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Abstract
Membrane proteins are of particular biological and pharmaceutical importance, and computational
modeling and structure prediction approaches play an important role in studies of membrane
proteins. Developing an accurate model quality assessment program is of significance to the
structure prediction of membrane proteins. Few such programs are proposed that can be applied to
a broad range of membrane protein classes and perform with high accuracy. We developed a new
model scoring function IQ, based on the analysis of four types of inter-residue interactions within
the transmembrane domains of helical membrane proteins. This function was tested using three
high-quality model sets: all 206 models of GPCR Dock 2008, all 284 models of GPCR Dock
2010, and all 92 helical membrane protein models of the HOMEP set. For all three sets, the
scoring function can select the native structures among all of the models with the success rates of
93%, 85%, and 100% respectively. For comparison, these three model sets were also adopted for a
recently published model assessment program for membrane protein structures, ProQM, which
gave the success rates of 85%, 79%, and 92% separately. These results suggested that IQ
outperforms ProQM when only the transmembrane regions of the models are considered. This
scoring function should be useful for the computational modeling of membrane proteins.
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Introduction
Computational modeling and prediction of 3D structures of membrane proteins plays a
valuable role in the biological and pharmacological studies of this important class of
proteins (1, 2, 3, 4). Membrane proteins represent ~30% of the human genome and perform
diverse cellular functions such as cross-cell signal transduction, membrane transport, and
photosynthesis (5, 6, 7). Membrane proteins are also the largest class of drug targets with the
G-protein coupled receptor (GPCR) superfamily alone accounting for approximately 27% of
drugs currently available on the market (8). Despite the significant progress in experimental
techniques (9), structure determination of membrane proteins significantly lags behind that
of soluble proteins (10), representing less than 1% of the structures in the Protein Data Bank
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(PDB). It is thus very desirable to develop computational tools for the structure prediction of
membrane proteins.

A prime challenge of membrane protein structure prediction is to develop accurate scoring
functions to assess the quality of a set of model structures, the so-called MQAP (model
quality assessment program) (11). Because of the paucity of available membrane protein
structures, scoring functions developed from small-molecule data or soluble protein
structures are traditionally adopted for this purpose (12). Given the clear differences
between membrane and soluble proteins, in terms of amino acid propensity, packing density,
and side-chain rotamer frequencies (13, 14, 15, 16), it is unsurprising that the application of
these scoring functions in quality assessment of membrane proteins is far from perfect (12).

The steady accumulation of X-ray structures of membrane proteins in recent years facilitates
the effort of developing more accurate MQAPs by enabling the direct analysis of
experimental structures of membrane proteins (11, 17, 18, 19). Early attempts by Fleishman
and Ben-Tal and by Park et al. were limited by the number of experimental structures
available. As a result, the application of such scoring functions is generally limited to
proteins with the relatively small numbers of TM helices (17, 18). In the works from our
group, a scoring function derived from the overall analysis of the total number of specific
inter-residue interactions of 19 high-resolution, non-redundant TM protein structures was
reported (19). Most recently, Ray et al. developed a learning-based MQAP called ProQM,
which takes both general and membrane protein specific features into consideration (11).
The MQAPs based on both the total number of inter-residue interactions (19, 20, 21) and the
machine learning approach (11) are applicable to helical membrane proteins of various class
and are thus of promise as general MQAPs for helical membrane proteins.

Direct studies of inter-residue interactions in helical membrane proteins have revealed
interesting findings in the packing of helical membrane proteins (22). Here, we seek to
uncover insight into the pattern of specific inter-residue interactions in helical membrane
proteins and to explore its application as a high quality scoring function. To achieve our
goals, we first compiled a high-resolution, non-redundant X-ray structure dataset of 18
helical membrane proteins. Four types of specific inter-residue interactions in the
transmembrane (TM) domain of these structures were identified and classified. The
histogram distribution of these interactions is proposed as an additional component to the
original scoring function, which was based on the average number of interactions per
residue (19). The application of the resulting scoring function, called IQ (Interaction-based
Quality assessment), is validated using three test model sets: the GPCR Dock 2008 (23),
GPCR Dock 2010 (24), and the HOMEP benchmark (25) datasets, and the results were
compared with those of the learning-based program ProQM.

