hypoxia, glycolysis, and acidosis in DCIS evolution in 2D and 3D
using cellular automata (CA) methods by including detailed metabolic sub-models. Mannes
et al. (2002) used 2-D CA methods to investigate Pagetoid spread. Bankhead III et al. (2007)
conducted early 3-D simulations of tumour cell hierarchy using CA techniques. Sontag and
Axelrod (2005) combined population-scale models with machine learning techniques and
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statistical analyses to postulate new hypotheses on DCIS mutation pathways from benign
precursors; Enderling et al. (2006, 2007) used continuum and CA methods to study
mutations within DCIS and recurrence following radiotherapy. Very recently, Kim et al.
(2011) used a detailed agent-based model to study interactions between DCIS cells and
stromal cells via TGF-β and EGF signalling; their work included the effects of basement
membrane expansion.

All this work has provided a degree of insight into DCIS, but has not fully answered the
questions we posed. Typical CA methods cannot accurately model cell mechanics,
particularly proliferation by tumour cells when fully surrounded by other cells; such
proliferation is regularly observed in DCIS immunohistochemistry. Population-based
ordinary differential equation (ODE) models do not account for spatial heterogeneity and
cannot investigate the impact of heterogeneous mechanics, substrate transport, and their
interaction. To date, none have modelled calcification, and existing necrosis sub-models
have not considered the effects of cell swelling and lysis; many prevalent models ignore
necrosis. The work by Norton et al. (2010) shows promise, but it has yet to predict tumour
biophysics as emergent phenomena because it imposed many of its key properties a priori as
algorithmic rules. The impressive morphological model of Rejniak and colleagues faces
computational limits when applied to large numbers of cells. Continuum models can
overcome these limits, but calibration to molecular- and cell-scale data is not straightforward
(Macklin et al., 2010b). To our knowledge, there has been no prior patient-specific
calibration to the proliferative and apoptotic indices generally measured in breast biopsies at
any scale of modelling for DCIS (or for any type of cancer).

Modelling approach and advances
We presently develop a lattice-free, agent-based cell model that can be applied to many
problems, exemplified by DCIS. Cells (agents) are modelled as physical objects that
exchange and respond to adhesive, repulsive, and motile forces that determine their motion;
essential molecular biology is incorporated through carefully-chosen constitutive relations.
Cell-cell and cell-BM interaction mechanics are modelled using potential functions that
account for finite interaction distances, uncertainty in cell morphology and position, and
interaction between cells of variable sizes and types. We introduce a level set formulation of
the basement membrane morphology that provides a generalised framework for the
exchange of forces between discrete cell objects and extended macroscopic objects with
nontrivial, evolving geometries. Each cell is endowed with a phenotypic state, and
phenotypic transitions are governed by exponentially-distributed random variables that
depend upon the cell’s internal state and the local microenvironment. This modelling
choice–a natural extension of constant probability per constant time step models in prevalent
use today–is consistent with experimental biology (e.g., Smith and Martin (1973)), provides
a rigorous method to vary the model’s probabilities with the microenvironment, allows for
variable time step sizes, and lends itself to mathematical analysis.

We include detailed “sub-models” of cell volume change during proliferation and necrosis.
Our necrosis model, which includes cell swelling and lysis, is the most biologically detailed
to date. We are the first to model and investigate cellular calcification. We couple the agents
to the microenvironment by solving reaction-diffusion equations for substrates that are
altered by the cells. To make the model predictive, we constrain all major model parameters
by surveying a broad swath of the experimental and theoretical biology literature.

We provide the first patient-specific model calibration protocol that estimates the population
dynamic and mechanical parameters based upon IHC for proliferation (Ki-67), apoptosis
(cleaved Caspase-3), and morphometric measurements from haematoxylin and eosin (H&E)
histopathology images at a single time point, thus avoiding the inherently inaccurate
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problem of estimating time derivatives from noisy patient data. To our knowledge, this is the
first patient-specific cancer calibration method that is based solely upon measurements that
we could reasonably expect from a single patient biopsy. Our calibrated model is capable of
making testable, quantitative patient-specific predictions of clinical behaviour (see below).
Hence, an additional novelty of our work is that we fully document the process of
developing a state-of-the-art agent model that is tailored to cancer biology, fully
constraining it with biologically-relevant parameter estimates and a first-of-its-kind patient-
specific calibration to pathology, and generating clinical predictions that are validated
against the clinical literature. A preliminary version of this work appeared in Macklin et al.
(2009a, 2010b,a); this paper refines the model, improves the calibration, and focuses on
significant new results, with in-depth validation and analysis.

Main results
We use our model to study solid-type DCIS with comedonecrosis–a central necrotic core
that is associated with more frequent recurrence of DCIS and poorer patient prognosis
(Ottesen et al., 2000; Yagata et al., 2003). We calibrate our model to archived tissue data
from Edgerton et al. (2011) and verify that the calibrated model successfully replicates our
patient input data, thus demonstrating the feasibility of calibrating mathematical models
based upon patient histopathologic data from a single time point. Away from the tumour’s
leading edge, the simulated spatiotemporal dynamics reach a steady state after 7 to 14 days,
consistent with a basic population dynamic model analysis and our prior continuum work
(Macklin and Lowengrub, 2007).

Based solely upon calibration to microscopic measurements, we make and test macroscopic
biological and clinical predictions. The model predicts that DCIS tumours grow at a constant
rate through the duct, in agreement with mammographic data. Necrotic core biomechanics
play a key role in this finding: necrotic cell lysis acts as a mechanical stress relief that
redirects proliferative cell flux towards the duct centre, rather than along the duct. Due to
this mechanism, the model predicts that growth is slowest in large ducts with greater
capacity to absorb proliferative flux. The model predicts DCIS growth rates between 7.5 and
10.2 mm/year, in quantitative agreement with published clinical data. While the
“mammographic image error”–the distance between the calcification and the leading tumour
boundary–increases over clinically relevant times, a DCIS tumour’s mammographic size is
linearly correlated with its pathologic size; this is supported by the clinical literature. A
linear extrapolation of the model-predicted correlation demonstrates an excellent agreement
with 87 published patient data points spanning two orders of magnitude.

The model also makes microscopic predictions that match clinical data. Fast necrotic cell
lysis at the perinecrotic boundary creates a physical gap between the viable rim and the
necrotic core; this phenomenon is frequently observed in patient histopathology. The
simulated tumours develop a stratified necrotic core, with increasing pyknosis (nuclear
degradation) and calcification towards the duct centre; this is observed in patient
histopathology. The model also predicts that calcification increases with distance from the
tumour’s leading edge. The current model only predicts casting-type calcifications. Hence,
we hypothesise that other biophysics–such as heterogeneous adhesive forces, cellular
secretions, and degradation of the calcifications over long time scales–must be responsible
for other types of calcifications observed in mammograms.

These successful quantitative predictions at the microscopic and macroscopic scales suggest
that it may soon be possible to use a well-calibrated simulator to create a patient-specific
map between the microcalcification geometry (as observed in mammography) and the actual
tumour morphology. This could allow surgeons to more precisely plan DCIS surgical
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margins while removing less non-cancerous tissue, and could improve targeting of
radiotherapy.

Paper organisation
After detailing our agent-based model (Section 2), we apply it to DCIS with comedonecrosis
(Section 3). After summarising the computational method (Section 4) and patient-
independent parameter estimates (Section 5), we detail our patient-specific calibration
protocol (Section 6). After calibrating to archived DCIS patient tissue and verifying the
calibration (Section 7), we simulate 45 days of DCIS growth and present our clinical
predictions in Section 8, with extensive validation against independent clinical data.
Discussion and future directions are found in Section 9.

Supplementary material
Refer to Web version on PubMed Central for supplementary material.

2 Agent-Based Cell Model
We now fully elaborate a discrete, cell-scale modelling framework that we preliminarily
introduced in Macklin et al. (2009a, 2010b). See the supplementary material for a sampling
of major agent-based modelling beyond DCIS, as well as recent reviews (Lowengrub et al.,
2010; Macklin et al., 2010b). The model is broadly applicable to the epithelial, stromal, and
immune cells involved in carcinoma and sarcoma. Its modular design allows “sub-models”
(e.g., molecular signalling) to be expanded, simplified, or outright replaced as necessary.
Where possible, we choose simple sub-models and test the model framework’s success in
recapitulating correct DCIS behaviour.

We attempt to model the mechanics, time duration, and biology of each phenotypic state as
accurately as our data allow; this should facilitate calibration to molecular- and cellular data.
The agents interact with the microenvironment through coupled partial differential equations
governing substrate transport. We use the same model for both cancerous and non-cancerous
cells. Functionally, the cells differ primarily in the values of their proliferation, apoptosis,
and other parameters; this is analogous to the downstream effects of altered oncogenes and
tumour suppressor genes (Hanahan and Weinberg, 2000).

In this work, cells are not polarised, and we neglect stem cell dynamics; this is readily added
by including a lineage model with each cell agent. Thus, we focus on the tumour growth
dynamics, rather than initiation. We do not model cell morphology, but rather total, nuclear,
and cytoplasmic volume. Where cell morphology is necessary, we approximate it as
spherical, similarly to Ramis-Conde et al. (2008a,b). This approximation is further discussed
in Section 2.1. Basement membranes are modelled using level set functions (Section 2.2),
which could model BM deformations (Macklin et al., 2010b).