Materials and Methods
High-resolution structure dataset of helical membrane proteins

A total of 18 high-resolution, non-redundant TM domains was compiled for this study
(Table I). This dataset was built from the previously compiled set of 19 high-resolution TM
domains (19). Newly reported X-ray structures of helical membrane proteins were identified
from an online membrane protein resource (http://blanco.biomol.uci.edu/mpstruc/listAll/list,
April 11th, 2011), and those with the resolution of 2.5Å or better were included in the
dataset. Next, sequence alignment was carried out for each non-identical chain in the dataset
using ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/) (26). If any chain has > 35%
sequence identity with another, only the one with the better resolution was retained. The
remaining members in the dataset were then searched against the CATH database to ensure
that each member in this dataset represented a unique membrane protein superfamily based

Heim and Li Page 2

J Comput Aided Mol Des. Author manuscript; available in PMC 2013 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://blanco.biomol.uci.edu/mpstruc/listAll/list
http://www.ebi.ac.uk/Tools/msa/clustalw2/


on its classification in the CATH database (27). If two members belong to the same CATH
superfamily, only the one with the better resolution was retained. This TM protein dataset
was further winnowed using the following criteria: (i) The TM domain contains at least four
TM helices, with each helix having at least 18 amino acid residues; and (ii) The domain has
more than approximately 50% of its surface in the TM region being in contact with the lipid.
One protein (PDB ID: 2UUH) was removed from the dataset based on these criteria. In
addition, for the protein (PDB ID: 2WJN), the individual helices in either of its two TM
chains arrange in a crescent form when looking along the axis that is perpendicular to the
membrane. There are no interactions formed between any two helices that are not neighbors
in the crescent form. Thus, this protein was also removed from the dataset.

For each protein chain retained in this dataset, its TM helical boundaries were identified
based on the PDBTM database (http://pdbtm.enzim.hu/) (28). The TM helix assignments in
the PDBTM database are determined using only structural information. All loops in the
soluble regions, cofactors, ligands, and H2O molecules were manually removed to keep only
the alpha helices in the TM regions, since they are the primary focus of this study.

Testing datasets
In order to test the usefulness of the proposed scoring function, it was applied to three sets of
models of helical membrane proteins: the GPCR Dock 2008 (23), GPCR Dock 2010 (24),
and HOMEP (25) datasets. The two GPCR model sets represent submission to the first two
rounds of the community-wide assessment of GPCR structure modeling and ligand docking.
Participating in these blind competitions, independent labs and groups from around the
world had produced GPCR models before the experimental structures of the model targets
were released. GPCR Dock 2008 contains 206 models of the human adenosine A2A receptor
(PDB ID: 3EML), and GPCR Dock 2010 contains 284 models of the human CXCR4
chemokine receptor (PDB ID: 3ODU, 3OE0, 3OE6, 3OE8, and 3OE9) and the human D3
dopamine receptor (PDB ID: 3PBL).

The HOMEP benchmark dataset is a carefully compiled set of homologous models of 94
membrane protein query-template pairs of known structures and covers a wide range of
sequence identities from <10% to 80% (25). Among the 188 models obtained, 92 are helical
membrane proteins, representing 46 query-template pairs. For each pair, a homology model
based on their sequence-to-sequence alignment and a model based on their structural
alignment were constructed for the query protein using Modeller 6v2 (29). These 92 models
of helical membrane proteins were studied here. For comparison, their corresponding X-ray
structures were downloaded from the PDB (30) and analyzed in parallel.

For each model from the three test sets, its TM helical boundaries were identified based on
the definition for its corresponding X-ray structure in the PDBTM database (28). The loops
of the soluble regions and ligands were again manually removed to keep only alpha helices
that lie within the TM regions.

Development of scoring function IQ
The scoring function IQ was derived based on the analysis of four specific types of inter-
residue interactions in the high-resolution structure dataset. These include hydrophobic
interactions, hydrogen bonds, ionic bonds, and disulfide bonds. The definition of hydrogen
bonds used here was given as described by Stickle et al. (31). It includes both distance and
geometry criteria. For the distance criterion, the hydrogen bond radii for electronegative
heavy atoms including N, O, and S atoms were defined first. If the distance between a
potential donor-acceptor pair in the structure was less than or equal to the sum of the
hydrogen bond radii of its respective atoms, this pair was subjected to the further geometric
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evaluation. For the geometric criterion, two angle criteria were applied depending on the
hybridization state of the heavy atoms (31). For sp2 atoms, there are two additional planarity
tests on top of the angle criterion; hydrophobic interactions and ionic bonds were based only
on proximity, and the default cutoff was 4.5 Å; and disulfide bonds were defined to exist
between explicitly bonded sulfur pairs or non-bonded sulfur pairs within the distance cutoff
of 2.5 Å.