2.1 Physical characteristics and mechanics
We endow each cell with a position x, velocity v, total volume V, cytoplasmic volume VC,
and nuclear volume VN. We assume that x and v are at the cell’s centre of mass and volume.
While we do not track the cell morphology, we find the equivalent cell and nuclear radii
(respectively R and RN) via

(1)
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See Fig. 1:left. For simplicity, we assume VN is fixed throughout the cell cycle. Each cell has
a maximum adhesion interaction distance RA ≥ R, which we use to express several effects.
Because cells are deformable, they can stretch beyond R to maintain or create adhesive
bonds. As we do not explicitly track the cell morphology, there is inherent uncertainty as to
maximum extent of the cell boundary relative to its centre of mass; RA needs to be
sufficiently large to account for this. This effect is increased by random actin
polymerisation/depolymerisation dynamics, which serve to randomly perturb the cell
boundary (Gov and Gopinathan, 2006). See Fig. 1:right.

The cells are allowed to partly overlap to account for cell deformation. (Fig. 1: right.) We
model the relative rigidity of the nucleus (relative to the cytoplasm) by introducing increased
mechanical resistance to compression at a distances less than RN from the cell centre; see
Sections 2.3.1 and 2.3.2. Note that as RN ↑ R (most of the cell resists compression) or RA ↓
R (cells cannot deform to maintain adhesive contact), the cells behave like a granular
material.

2.2 Basement membrane morphology
Let us denote the epithelium and lumen (the intraductal space when applied to DCIS) by Ω
and the basement membrane by ∂Ω. We represent ∂Ω implicitly with an auxiliary signed
distance function d (a level set function) satisfying

(2)

Additionally, |∇d| ≡ 1. This formulation can describe arbitrary BM geometries such as
branch points in breast duct tree structures. The normal vector n to the BM surface (oriented
into the epithelium) is n = ∇d, and ∇ · n gives the mean geometric curvature of the BM. This
implicit representation is well-suited to describing a moving BM as it is deformed by
mechanical stresses (e.g., due to proliferating tumour cells, as in Ribba et al. (2006)). See
Macklin and Lowengrub (2005, 2006, 2007, 2008); Frieboes et al. (2007); Macklin et al.
(2009b), where we used this method to describe moving tumour boundaries.

2.3 Forces acting upon the cells
Cells adhere to other cells (various cell-cell adhesion mechanisms: Fcca), the extracellular
matrix (cell-ECM adhesion: Fcma), and the basement membrane (cell-BM adhesion: Fcba).
Cells resist compression by other cells (cell-cell repulsion: Fccr). The BM resists its
penetration and deformation by cells (cell-BM repulsion: Fcbr). Motile cells experience a net
locomotive force Floc, and moving cells experience a drag force Fdrag = −νvi by the luminal
and interstitial fluids. See Fig. 2. We neglect any interstitial fluid pressure; this is equivalent
to assuming the free flow of water, similarly to current continuum-scale mixture models
(e.g., as in Wise et al. (2008)). Newton’s second law gives the balance of forces acting on
cell agent i:

(3)
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Here, N(t) is the number of agents in the simulation at time t. The force terms are state-,
time-, and microenvironment-dependent; apply to live and dead cell agents; and are
governed by individual biological constitutive laws. We set Floc = 0 to focus on the adhesive
and repulsive forces. We set Fcma = 0 in any lumen; see the supplementary material for a
more general form.

2.3.1 A simple family of potential functions—As in Drasdo et al. (1995); Drasdo and
Höhme (2003, 2005); Drasdo (2005); Ramis-Conde et al. (2008a,b); Byrne and Drasdo
(2009), we model cell-cell biomechanical interactions with potential functions (φ for
adhesion; ψ for mechanical resistance/repulsion). We define φ and ψ by their gradients; the
forms below are updated from Macklin et al. (2009a, 2010a,b). See Byrne and Drasdo
(2009) for a good discussion on modelling cell-cell interactions with potential functions.
Ramis-Conde et al. (2008a,b) recently tied potential functions to detailed models of E-
cadherin/β-catenin dynamics.

Let RA be the maximum adhesive interaction distance. For any n ∈ ℕ, define

(4)

Note that ∇φ has compact support, to model the finite interaction distance between cells.
The baseline case n = 0 is a linear ramping to the maximum force when |r| = 0. For n > 0, φ
tapers off smoothly.

Similarly, if m is a fixed nonnegative integer, RN is the nuclear radius, R is the cell’s radius,
and M ≥ 1 is the cell’s maximum repulsive force, define

(5)

where

(6)

As with φ, ψ and its derivatives have compact support; this models the fact that cells only
repel one another when they are in physical contact. We make ψ linear in the nuclear region
(with M ≥ 1) to model a stiffer material and allow the nuclear and cytoskeletal mechanics to
be specified independently.

Although it is not necessary for our model, we can obtain φ and ψ by directly integrating ∇φ
and ∇ψ with respect to |x| and setting φ ≡ 0 on |x| = RA and ψ ≡ 0 on |x| = R. In Fig. 3, we
plot a linear combination of φ and ψ (left) and ∇φ and ∇ψ (right) that illustrates their use in
the forces below.

2.3.2 Cell-cell adhesion (Fcca) and repulsion (Fccr)—Adhesion receptors on a cell’s
surface bond with adhesive ligands (target molecules) on nearby cells. Hence, the strength of
the adhesive force between the cells is (to first order) proportional to the product of the
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receptor and ligand expressions. The adhesion strength increases as the cells are drawn more
closely together, bringing more surface area (and receptor-ligand pairs) into direct contact.
We model the force imparted by cell j on cell i by

(7)

where fi,j describes the specific molecular biology of the adhesion,  is cell i’s maximum
adhesion interaction distance, and ccca is constant. Note that this form takes into account the

deformability of both cells by using .

In homophilic adhesion (e.g., epithelial cell adhesion by E-cadherin (Panorchan et al.,
2006)), adhesion receptors ℰ bond with identical ligands ℰ. Hence,

(8)

where ℰi is cell i’s (nondimensionalised) ℰ receptor expression.

Calcite crystals in partly- and wholly-calcified necrotic cells remain strongly bonded in
microcalcifications. We model this as homophilic cell-cell adhesion. If Ci is the
nondimensional degree of calcification (see Section 2.5.4), then the general homophilic cell-
cell adhesive form is

(9)

Note that ℰi and Ci are time- and state-dependent: Ci = 0 in non-necrotic cells; ℰi is
degraded and Ci increases in necrotic cells, allowing simultaneous E-cadherin- and calcite-
based adhesion during necrosis (Section 2.5.4).

Cells resist compression by other cells due to the structure of their cytoskeletons, the
incompressibility of their cytoplasm, and the surface tension of their membranes. We
introduce a cell-cell repulsive force that is zero when cells are just touching, and increases
rapidly as the cells are pressed together, particularly when their nuclei are in close
proximity. We model Fccr by

(10)

where cccr is a constant,  and Ri are cell i’s nuclear radius and radius, respectively, and M
and nccr are described above.

2.3.3 Cell-BM adhesion (Fcba) and repulsion (Fcbr)—Integrin molecules on the cell
surface form heterophilic bonds with specific ligands ℒB (generally laminin and fibronectin
(Butler et al., 2008)) on the basement membrane (with density 0 < B < 1). We assume that
ℒB is distributed proportionally to the (nondimensional) BM density B. Hence, the strength
of the cell-BM adhesive force is proportional to its integrin surface receptor expression and
B. Furthermore, the strength of the adhesion increases as the cell approaches the BM,
bringing more cell adhesion receptors in contact with their ligands on the BM. We model
this adhesive force on cell i by

(11)
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where ccba is a constant, d is the distance to the basement membrane, n is normal to the

basement membrane (see Section 2.2), ncba is as described above, and  and ℐB,i are cell
i’s maximum adhesion interaction distance and (nondimensionalised) integrin receptor

expression, respectively. Setting the maximum interaction distance to  is consistent with
our modelling simplification that the basement membrane is non-deformable. We model the
BM’s resistence to deformation and penetration by cells and debris by

(12)

where ccbr is a constant, d is the distance to the BM,  and Ri are described earlier, and M
and ncbr are described above.

2.4 “Inertialess” assumption
Similarly to Drasdo et al. (1995); Galle et al. (2005); Ramis-Conde et al. (2008b) and as
discussed in Lowengrub et al. (2010), we make the “inertialess” assumption that the forces
equilibrate quickly, and so |miv̇i| ≈ 0. Hence, we approximate Σ F = 0 and solve for the cell
velocity from Eq. 3:

(13)

This has a convenient interpretation: each term  is the “terminal”
(equilibrium) velocity of the cell when fluid drag, cell-ECM adhesion, and F□ are the only
forces acting upon it. Here, “□” represents any individual force above, e.g., cba, cca, etc.,
and N(t) is the number of simulated cells at time t. The coefficient 1/ (ν + ccmaℐE,iE) can be
directly related to Darcy’s law in several tumour models; see the supplementary material.

2.5 Cell phenotypic states
We endow each agent with a phenotypic state t) in the state space {    ℋ, 
(introduced below). Quiescent cells (  are in a “resting state” (G0, in terms of the cell
cycle); this is the “default” state in the framework. We model transitions between cell states
as stochastic events governed by exponentially-distributed random variables that are linked
to the cell’s genetic and proteomic state, as well as the microenvironment. These
exponentially-distributed variables can be regarded as arising from nonhomogeneous
Poisson processes; a brief discussion is in the supplementary material.

For a transition to state 2 from the current state 1, and for any interval (t, t + Δt], we use
the general form

(14)

where α12 (  ∙, ∘) (t) is the intensity function, ∙ represents the cell’s internal (genetic and
proteomic) state, and ∘ represents the state of the surrounding microenvironment sampled at
the cell’s position x(t). Note that for small Δt,
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(15)

when α12 is constant, we recover (to second order) the commonly-used constant transition
probabilities for fixed step sizes Δt; these may be regarded as approximations to our more
general model here. This linearisation may be used in numerical implementations for small
Δt to improve performance.

In our phenotypic state space, quiescent cells can become proliferative (  or apoptotic ( .
Non-necrotic cells become hypoxic (ℋ) when oxygen σ drops below a threshold value σH.
Hypoxic cells can recover to their previous state or become necrotic ( . Cell calcification
(previously denoted in Macklin et al. (2009a, 2010b,a)) is included in the necrotic state.
See Fig. 4. We include the subcellular scale by varying the transition parameters with the
cell’s internal state and the local microenvironment.

Cell cycle models have also been used to regulate the → transition (e.g., Abbott et al.
(2006); Zhang et al. (2007)), and signalling networks have been developed to regulate →
{   ℳ} (where ℳ is motile) transitions. These can be directly integrated into the agent
framework by modifying the stochastic parameters or by outright replacing the exponential
random variables with deterministic processes. Excellent examples of agent-based
modelling with subcellular signalling components include Chen et al. (2009b,a); Kharait et
al. (2007); Wang et al. (2007); Zhang et al. (2007, 2009).

2.5.1 Proliferation ( —As suggested by experimental and theoretical work (e.g., Smith
and Martin (1973)), quiescent cells enter the proliferative state (i.e., progress from G0 to S)
with a probability that depends upon the microenvironment. We model the probability of a
quiescent cell entering the proliferative state in the time interval (t, t + Δt] via an
exponentially-distributed random variable:

(16)

where the approximations best hold for small αPΔt.

Assuming a correlation between the microenvironmental oxygen level σ
(nondimensionalised by the far-field oxygen level in non-diseased, normoxic tissue) and
proliferation (see the supplementary material and the excellent exposition in Silva and
Gatenby (2010)), we expect αP to increase with σ. Hence:

(17)

where σH is a threshold oxygen value at which cells become hypoxic, and α̅P(∙, ∘) is the
cell’s → transition rate when σ = 1 (i.e., in normoxic tissue), which depends upon the
cell’s genetic profile and proteomic state (∙) and the local microenvironment (∘). In tumours,
low oxygenation is the norm (Gatenby et al., 2007; Smallbone et al., 2007), and so σ is far
below 1; typically, σH ~ 0.2 and σ < 0.4 in the lumen; see the supplementary material.

For simplicity, we model α̅P as constant for and specific to each cell type. In Macklin et al.
(2010b), we discuss how to incorporate ∙ (i.e., a cell’s internal protein expression) and ∘ (as
sampled by a cell’s surface receptors) into αP through a subcellular molecular signalling
model. Note that models have been developed to reduce the proliferation rate in response to
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mechanical stresses (e.g., Shraiman (2005)); in the context of the model, a cell samples these
stresses from continuum-scale variables (i.e., “∘”) to reduce αP.

Once a cell has entered the proliferative state  it remains in that state until dividing into
two identical daughter cells of half volume, which themselves remain in until “maturing”
into full-sized cells at the end of G1. Thereafter, the daughter cells are placed in the
“default” quiescent state to simulate the transition from G1 to G0. We now describe these
events in greater detail.

Define τ to the elapsed time since the cell entered the cell cycle from  Similarly to Ramis-
Conde et al. (2008b), we divide the cell cycle (with duration τP) into the S-M phases and the
G1 phase (with duration τG1). While τP and τG1 may generally depend upon the
microenvironment and the cell’s internal state, we currently model them as fixed for any
given cell type.

At time τ = τP − τG1 (at the end of M), we divide the cell into two identical daughter cells
with half the mass and volume of the parent cell. We assume that both daughter cells evenly
inherit the parent cell’s surface receptor expressions, internal protein expressions, and
genetic characteristics (as embodied by the phenotypic state transition parameters). We
model the cell’s volume V by

(18)

where V0 is the cell’s “mature” volume; VN is fixed through the cycle.

Let Rparent be the radius of the parent cell (with position x0), and Rdaughter that of the
daughter cells (centered x+ and x−). Pick θ ∈ [0, 2π) with uniform distribution. Let urand =
(cos θ, sin θ), and position the daughter cells by

(19)

The daughter cells are subsequently pushed apart by cell-cell repulsive forces.

2.5.2 Apoptosis ( —Apoptotic cells undergo “programmed” cell death in response to
signalling events. We model entry into as exponentially-distributed with parameter αA(
∙, ∘)(t). We assume no correlation between apoptosis and oxygen:

(20)

where

(21)

and where ∘ does not include oxygen σ, but may include other microenvironmental stimuli
such as proximity of the BM (anoikis), chemotherapy, or continuum-scale mechanical
stresses that increase αA as in Shraiman (2005). Cells remain in the apoptotic state for a
fixed amount of time τA; afterward they are removed from the simulation to model
phagocytosis of apoptotic bodies. Their previously-occupied volume is made available to the
surrounding cells to model the release of the cells’ water content after lysis.
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2.5.3 Hypoxia (ℋ)—Cells enter the hypoxic state at any time that σ < σH. In this paper,
we use the simplification that hypoxic cells cannot recover to their previous state, and
instead immediately become necrotic (βH → ∞ in Fig. 4). See Macklin et al. (2010b) and
the supplementary material for a more generalised form.

2.5.4 Necrosis (including calcification) ( —For any cell in the state, its surface
receptors (particularly E-cadherins and integrins) and subcellular structures degrade, it loses
its liquid volume, and calcium is deposited (primarily) in its solid fraction. Let τ denote the
elapsed time spent in the necrotic state. Define τNL to be the length of time for the cell to
swell, lyse, and lose its water content, τNS the time for all surface receptors to become
functionally inactive, and τC, the time for calcification to occur. We assume that τNL < τNS <
τC. In Macklin et al. (2009a) we found that a simplified model (where τNL = τNS = τC) could
not reproduce certain morphological aspects of the viable rim-necrotic core interface in
breast cancer.

We assume a constant rate of calcification, reaching a radiologically-detectable level at τ =
τC. If C is the nondimensional degree of calcification (scaled by the detection threshold),
then C(τ) = τ/τC for 0 ≤ τ ≤ τC, and C(τ) = 1 otherwise. We model the degradation of any
surface receptor S (scaled by the non-necrotic expression level) by exponential decay with
rate constant log 100/τNS, so that S(τNS) = 0.01 S(0). We set S(τ) = 0 for τ > τNS.

To model the necrotic cell’s volume change, let fNS be the maximum percentage increase in
the cell’s volume (just prior to lysis), and let V0 be the cell’s volume at the onset of necrosis.
Then we model:

(22)

To model uncertainty in the cell morphology during lysis, we randomly perturb its location x

such that its new radius R(τNL) is contained within its swelled radius .

2.6 Dynamic coupling with the microenvironment with upscaling
We integrate the agent model with the microenvironment by introducing field variables for
key microenvironmental components (oxygen, growth factors, ECM, etc.) that are governed
by continuum equations. These variables affect the cell agents’ behaviour as already
described; simultaneously, the agents impact the evolution of the continuum variables, as we
demonstrate for oxygen transport. At the macroscopic scale, oxygen transport is modelled
by

(23)

where σ is oxygen, D is its diffusion constant, and λ is the (spatiotemporally variable)
uptake/decay rate. Suppose that viable (non-necrotic, non-calcified) tumour cells uptake
oxygen at a rate λt, host cells at a rate λh, and elsewhere oxygen “decays” (by reacting with
the molecular landscape) at a low background rate λb. Suppose that in a small
neighbourhood B of x, tumour cells, host cells, and stroma (non-cells) respectively occupy
fractions ft, fh, and fb of B, where ft + fh + fb = 1. Then λ(x) is given by

(24)
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i.e., by averaging the uptake rates with weighting according to the tissue composition near x.
This is consistent with the uptake rate model by Hoehme and Drasdo (2010), which they
based upon the experimental literature.

In numerical implementations, we construct λ at a scale that resolves the cells (mesh size: 1
µm) and upscale it to the computational mesh (mesh size: 0.1L = 10 µm). (See the
supplementary material.) Thus, the uptake rate varies with the tumour microstructure, which,
in turn, evolves according to substrate availability. We set σ = σB (for constant σB) where d
≤ 0 model the release of oxygen by a pre-existent vasculature in the stroma. We use
Neumann boundary conditions where the lumen intersects the computational boundary.