For a pair of amino acid residues, their interactions could satisfy the criteria of both
hydrogen bond and ionic bond interactions. In that case, both types of interactions were
counted. These four interactions were determined using the Protein Contacts function in
MOE (Molecular Computing Group Inc., version 2010.10) using the default parameters as
was previously shown to be effective (32). Employing the default setting, histidine residues
are automatically protonated, and interactions between residues that are less than four
positions along the sequence were excluded in the calculation.

Two types of analysis were subsequently performed from the resulting inter-residue
interaction lists. The first is to calculate the average number of interactions within each
structure. A linear correlation between the average number of inter-residue interactions and
the quality of helical membrane protein model/structures has been reported previously (20).
To apply this analysis to the models in the test datasets, the best model should be the one
that has the highest value of the average number of inter-residue interactions. The
calculation is shown below:

(1)

where c̅ defines the average number of inter-residue interactions, Ninteractions is the total
number of interactions in the model, and Nresidues is the total number of residues in the
model.

For the second type of analysis, the distributions of the four types of interactions were
studied. First, interactions within each type were further classified based on the grouping of
the two residues involved in each interaction (33). The 20 typical amino acids can be
classified by their physico-chemical properties into six groups: 1) Arginine and Lysine; 2)
Aspartic Acid and Glutamic Acid; 3) Histidine, Phenylalanine, Tryptophan, and Tyrosine; 4)
Asparagine, Glutamine, Serine, and Threonine; 5) Alanine, Isoleucine, Leucine, Methionine,
Valine, and Cysteine; and 6) Glycine and Proline (33). With such groups defined, the
classifications of each type of inter-residue interactions were further sub-divided into 21
possible categories, determined by the two groups to which the two interacting residues
belong. In total, there should be 84 categories of possible inter-residue interactions. The
number of interactions in each group was normalized for each structure, and the frequency
distribution was generated. This frequency distribution was averaged for all structures in the
high-resolution structure dataset and regarded as the standard.

To apply this type of the analysis to the models in the test datasets, the best model should
have the least difference in frequency distribution from the average distribution derived
from the high-resolution structure dataset. The calculation for this analysis is shown below:

(2)

where, fs defines the frequency score, fm,i is the frequency of a specific interaction type i in
the model, fc,i is the average frequency of a specific interaction type i in the high-resolution
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set, and N is the number of interaction types. fs ranges from 0 for identical distributions to 2
for mutually exclusive distributions so a lower score is a better score.

Results from these two types of analyses were then combined to generate a single score IQ.
In the IQ score, the c̅ score was transformed using a log-normal probability density so that it
falls in the range of 0–0.5. The fs score is already in the range of 0–2. So it was merely
divided by four. The ultimate IQ score varies from zero to one with decreasing model
quality. The calculation for the IQ score is shown below:

(3)

where d is set to the high-resolution structure dataset’s maximum c̅ value and s is set to the
range of the c̅ value derived from the same dataset.

Comparison with scoring function ProQM
To compare the performance of IQ with other MQAPs specifically developed for membrane
protein structures, the recently published learning-based model assessment program,
ProQM, was chosen because of its high-quality performance (11). Tailored models from all
three testing datasets described above and their corresponding X-ray structures were
submitted to the ProQM server (http://wallner.theophys.kth.se/index.php). The Global
Quality Score for each model derived from the server was compared with that of the
corresponding X-ray structure. A model with a worse score was considered having worse
quality than the X-ray structure.

Results
The work presented here is to gain novel insight into inter-residue interactions in membrane
protein structures and to develop an accurate scoring function for membrane protein
structure assessment.

Structures in the high-resolution protein dataset display a similar pattern of inter-residue
interactions

The high-resolution structure dataset of membrane proteins includes a total of 18 high-
resolution, non-redundant TM domains. Each structure domain within the dataset belongs to
a unique superfamily classified in the CATH database (27). The number of TM helices
contained in this dataset varies quite significantly, ranging from four to twelve. In contrast,
the average number of inter-residue interactions and the distribution of different types of
inter-residue interactions among these structures are quite similar (Figure 1). The mean
value of the average number of inter-residue interactions, c̅, across the current set is 1.29
with a standard deviation of 0.24. The mean frequency score, fs, across the dataset is 0.28
with a standard deviation of 0.16.