3 Model application to Ductal Carcinoma in Situ (DCIS)
To model solid-type DCIS, tumour cells are non-polarised (with uniformly-distributed
adhesion receptors) and are assumed to ignore E-cadherin signalling for contact inhibition.
Tumour cells in the viable rim can be quiescent ( , apoptotic ( , or proliferative ( . In
hypoxic regions (σ < σH), cells immediately become necrotic ( , and eventually become
calcified. We assume that there is no ECM in the duct lumen (E ≡ 0). Cells adhere to cells
by E-cadherins, and cell-BM adhesion is between integrins and uniformly-distributed
ligands on the BM. For simplicity, we neglect molecular-scale signalling and membrane
deformation and degradation, as well as the presence of non-cancerous epithelial cells lining
the duct.

For simulation in 2D, consider cells growing in a fluid-filled domain Ω (a rigid-walled duct)
of length ℓ and width 2Rduct. To prevent artifacts (artificial stresses and mechanical tears)
that often arise in non-biological corners in computational domains, we “cap” the left edge
of the virtual duct with a semicircle of radius Rduct. This simulates growth through a partly-
filled, densely-packed duct (thereby preventing cell flux out the left boundary), as is the case
when DCIS is clinically detected. We model oxygen transport within the duct by Eq. 23 (for
constant D), and λ is as discussed above. We set ∂σ/∂n = 0 on the righthand side of the duct.

4 Numerical methods
We implement the model using object-oriented ANSI C++, where each agent is an instance
of a Cell class. Each cell object is endowed with an instance of a Cell_State class, which
contains the cell phenotypic parameters (α̅P, αA, τP, etc.), volumes (VC, VN, V), radii (RN, R),
maximum interaction distance (RA, recorded as a multiple of R), position x, and velocity v.
We discretise microenvironmental field variables (e.g., oxygen σ) on an independent
Cartesian mesh with uniform spacing Δx = Δy = 0.1L, where L is the oxygen diffusion
length scale. We represent the BM morphology with a level set function, and we use an
auxiliary data structure to reduce the computational cost of cell-cell interaction testing and
evaluation. The overall computational cost of the algorithm scales linearly in the number of
cells (per computational time step). See the supplementary material for full computational
details.

5 Patient-independent parameter estimation
We estimated patient-independent parameters through an extensive search of the theoretical
and experimental biology and clinical literature. We summarise those estimates here, which
are improved beyond Macklin et al. (2009a, 2010a). See the supplementary material for full
details and references. Note that the quantitative validation results in Section 8 serve to test
the adequecy of order-of-magnitude estimates of those parameters that cannot be directly
measured.
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Cell cycle time τP: 18 hours by modelling literature.

G1 time τG1:  hours by theoretical biology literature.

Apoptosis time τA: 8.6 hours by population dynamic analysis of immunohistochemical
stains of terminal ductal lobular units in non-cancerous women in the clinical literature.
Estimate accounts for detection short-comings in TUNEL assay and cleaved Caspase-3
immunohistochemistry.

Necrotic cell lysis time τNL: 6 hours by experimental literature.

Necrotic cell volume increase fNS: 1.0 by experimental literature.

Necrotic cell calcification time τC: 15 days by clinical and experimental literature, and
preliminary simulations.

Oxygen diffusion length scale L: 100 µm by modelling literature.

Tumour cell oxygen uptake rate λ: 0.1 min−1 by modelling literature and .

Oxygen uptake/decay rate for non-viable cells and background λb: 0.01λ by model
simplification.

Hypoxic oxygen threshold σH: 0.2 by modelling literature and analysis.

Maximum adhesion interaction distance RA: 1.214 R (R is the equivalent cell radius)
by experimental literature on breast cell deformations.

Cell-cell repulsive force coefficient cccr: 10.0ν µm/min by comparing potential
functions to experimental literature on tensional forces applied to magnetic microbeads
embedded in cell cytoskeletons.

Cell-BM repulsive force coefficient ccbr: cccr by model simplification.

Cell-cell adhesion and repulsion potential exponents ncca and nccr: Set to 1 by model
simplifications.

Cell-BM adhesion and repulsion potential exponents ncba and ncbr: Set to ncca and
nccr, respectively, by model simplification.

M, the maximum value of |∇ψ|: 1 by model simplification.

6 Patient-specific model calibration
We now present a patient-specific calibration protocol for DCIS. The technique can be
applied more generally to tumours with clearly visible viable rims; we point out these
generalisations wherever possible. The following DCIS patient data are available (full
methodological details given in Edgerton et al. (2011)):

• Average duct radius 〈Rduct〉 and viable rim thickness 〈T〉, measured on the IHC
images. In a tumour spheroid, we would use its radius in place of Rduct.

• Average cell density 〈ρ〉 in the viable rim, calculated by counting nuclei and
dividing by the computed viable rim size.

• Average cell nuclear radius RN.

• Cell confluence f in the viable rim, defined to be the area fraction of the viable
region occupied by cell nuclei and cytoplasm.
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• Proliferative index PI, measured by staining images for Ki-67, (a nuclear protein
marker for cell cycling), and then counting the total number of Ki-67-positive
nuclei versus the total number of nuclei in the viable rim.

• Apoptotic index AI, measured by staining for cleaved Caspase-3, an “executioner”
caspase reflecting the apoptosis process. As Caspase-3 is a cytosolic protein, we
identify and count positive cells by comparing the whole cell staining intensities,
and divide the count by the total number of nuclei across the viable rim. We
multiply this “raw AI” by a correction factor (8.6/6.6) to obtain a “corrected AI”.
This accounts for early apoptotic cells that do not stain positive for cleaved
Caspase-3; see the supplementary material.

The patient-specific parameters and their physical meanings are in Table 1.

Duct and cell geometry
We match the simulated duct radius to the mean measured duct radius 〈Rduct〉. We obtain the
average (equivalent) cell radius R from the mean viable rim cell density 〈ρ〉 and measured
confluence f (where 0 ≤ f ≤ 1) by the relation:

(25)

We measure the cell nuclear radius RN in histopathology.

Oxygen
The mean viable rim thickness 〈T〉 is an indicator of oxygenation to determine the boundary
value σB. In 2D the steady-state oxygen profile away from the leading edge satisfies

(26)

with the boundary and matching conditions

(27)

(28)

Here, x is the distance from the duct wall, and ΛB = λb/λ. After applying all conditions
except σ(0) = σB, solving Eq. 26 analytically, and evaluating at x = 0, we obtain the
boundary condition σB:

(29)

Similarly, the mean oxygen value across the viable rim is

(30)
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For tumour spheroids, we would replace 〈Rduct〉 with the mean tumour spheroid radius. For
fingering tumours, we would use mean “finger” radius.

Population dynamics
By solving ODEs for PI and AI (supplementary material) to steady state, given τP, τA, PI
and AI, we obtain 〈αP〉 and αA via:

(31)

(32)

We calibrate the functional form for αP by combining this result with the computed mean
oxygen in the previous step and solving for α̅P:

(33)

Cell-cell mechanics
We first estimate the equilibrium spacing s between cell centres. For confluent cells (f = 1)
in non-hypoxic tissue, we determine s by converting the mean density 〈ρ〉 to an equivalent
hexagonal cell packing:

(34)

Next, for two cells i and j, we solve for the ratio of the adhesive and repulsive forces that
enforces the cell spacing s by equilibrating the cell-cell adhesive and repulsive forces at r =
s:

(35)

If i and j are of the same cell type with identical radii and interaction adhesion distances, and
if we set ℰ = 1 for both cells, then this simplifies to

(36)

This leaves a free parameter: in effect, 〈ρ〉 determines the equilibrium spacing but does not
stipulate the time scale at which the forces operate to maintain the density. We apply our
estimate of cccr (supplementary material) to fully constrain the cell-cell mechanics. It may
also be possible to constrain the mechanics by matching the simulation to the variance in ρ.
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Lastly, we can apply this technique in multiple tissue types and regions if the cell-cell
mechanics were expected to vary (e.g., decreased cell-cell adhesion in hypoxic regions).

Cell-BM mechanics
If ccba ≤ ccca, too many cells pull away from the BM; this is not consistent with typical
patient histopathology (supplementary material); thus, we set ccba = 10ccca. Alternatively,
one might obtain ccba by measuring the mean distance between the cell centres and the BM
and then setting |Fcba| = |Fcbr| at that distance. For simplicity, we set ccbr = cccr.

7 Sample calibration for Patient 100019
We demonstrate the calibration protocol on immunohistochemistry and histopathology data
obtained from archived mastectomy tissue from an anonymised DCIS patient at the M.D.
Anderson Cancer Center (anonymised case number 100019) from Edgerton et al. (2011).
(Preliminary data may deviate from the final published values.) The patient had nuclear
grade III (high-grade), mixed cribriform/solid-type DCIS with comedonecrosis; the patient
measurements for this case (see below) are typical for mixed-type and solid-type cases in
Edgerton et al. (2011). The measurement techniques for these data are detailed in Edgerton
et al. (2011). In addition to these data, we measured the size of several nuclei in the viable
rims in Fig. 6. The measurements for this case are given in Table 2. Note that the variation
in patient data is the combined effect of measurement errors and genuine intratumoural
heterogeneity.