There are only few outliers with the Polysulfide Reductase (PDB ID: 2VPZ) having the
lowest average number of interactions of 0.88, and the ApcT Transporter (PDB ID: 3GIA)
and the LeuT Leucine transporter (PDB ID: 2QEI) having the highest average number of
interactions of 1.70 and 1.76 respectively. Careful inspection of their X-ray structures
suggests these abnormal values were resulted mainly from the packing of their individual
TM helices. For the Polysulfide Reductase, its eight TM helices formed two packing groups
instead of one, with four helices in each group. These two groups were arranged in parallel
with few interactions forming between them. While for the two transporters, several kinks
were observed inside their TM helices. These kinks broke the whole helix and resulted in the
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re-orientations of partial helices, thus allowing the formation of more interactions with other
helices.

In addition, proteins having the different numbers of TM helices can have similar c̅ and fs
values. Overall, these results demonstrate that the distribution of various types of favorable
interactions across different helical membrane proteins is relatively homogeneous.

GPCR Dock 2008 test set
In order to test the ability of the new scoring function IQ to discriminate models, it was
applied to data sets of models of known structures. The first set comprises the 206 models of
the A2A adenosine receptor submitted to the Critical Assessment of GPCR Structure
Modeling and Docking 2008 (23). These models were generated by different research
groups using state-of-art modeling techniques with extensive refinement. As a result, a
handful of models have >70% residues in correct position. This set thus poses a challenge
for the high-quality MQAP.

Applying IQ to the models in this dataset showed that 191 models (92.7%) of the 206
models scored worse than the X-ray structure (PDB ID: 3EML) (Figure 2). Mostly the ten
models from the group with accession ID 1600 scored better. Consistently, one of the ten
models from this group has been ranked in the top 10 by Z-score (23). Further, most of the
206 models scored worse than the X-ray structure in the frequency score test
(Supplementary Figure 1), suggesting that the distribution of the inter-residue interactions in
these models is less consistent with the structures in the high-resolution dataset than their
corresponding X-ray structure (PDB ID: 3EML).

GPCR Dock 2010 test set
The second test set comprises the 284 models of the CXCR4 chemokine receptor (PDB ID:
3ODU, 3OE0, 3OE6, 3OE8, and 3OE9) and the D3 dopamine receptor (PDB ID: 3PBL)
submitted to the second round of the community-wide assessment of GPCR Structure
Modeling and Docking (24). Of these X-ray structures, only one (PDB ID: 3ODU) had its
structure determined to a resolution of 2.5 Å or better. Similar to the GPCR Dock 2008 set,
models in this set also reflect state-of-art modeling for GPCRs and pose a challenge for
high-quality MQAP.

The IQ function has also performed quite well when applied to the models in this dataset,
showing that 242 models (85.2%) of the 284 models scored worse than their X-ray
structures (Figure 3). Only 42 models scored better. Furthermore, if only the models of the
high-resolution X-ray structure target (PDB ID: 3ODU) were analyzed, only one of the 23
models scored better than the X-ray structure itself. In addition, different from GPCR Dock
2008 set, for the 284 models in this test set, most of them (83%) scored worse in the test of
the average number of interactions (Supplementary Figure 2).

HOMEP test set
To test the broad application of the proposed scoring function, it was applied to the analysis
of 92 homology models of helical membrane proteins in the HOMEP benchmark dataset
(25). HOMEP is a compiled dataset of homology models of various helical membrane
proteins with a wide range of sequence identities. The 92 models represent 46 query-
template pairs, and their quality varies quite significantly (20).

Upon applying both tests of the IQ, 92 models (100%) scored worse than their
corresponding X-ray structures (Figure 4). This indicated that all native structures will be
selected from among all of the models of it. For this test set, both individual tests have
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performed well (Supplementary Figure 3). For the frequency score test, 73 of the 92 models
scored worse than their X-ray structures. For the test of the average number of interactions,
90 of the 92 models scored worse than their X-ray structures.

Performance comparison with ProQM
Recently, Ray et al. developed a learning-based MQAP, ProQM, that takes both general and
membrane protein specific features into consideration (11). It was shown that this program
has clearly outperforms all methods developed for generic proteins (11). Applying ProQM
to the three test sets analyzed above indicates that the program can select the native
structures among all of the models with the success rates of 85%, 79% and 92% respectively
(Figure 5). These results suggested that our program, IQ, performed better than the ProQM
program regarding the transmembrane domains of membrane proteins.

An example illustrating the difference in the pattern of inter-residue interactions between a
model and its X-ray structure

The above analyses clearly demonstrated that IQ can be applied for the discrimination of
models of helical membrane proteins. To better understand the detailed difference in the
frequency distribution of inter-residue interactions between a model and the high-solution
dataset, we randomly selected a model from the GPCR Dock 2008 test set that scored worse
than its X-ray structure and compared the frequency distribution. It is quite clear that the
model has a greater number of the type 5-5 hydrophobic and a lower number of the 3–5
hydrophobic interactions (Figure 6). This observation could be helpful in that it suggests that
regions that form these types of interactions may contain potential modeling errors and
should be examined carefully.