This case had no measurements of f, so we approximate it as solid-type with f ≈ 1. We set
the patient-independent parameters as determined in Section 5. By applying the calibration
protocol in Section 6 to these values and the patient-specific data, we obtain the parameter
values in Table 1.

7.1 Verification of the Calibration
To verify the calibration, we ran a simulation using the numerical methods in Section 4 for
30 days. We computed the simulated AI and PI, mean viable rim thickness, and viable rim
cell density at 1-hour increments for the last 15 days of simulated time. (The full time-
course evolution is examined in Section 8.) Full post-processing source code is described in
the supplementary material 8.

In Table 3, we present the mean and standard deviation of these computations for the last 15
days of the simulation and compare to the patient data; these are plotted in Fig. 7 as intervals
[mean − std. dev., mean + std. dev.], for the simulated data (left bars) and actual patient data
(right bars). Because apoptosis is a rare stochastic event (< 1%) in a region with fewer than
500 cells, we expect considerable variability; indeed, this is observed in the patient AI as
well. Because all the numerical targets (outlined in Table 2) are within the range of patient
variation, the calibration can be considered as successful. The discrepancy in the PI can be
eliminated by better accounting for the length of G1 in the calibration; see the supplementary
material.

8 Patient-calibrated DCIS simulation: Hypothesis testing and model
validation by clinical data

We now simulate DCIS in patient 100019 using the patient-independent parameters in
Section 5; the patient-specific parameters are as in Section 6. The dynamic simulation is
presented in Fig. 8. In this and all subsequent figures, small dark circles are cell nuclei, pale
blue cells are quiescent ( , green cells are cycling ( , red cells are apoptosing ( , dark
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grey cells are necrotic but not yet lysed ( , and the dark circles in the duct centres are
necrotic cellular debris. The shade of red indicates the degree of calcification; bright red
circles are clinically-detectable microcalcifications ( with τ > τC). An animation of this
simulation is available as Video S1 in the supplementary material.

8.1 Overall spatiotemporal dynamics
In the simulation, a small initial population begins proliferating into the duct (0 days). As the
tumour grows along the duct, oxygen uptake by the cells leads to the formation of an oxygen
gradient (not shown). At 6.17 days, the oxygen level drops below σH in the centre of the
duct near the leading edge of the tumour, causing the first instance of necrosis; this cell lyses
at 6.42 days. By 7 to 14 days, a viable rim of nearly uniform thickness (approximately 80
µm) can be observed, demonstrating the overall oxygen gradient decreasing from σB at the
duct boundary to σH at the edge of the necrotic core.

Consistent with the assumed functional form of the → transition, proliferating cells are
most abundant near the duct wall where the oxygen level is highest, with virtually no
proliferation at the perinecrotic boundary. Because oxygen can diffuse into the tumour from
the duct lumen, viable cells are also observed along the tumour’s leading edge near the
centre of the duct. Apoptosis occurs with approximately uniform distribution throughout the
duct. See 7 days and onward in Fig. 8. These spatiotemporal dynamics emerge by 7 to 14
days and remain throughout the simulation. This is consistent with our analysis of the cell
state dynamics in the supplementary material.

The first clinically-detectable microcalcification appears at 21.17 days. By 22 days, a new
characteristic length emerges: the trailing edge of the microcalcification maintains a distance
of approximately 180 µm from the end of the duct. (See 28 days in Fig. 8 and Video S1 in
the supplementary material.) Several features combine to cause this. We do not model
contact inhibition, and so cells at the end of the duct continue to proliferate and push cells
towards the tumour’s leading edge. Because the end of the duct has reached a local dynamic
equilibrium by this time, a steady flux of tumour cells into the necrotic region has emerged.
Because the calcification time (τC) is fixed, the cells are pushed a fixed distance along the
necrotic core before lysing and calcifying, leading to the observed “standing wave” pattern.

The necrotic core biomechanics play a key role in these dynamics. Whenever a necrotic cell
lyses, its former volume is converted to a small core of cellular debris and a large pocket of
(released) fluid, which is easily occupied by other cells. Thus, necrotic cell lysis acts as a
mechanical stress relief, analogously to the mechanical pressure sink terms used in the
necrotic core in Macklin and Lowengrub (2005, 2006, 2007, 2008). A pattern of cell flux
emerges, where proliferating cells on the outer edge of the duct push interior cells towards
the necrotic core, diverting much of the overall cell flux inwards rather than towards the
tumour leading edge. See Video S1 in the supplementary material. This is a characteristic
emergent feature of our model, and it has important implications for the rate of tumour
advance. See Section 8.2.

A notable feature is the physical tear or gap between the tumour’s viable rim and the
necrotic core. (See 14 days and onward in Fig. 8.) This phenomenon is observed in stained
tissue slides. See Fig. 6 and Section 8.4. It has been attributed to dehydration, but it was
unclear whether the dehydration is an artifact due to tissue processing or a natural part of
necrosis. The emergence of this phenomenon in a mechanistic model supports the
hypothesis that the observed separation, while perhaps exacerbated during specimen
preparation, is a bona fide result of DCIS tissue biomechanics. We note that an earlier
version of our model–where necrotic cells gradually lost volume, rather than abruptly
lysing–did not predict large gaps (Macklin et al., 2009a, 2010b). Fast cell swelling (over the
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course of τNL = 6 hours) and subsequent bursting act as a perturbation of the perinecrotic
tumour boundary. This is consistent with our earlier hypothesis that the physical gap must be
due in part to necrotic cell volume loss over a fast time scale (Macklin et al., 2009a).

8.2 Constant rate of tumour advance – confirmation with clinical data
To quantify and understand the tumour’s growth, we post-processed our data to obtain the
time evolution of the maximum position (extent) of viable tumour cells along the duct
(xV(t)) and the maximum position of the calcification (xC(t)). To obtain better statistics on
the growth dynamics, we extended our virtual duct to 1.5 mm, and continued the simulation
to 45 days. C++ post-processing source code and pre-compiled binaries are provided in the
supplementary material to compute these and other statistics.

In Fig. 9, we plot xV (top curve) and xC (bottom curve) for the first 45 days of growth. For
the first 10 to 11 days, the simulation exhibits transient dynamics due to the left
computational boundary. After this time, the tumour has developed a sufficiently large
region between the left boundary and the leading edge for the dynamics to begin reaching a
steady state as discussed above. See 11 days in Fig. 10. From 11 to 45 days, xV increases
linearly at 27.97 µm/day (obtained by least-squares linear fitting); see the lighter line in Fig.
9. The constant rate of tumour advance is due to the combined effects of substrate transport
limitations and necrotic cell lysis in the duct interior. Because lysis acts as a mechanical
stress relief, a significant portion of the proliferative cell flux is directed towards the duct
interior, rather than towards the leading edge. Hence, the only forward-directed flux occurs
along the leading tumour edge. In additional simulations, we found that setting τNL = 15
days results in convex, exponential-like growth curves (supplementary material). This
further supports the vital role of necrotic cell lysis in linear DCIS growth. Interestingly,
recent modelling by Astanin and Preziosi (2009) with inverted geometry–a blood vessel
surrounded by a growing tumour cord–also predicted linear tumour advance along the
nutrient source.

Linear growth is consistent with mammographic measurements; Carlson et al. (1999)
analysed the relationship between the maximum DCIS diameter and the elapsed time
between mammograms, finding a near-linear relationship between the elapsed time between
mammograms and the median DCIS size.

The rate of tumour advance in the duct–27.97 µm/day, or 10.2 mm per year–is consistent
with DCIS growth estimates obtained by analysis of mammograms. Thomson et al. (2001)
analysed changes in microcalcifications in mammograms to determine that high-grade DCIS
tends to grow at about 7.1 mm per year (along an axis to the nipple). The group also
analysed the data published by Carlson et al. (1999) and determined 13 mm/year and 6.8
mm/year mean and median growth rates, respectively. Simulating with τG1 = 1 min (for a
better fit to the patient 〈PI〉–see the discussion in the supplementary material) yields a rate of
tumour advance of 7.86 mm/year (result not shown). It is encouraging that a mechanistic
cell-scale model–with calibration solely by molecular- and cell-scale data–can accurately
predict emergent, macroscopic behaviour.

8.2.1 Inverse relationship between duct radius and rate of tumour advance—
The link between necrotic cell lysis and linear DCIS growth suggests that the rate of tumour
advance is inversely correlated with the duct radius–larger ducts have a greater “reservoir”
of lumen available for mechanical stress relief, thereby directing more cell flux into the
lumen. Smaller ducts should exhaust this mechanism more quickly, leading to a faster
overall advance.
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To test this, we simulated DCIS with the same phenotypic parameters as our main
simulation, in virtual ducts with Rduct ∈ {100, 125, 150, 170.11}. To eliminate the effect of
differing oxygenation, we set the boundary condition σB to maintain 〈σ〉 (and hence 〈PI〉)
constant in each simulation, as given in Eq. 29. All simulations had 〈PI〉 between 22 and
24%, and mean viable rim thicknesses between 80 and 81 µm (result not shown).

For the duct of radius 100 µm, cells reach the edge of the computational domain at 1 mm
after just 20.58 days, with a mean rate of advance (from 10 to 20 days) of 53.65 µm/day. For
the duct of radius 125 µm, cells reach 1 mm by 27 days, and advance 37.75 µm/day (from
10 to 27 days). For the 150 µm duct, the tumour advanced 29.80 µm/day (from 10 to 30
days). In our baseline case with radius 170.11 µm, cells advance at 25.87 µm/day from 10 to
30 days. See Fig. 11; these data suggest a relationship of the form

(37)

for positive constants a, b, and c. To estimate these, we chose a that minimises

 on {100, 125, 150, 170.11}, where pa (Rduct) is the linear least-squares

fit to ln . By this procedure, we estimate:

(38)

See the red fitted curve in Fig. 11. Notice that as Rduct ↑ ∞, the rate of tumour advance (for
fixed oxygenation and cell phenotypic parameters) saturates at a nonzero minimum
(estimated here at approximately 20.52 µm/day, or 7.5 mm per year). This has important
implications for clinical planning, as it provides a range as well as a lower bound for the rate
of growth of DCIS.

8.3 Calcification size and tumour size are linearly correlated – confirmation with clinical
data

Prior to breast-conserving surgery, surgeons use mammographic images of
microcalcifications to plan the correct surgical volume; for impalpable lesions, the planning
is guided by stereotactically-placed localisation wires. Pathologists evaluate the success of
the resection by examining the surgical resection margin: the outer edge of the excised
specimen. The definition of an adequate margin width for DCIS (the distance from the
tumour boundary to the surgical margin) varies by guideline. Smaller margin widths
typically correlate with a greater risk of local recurrence (Boland et al., 2003; Macdonald et
al., 2006). However, the goal of breast-conserving surgery is to minimise the amount of
normal tissue that is excised while fully eliminating the DCIS. Several studies have
addressed these competing goals to determine an adequate post-operative radiation field
based on margin width and other tumour characteristics (e.g. Vicini et al. (2004)). However,
there has been little attention given to improving the pre-operative estimate of the optimal
surgical volume.

To investigate this, we define a “mammographic image error” e(t) = xV − xC to be the
distance between the edge of the viable tumour (xV) and the edge of a radiographically
detectable calcification (xC). If the desired margin width per institutional surgical protocols
is added to e(t), then the distance from visible DCIS-associated microcalcifications to the
desired surgical margin can be estimated from a mammographic image. (This requires that
the microcalcifications are confirmed to arise from DCIS and are not benign.)
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We found that from 21.17 days (the time of the first microcalcification) to 45 days, e(t)
grows at a slow, roughly linear rate. When attempting to fit e(t) to the form e∞ − ea−rt (for
e∞, a, r > 0), we found no evidence that e reaches e∞ in time scales under four years
(results not shown). We conclude that xV and xC are linearly correlated over clinically-
relevant time scales. See Fig. 12: left. This relationship is confirmed in the clinical literature.
de Roos et al. (2004) compared the maximum calcification diameter in mammograms
(corresponds to xC) with the measured pathologic tumour size (corresponds to xV) in 87
patients, finding a significant linear correlation between these measurements.

To predict the quantitative relationship between the mammographic and pathologic tumour
sizes, we compute the linear least-squares fit between xV and xC:

(39)

We plot this against our simulated DCIS data (blue points) and the data (red squares) from
de Roos et al. (2004) in Fig. 12: right. Our model not only correctly predicts a linear
correlation between a DCIS tumour’s mammographic and pathologic sizes, but also
demonstrates an excellent agreement with published clinical data two orders of magnitude
larger than our simulation data.

de Roos et al. (2004) obtained a different linear fit (xV = 0.55+0.86xC mm) via linear
regression analysis; the discrepancy is largely due to the greater number of outliers in the
clinical data: 7 of 87 cases had mammography-pathology discrepancies exceeding 2 cm.
While we cannot extract all 87 data points from the published figure in de Roos et al. (2004)
(25 points overlap), extracting the 62 non-overlapping points and excluding the 7 outliers
yields a least-squares fit (xV = 0.320 + 0.934xC mm) that better matches our prediction.
Including the overlapping data points would likely further improve the match.

8.4 Predicted necrotic core microstructure − comparison with histopathology
The microstructure of the simulated necrotic core affords us further opportunity to generate
hypotheses on DCIS, which can be tested by comparison against histopathology. In Fig. 13,
we highlight several typical DCIS cross sections in our simulation at time 45 days.

In Slice a, there is a viable rim of thickness comparable to the remainder of the tumour, but
with little visible evidence of necrosis. This suggests that in cases where too few ducts are
sampled, a pathologist may fail to observe comedonecrosis, potentially changing the
patient’s Van Nuys Prognostic Index score (Silverstein et al., 1996) and treatment, whereas
the biological mechanisms (particularly hypoxia) are the same as those with necrosis. This
would be particularly true in cases where 〈PI〉/τP ≈ 〈AI〉/τA, as little net cell flux from the
viable rim to the necrotic core would be expected.

Farther from the tumour leading edge in Slice b, we see a ring of necrotic debris,
surrounding a hollow duct lumen. In cross sections like this, there has not yet been sufficient
tumour cell flux from the viable rim to completely fill the lumen with necrotic debris.
Farther still from the leading edge in Slice c, there has been sufficient cell flux to fill the
lumen with necrotic material; we also see an outermost band of intact necrotic nuclei,
encircling a central region of mostly degraded nuclei (modelled here simply as partly
calcified). Ducts like these are observed in our patient’s H&E stains (Duct 1 in Fig. 14).

Farther from the leading edge in Slice d, a thin outermost band of relatively intact necrotic
nuclei surrounds an inner band of mostly degraded necrotic material and an inner core of
microcalcification. Similar cross sections are seen in our patient (Duct 1 in Fig. 14; left duct

Macklin et al. Page 21

J Theor Biol. Author manuscript; available in PMC 2013 May 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



in Fig. 6). In Slice e, the microcalcification is larger, and the outermost band of intact
necrotic nuclei is largely gone; see Ducts 2 and 3 in Fig. 14. The necrotic core is
increasingly calcified with distance from the tumour leading edge.

The model predicts an age-ordered necrotic core microstructure, with oldest material in the
centre surrounded by increasingly newer, less-degraded, and less-calcified material. This
ordering—which arises due to the overall flux of cells from the viable rim into the necrotic
core—suggests that there is an additional necrosis time scale, separating the rates of necrotic
nuclear degradation and calcification. As an initial estimate, we might surmise that nuclear
degradation occurs on the time scale comparable to our current estimate of τC, and
calcification may be somewhat slower than our initial estimate.

9 Discussion and ongoing work
In this work, we developed and analysed an agent-based model of ductal carcinoma in situ
(DCIS) of the breast. Our model refines and makes more explicit the biological
underpinnings of current agent-based cell models, particularly for finite cell-cell interaction
distances, the need for partial cell overlap to account for uncertainty in cell positions and
morphology, and a rigorous way to vary phenotypic transition probabilities with the time
step size, the cell’s internal state, and the microenvironment. We provide the most detailed
necrosis model to date–including the impact of volume changes over time scales ranging
from hours to weeks. We are the first to model necrotic cell calcification.

We developed the first patient-specific model calibration protocol to use pathology
measurements from a single time point to simulate cancer in individual patients–an advance
that could improve patient-tailored surgical and therapeutic planning. The calibration
technique is broadly applicable to current agent-based models for multiple cancer types. Our
model made numerous quantitative predictions on DCIS that we tested against clinical data.
The simulated DCIS grows at a constant rate of approximately 1 cm per year (7.5 to 10.2
mm per year). These findings are quantitatively consistent with the clinical literature. The
predicted difference between the mammographic and pathological tumour size increases
slowly with time. Our model generates a linear correlation between the mammographic and
pathological tumour sizes that quantitatively fits clinical data spanning several orders of
magnitude. Observing such an excellent agreement over a broad range of scales suggests
that the model mechanics are biologically sound, and that our parameter estimates (including
order-of-magnitude estimates) are sufficiently accurate to allow quantitative biological and
clinical investigations.

The model also correctly predicts the DCIS microstructure: a proliferative rim (with greatest
proliferation on its outer edge) surrounds a stratified necrotic core. The viable rim and
necrotic core are mechanically separated by a small gap–a feature that emerges from the
mechanics of necrotic cell swelling and fast lysis, rather than being wholly attributable to
tissue processing artifacts. The necrotic core has a layered structure that closely correlates
with the “age” of the material. Relatively intact necrotic nuclei are observed in the outermost
regions where cells have recently lysed. Closer to the duct centre, these nuclei start to
disappear, and microcalcifications are found in the innermost region. These features are all
observed in patient images, as illustrated in Fig. 14.

Biological insight
Because the standard deviations of the patient data are not used for calibration, we can use
the simulated variation to test the model’s underlying biological hypotheses. Because the
simulated variation in PI is significantly lower than the actual variation (Fig. 7), the
heterogeneity in DCIS proliferation is likely due to signalling variations (e.g., contact
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inhibition), rather than oxygenation gradients alone. On the other hand, the simulated and
actual standard deviations in AI are quite similar (Fig. 7), supporting our biological
hypothesis that apoptosis occurs at a low “background” rate that is is independent of
oxygenation and any other signalling. The patient’s mean and standard deviation are of
comparable magnitude, consistent with the exponentially-distributed random variables used
in our model.

Necrotic core biomechanics drive DCIS development. The constant rate of tumour advance
is due to the combined effects of substrate transport limitations and the mechanical stress
relief provided by cell lysis in the necrotic centre. Remarkably, we recover a quantitatively
reasonable growth rate without modelling contact inhibition. Galle et al. (2005) used a
rigorously-calibrated agent model to assess the impact of contact inhibition and growth
substrate transport limitations on 2-D and 3-D cell cultures, finding that contact inhibition
alone was responsible for growth limitations in 2D, but substrate transport limitations are
significant in 3D. They found that cell-cell contact inhibition is further reduced when cells
lose contact with the BM. This is consistent with cells growing in a lumen, as in DCIS.
More recently, Galle et al. (2009) further validated their agent model by comparing its
predictions to a well-calibrated multiphase (continuum) model, with excellent model
agreement in predicting 2-D in vitro Widr cell colony growth as a function of contact
inhibition (where oxygen transport limitations do not apply). Their results–also consistent
with continuum models such as Chaplain et al. (2006) that include ECM-MMP dynamics
that are typical of DCIS microinvasions–show the importance including contact inhibition
signalling in future model refinements. Indeed, we found that proliferation varies with
density, suggesting that contact inhibition shapes the finer details of DCIS progression
(Macklin et al., 2010a).

The gap between the viable rim and the necrotic core is due to the relatively fast time scale
of necrotic cell lysis. Analysis of the morphology and size of this gap may give insight on
the progression of necrotic cell swelling and lysis, as well as the relative adhesive properties
of lysed necrotic cells. The stratified necrotic core structure emerges due to the net outflux
of cells from the viable rim into the necrotic core, resulting in an age structuring, and the
relatively slow time scale of cell calcification. The relative distribution of these structures
within the necrotic core may shed further insight as to the relative magnitudes of the time
scales of pyknosis (nuclear degradation), water loss following lysis, and calcification.
Indeed, the existence of a layer where the nuclei are mostly degraded with little evidence of
calcification suggests that the time scale of pyknosis is between that of lysis (hours) and
calcification (weeks).

Interestingly, the model predicts a linear/casting-type calcification, where the calcification
forms a long “plug” that fills the duct centre. Other calcification morphologies (e.g., fine
pleomorphic) are not predicted by the biophysical assumptions of our model. While casting-
type calcifications correlate with comedonecrosis (Stomper et al., 1989), they are only
present in approximately 30%–50% of DCIS (Evans et al., 2010; Hofvind et al., 2011).
Furthermore, casting-type calcifications can be absent from small, high-grade DCIS, while
present in larger, low-grade DCIS (Evans et al., 2010). Thus, additional biophysics (e.g.,
secretions, heterogeneous adhesive properties, and degradation of the calcifications over
very long time scales) are required to model the broader spectrum of observed calcifications
in DCIS. Our H&E images support the notion of long-time degradation. The centres of
many calcifications–which we have shown are the “oldest” necrotic material–demonstrate
significant cracks that suggest extensive degradation and weak cohesion. See Fig. 14.

Phospholipids—such as those from subcellular structures that likely form a “backbone” for
the formation of microcalcifications—degrade with half-lives on the order of 80 (Ayre and
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Hulbert, 1996) to 300 hours (Krause and Beamer, 1974) in non-pathologic tissue. If the
degradation is two-to-ten times slower in necrotic tissue, we would expect degradation to
progress over the course of a few months. This may partly explain rare cases of spontaneous
resolution of calcifications in mammograms, where calcifications become smaller or occult
without alternative explanations (e.g., invasive foci) (Seymour et al., 1999): in slow-growing
DCIS (e.g., with both high PI and AI, as is observed in high-grade DCIS (Buerger et al.,
2000)), calcifications may be degraded more quickly than they are replaced by new necrotic
material.

Clinical insights
The growing difference between mammographic and pathologic sizes likely prevents using a
single fixed “safe” surgical margin for all affected tumour ducts for all times. Instead, the
margin size should vary with the tumour pathological properties, the duct size, oxygenation,
and time. Given proper calibration to accurate measurements of a patient’s proliferative and
apoptotic indices, cell density, duct sizes, and other histopathologic and radiologic data, it
should be possible to create a patient-specific map between the microcalcification geometry
and the actual tumour shape and size. This could allow surgeons to use modelling based on
data from the diagnostic core biopsy to more precisely plan DCIS surgical margins while
removing less noncancerous tissue, and could improve targeting of intra- and post-operative
radiotherapy. Our calibration protocol can be combined with upscaling methods to calibrate
multiscale models. As a proof of concept, we applied this approach to histopathology data
from 17 patients to calibrate a simplified continuum model of DCIS, with the goal of
predicting surgical excision volumes in individual patients (Edgerton et al., 2011). Although
the continuum model used a steady state simplification and neglected necrosis, the predicted
volumes were consistent with patient mammographic measurements in 14 of 17 cases.
Hence, there is great promise in using our agent model and patient-specific calibration to
incorporate patient pathology data into multiscale models.

The model predicts a general trend for the cross-sectional structure of a DCIS tumour.
Moving from the basement membrane towards the duct centre, we see the following layers:
a viable rim with greatest proliferation towards the basement membrane, a gap between the
viable rim and necrotic core, an outer band of the necrotic core with relatively intact necrotic
nuclei, an inner necrotic band of relatively degraded nuclei, and a central core of
microcalcification. Cross sections closer to the leading edge contain fewer of these elements.
We hypothesise that the microstructure of a given duct cross section in a histopathology
slide could be used to estimate its position relative to the leading tumour edge in that duct;
this could be tested by comparing the slide’s position to any known geometric information
on the patient’s tumour. Moreover, if we can obtain sharper estimates of the various necrosis
time scales, then we could potentially use the model to quantitatively predict the distance
from each histopathology cross section to the actual tumour boundary, thereby further
assisting surgical and therapeutic assessment.

Ongoing work
We chose DCIS as our initial modelling test bed because it is clinically and scientifically
significant in and of itself, it is tractable to patient-specific simulation with currently-
available data, and it is a necessary step in modelling progression to invasive ductal
carcinoma (IDC). We plan to integrate molecular-scale models of hypoxia and invasion-
related pathways (e.g., HIF-1α and the ErbB family), BM deformation and degradation, and
motility. These additions will allow us to extend our investigations to IDC. Given the critical
role played by necrosis in determining the DCIS growth rate, we are extending our model to
better account for changes in the fluid and solid content, including pyknosis (nuclear
degradation). The calcification model will be refined to describe the formation and
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degradation of calcium crystals in phospholipids (e.g., in degraded organelles) that remain
after pyknosis. These improvements will be accompanied by advances in the model
calibration to account for variations in the cell size throughout the cell cycle.

A potential weakness of this work is a lack of unicity in the data used for parameterisation,
with in vitro and in vivo data combined from human and animal models, across multiple cell
types. This may result in subtle incompatibilities, such as inconsistencies in the cell
microenvironments, and variations in key biophysical processes. In effect, the assumption
that cells use the same fundamental processes with altered frequency may only hold to
leading order, and may affect the quantitative accuracy of our model predictions. We are
addressing this concern by conducting appropriate in vitro experiments to measure single-
cell properties in breast cell lines (in various phenotypic states), and are reviewing the state-
of-the-art in cell biomechanics experiments.

We are working to further validate the model and bring it closer to clinical application. We
are refining the calibration protocol to better recapitulate the input PI and density data. We
are conducting a patient-specific model validation, where we obtain pathology from multiple
patients, determine the model-predicted growth rates and correlations between
mammographic and pathology sizes, and compare these to the case histories and
mammograms. We plan to leverage our early model successes to study the impact of
inadequate surgical margins on tumour regrowth and microinvasion, and the effect of
adjuvant chemo- and radiotherapy in ameliorating these phenomena.

Final thoughts
Our model is based upon physical conservation laws, with the key molecular and cellular
biology of DCIS integrated through constitutive relations. We have taken care to not
prescribe DCIS behaviour; these instead become manifest as emergent phenomena–a trait of
a scientifically sound predictive model. By carefully calibrating the model, we can use its
quantitative predictions to gain insight into the underlying mechanisms of DCIS. This is a
key advance over phenomenological and statistical models, which can make predictions on
DCIS behaviour but not on the underlying mechanisms. Furthermore, because statistical
models generate correlations that apply to broad classes of patients, they cannot make
quantitative predictions on DCIS in specific patients. Mechanistic models, on the other hand,
have this potential.

We have demonstrated that a carefully-calibrated, mechanistic model of DCIS can make
quantitative, testable predictions at the macroscopic scale, based solely upon microscopic,
patient-specific measurements. Once validated and integrated into highly-efficient hybrid
multiscale modelling frameworks (Lowengrub et al., 2010; Deisboeck et al., 2011; Edgerton
et al., 2011), this work has the potential to improve the precision, disease-focused, and
cosmetic outcome of patient-tailored breast-conserving surgery and radiotherapy.

We introduce the first patient-specific calibration to individual pathology data.

Biomechanics of necrotic cell lysis leads to linear growth at 7.5 to 10.2 mm/year.

The model predicts a linear correlation between the mammography and pathology sizes.

The predicted layered necrotic core microstructure gives new insights on mammography.

Key model predictions are quantitatively validated to pathology and radiology data.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Cell morphology and mechanics
Left: We track the cell volume V and nuclear volume VN (with equivalent spherical radii R
and RN, as labelled here); pale grey denotes the cytoplasm (VC), and the darker grey denotes
the nucleus (VN). The unknown cell morphology (one possible realisation given as a dashed
red curve) has an equivalent spherical morphology (solid blue curve). RA is the maximum
adhesive interaction distance. Right: We account for uncertainty in the cell morphology by
allowing the equivalent radii to overlap (left two cells), and by allowing adhesive contact
beyond their equivalent radii (right two cells).
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Fig. 2. Agent model forces

On Cell 5, find labelled the cell-cell adhesive  and repulsive  forces, and the cell-

BM adhesive  and repulsive  forces. We label the net cell locomotive force 
for Cell 6 (undergoing motility along the BM) and Cell 7 (undergoing motility within the

ECM). We show the cell-ECM adhesive force  and fluid drag  for Cell 7. An
earlier version of this figure appeared in advance in Macklin et al. (2009a, 2010b).

Macklin et al. Page 32

J Theor Biol. Author manuscript; available in PMC 2013 May 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Potential functions and derivatives for m = n = 1, M = 1, R = 10, RA = 12, RN = 5, cccr = 1,
and ccca = 0.5184; s = 7 is the equilibrium spacing between two interacting cells, where −∇
(cccrψ + cccaφ) = 0. cccr and ccca are defined in the following sections. Left: cccrψ + cccaφ.

Right: .
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Fig. 4.
Phenotypic transition network in the agent-based model, including quiescent ( ,
proliferative ( , apoptotic (𝐀), hypoxic (ℋ), and necrotic (  cells. An earlier version of
this figure appeared in advance in Macklin et al. (2010b).

Macklin et al. Page 34

J Theor Biol. Author manuscript; available in PMC 2013 May 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5. sub-model
A cell enters from the quiescent state  modelling the G0 to S transition. It then remains in

until dividing into two identical daughter cells of half volume. The daughter cells also
remain in until completing G1 and “maturing” into full-sized cells; thereafter, they enter
the “default” state 
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Fig. 6.
Ki-67 immunohistochemistry of two DCIS duct cross sections in case 100019. Nuclei of
cycling cells (  S, G2, M, and G1) stain dark red, while nuclei of non-cycling cells (  G0)
counterstain blue. In each duct (sampled from various locations in the tumour to
demonstrate typical features), the viable rim is clearly visible, with greatest proliferation
along the outer edge. In the duct centres, necrotic cores are filled with partly-degraded
nulcear debris (red arrows, pointing up and right), mostly-degraded nuclei (green arrow,
pointing down and left), and possibly microcalcifications in the degraded region. Note the
physical gap (black horizontal arrows) between the viable rims and the necrotic cores. A
colour version of this figure is available in the online edition.

Macklin et al. Page 36

J Theor Biol. Author manuscript; available in PMC 2013 May 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7. Verification of the patient-specific calibration
We compare the simulated (left bars) and patient (right bars) PI (column one), AI (column
two), cell density (column three), and viable rim thickness (column four) over the last 15
days of our simulation. Notice that the bars overlap for each datum, and the simulated mean
(left triangles) are within the patient variation for each datum. Hence, the calibrated model
matches the calibration data within tolerances.
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Fig. 8. Agent-based simulation of DCIS in a 1 mm length of duct
Legend: The black curve denotes the basement membrane. Cell nuclei are the small dark
blue circles, quiescent cells (  are pale blue, proliferating cells (  are green, apoptosing
cells (  are red, and necrotic cells (  are grey until they lyse, after which their solid
fraction remains as debris (dark circles in centre of duct). The shade of red in the necrotic
debris indicates the level of calcification; bright red debris are clinically-detectable
microcalcifications ( with τ > τC). Simulated times (from top to bottom): 0, 7, 14, 21, and
28 days. Bar: 100 µm. A colour version of this figure is available in the online edition.

Macklin et al. Page 38

J Theor Biol. Author manuscript; available in PMC 2013 May 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 9. Tumour and microcalcification positions in the duct
The top curve plots the maximum position of viable tumour tissue; the bottom curve plots
the maximum calcification position. The lighter line is the least-squares fit of the tumour
advance from 11 to 45 days.
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Fig. 10. Additional timepoints for the baseline simulation
From top to bottom, 11, 24, and 45 days. Cells are coloured as in Fig. 8. Bar: 100 µm. A
colour version of this figure is available in the online edition.
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Fig. 11. Inverse correlation of the duct radius and rate of tumour advance
For small ducts, little lumen is available for mechanical relaxation, leading to rapid tumour
advance. Conversely, growth is slower for larger ducts, with a threshold minimum rate of
advance (approximately 20.52 µm/day). The mean proliferative and apoptotic indices were
fixed for all simulations.
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Fig. 12. Comparison of mammographic and pathologic DCIS sizes
Left: Our DCIS simulation predicts a linear correlation between the mammographic
calcification size (xC) and the actual pathology-measured tumour size (xV). Right: A linear
least-squares fit of our simulation data (blue circles) fits clinical data (red squares) from de
Roos et al. (2004), further demonstrating our model’s predictivity.
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Fig. 13. Selected DCIS cross-sections at 45 days
a: Close to the leading edge, very little necrotic debris is visible, although the viable rim
thickness is comparable to other cross sections. b: Farther from the leading edge, a band of
intact necrotic debris surrounds a hollow duct lumen. c: As the distance increases, the lumen
is filled with necrotic debris. Nuclei on the outer edge is newer and less degraded; material
in the centre is more degraded. d: Farther still, a band of degraded nuclei surrounds a
calcified core. e: With increasing distance, the microcalcification occupies a greater portion
of the necrotic core. Bar: 100 µm. Cells are coloured as in Fig. 8. A colour version of this
figure is available in the online edition.
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Fig. 14.
H&E staining of DCIS in several ducts in case 100019. In each labelled duct, a readily
visible outer viable rim (with faintly haematoxylin-stained nuclei) is separated from the
necrotic core by a physical gap (black horizontal arrows). Duct 1 necrotic core: An outer
band of partly degraded nuclei (red arrow, pointing up and right) surrounds a region of
partly- or mostly-degraded nuclei (green arrow, pointing down and left). Duct 2 necrotic
core: A region of mostly-degraded nuclei (green arrow, pointing down and left) surrounds a
microcalcification (white vertical arrow). Duct 3 necrotic core: An outer band of partly
degraded nuclei (red arrows, pointing up and right) surrounds a region of partly- or mostly-
degraded nuclei (green arrows, pointing down and left), with a central core of
microcalcifications (vertical white arrows). This duct is likely the intersection of two or
more ducts near a branch point. A colour version of this figure is available in the online
edition.
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Table 1

Patient-specific parameters for Patient 100019 for the DCIS model.

Parameter Physical Meaning Value

R cell radius 9.953 µm

RN cell nuclear radius 5.295 µm

σB oxygen value on the BM 0.263717

〈σ〉 mean oxygen level in viable rim 0.221065

〈αP〉 mean → transition rate 0.013705 hour−1

mean waiting time prior to → transition when σ = 1 115.27 min

αA → transition rate 0.00127128 hour−1

s cell spacing 18.957 µm

ccca cell-cell adhesive force coefficient 0.0488836 cccr

ccba cell-BM adhesive force coefficient 10 ccca
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Table 2

Key data for anonymised case 100019 from Edgerton et al. (2011).

Quantity Measurement (Mean ± std. dev.) Units

Duct Radius Rduct 170.11 ± 76.37 µm

Viable Rim thickness T 76.92 ± 12.51 µm

PI 17.43 ± 9.25 %

raw AI 0.638 ± 0.424 %

corrected AI 0.831 ± 0.553 %

Cell density ρ 0.003213 ± 5.95e−4 cells/µm2

Nuclear diameter 2 RN 8.48 to 12.70 (typical range) µm
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Table 3

Verification of the patient-specific calibration: Comparison of the patient (second column) and computed
(third column) mean and standard deviation for the proliferative index, apoptotic index, viable rim thickness,
and cell densities. All computed quantities are within the range of patient variation.

All measurements given as mean ± standard deviation

Quantity Patient Data Simulation

PI (%) 17.43 ± 9.25 24.04 ± 4.587

Corrected AI (%) 0.831 ± 0.572 0.7378 ± 0.7146

Viable rim thickness (µm) 76.92 ± 12.51 80.73 ± 1.10

Cell density (cells/µm2) 0.003213 ± 5.95e−4 0.002950 ± 6.09e−5
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