Discussion
Developing accurate scoring functions for discriminating the native structure from a body of
constructed models represents an eminent challenge in computational structure prediction of
membrane proteins (11). Despite the importance of computational modeling in the
biological and pharmaceutical studies of membrane proteins, few efforts have been reported
in this aspect (11, 17, 18, 19). Inter-residue interactions play a key role in the folding of both
soluble and membrane proteins (34). Studying inter-residue interactions in membrane
proteins may facilitate the development of such high-quality scoring functions.

In our previous works, we have demonstrated that a simple measure (c̅) that calculates the
average number of four types of favorable inter-residue interactions could be used for a
qualitative assessment of membrane protein models (19). Analyses of a high-resolution,
non-redundant X-ray structure dataset of membrane proteins showed that all the structures
have a c̅ value in the range of 1.05–1.48. Subsequently, we proposed that this range could be
adopted as a quality measure of structure models of membrane proteins. Applying this to
several different decoy datasets showed that it works well, but further refinement is
necessary (19). In our following work, a linear correlation between this measure and the
quality of helical membrane protein model/structures has been reported (20). This finding is
understandable. When a protein folds, numerous favorable and unfavorable inter-residue
interactions form within the structure. The greater the number of favorable interactions
formed in the structure, the better the structure quality. Applying this finding to model
discrimination, the best structure model should have the highest c̅ value and this value
should also fall into the range derived from the high-resolution structure dataset. For this
study, if a model has a lower c̅ value than its X-ray structure, it was regarded as having
scored worse than the X-ray structure even though its c̅ value may fall into the range derived
from the high-resolution dataset.
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Ideally, the c̅ measurement alone should work sufficiently. However, the current definition
of the four types of favorable interactions used here has not been perfected. In addition, a
protein model can be constructed using a variety of modeling methods. As a result, an error
in modeling (e.g. rotating a TM helix incorrectly) could result in a higher number of
hydrophobic or other types of interactions.

In this work, we proposed another measure (fs) based on the analysis of the same subset of
favorable interactions that could complement the c̅ measure. This measure examines the
relative distribution of those interactions in the same high-resolution, non-redundant X-ray
structure dataset of membrane proteins (Table I) and compares the difference in the relative
distribution of various types of interactions in a structure relative to that derived from the
high-resolution dataset. Membrane proteins showed clear preference in terms of amino acid
propensity (13, 14, 15, 16). We hypothesized that a good quality structure model should
display the same preference. For this second measure (fs), the lower this fs value, the more
consistent in the distribution and the better the quality of the structure is.

These two measures, c̅ and fs, were combined to obtain a comprehensive scoring function
(IQ), which was tested on three high-quality, independently constructed test sets, GPCR
Dock 2008 (206 models), GPCR Dock 2010 (284 models), and HOMEP (92 models). The
success rates of selecting the native structures from all related models for the three datasets
are 93%, 85% and 100% respectively. As models in these test sets were generated for the
community-wide modeling and structure prediction tests by various research groups all over
the world, they represent the highest quality models using state-of-art modeling techniques
(23). The results of the scoring function on these test sets are clearly very encouraging. More
importantly, since models in these datasets cover a broad range of helical membrane
proteins, these results demonstrate that the proposed MQAP has a broad range of
application.

Among the three test sets, the GPCR Dock 2010 set gave the least perfect success rate.
Considering the relatively low resolution of the X-ray structures of the target proteins in this
dataset, this result is understandable. X-ray structures of lower resolution often have more
errors in the packing of their amino acid residues, which could result in the overall lower IQ
score. As pointed out previously, if only the models of the high-resolution X-ray structure
target (PDB ID: 3ODU) in the dataset were analyzed, only one of the 23 models scored
better than the X-ray structure itself. Furthermore, careful examination of the individual
results by applying the c̅ and fs measures respectively showed that although both worked
less well on this set than on the other two test sets, they complement each other to some
extent (Supplementary Figure 1–3). As a result, the overall success rate is still quite good.

The assessment of a MQAP method by its ability to rank a native structure higher than
decoys has been questioned recently (35). It was suggested that models need to be well
refined prior to the application of this approach. As mentioned above, models contained in
these three test sets were constructed by various groups and have been subjected to various
refinement procedures. Therefore, the refinement requirement is held true and further
refinement is not necessary for the works performed here.

Recently, a MQAP method based on a machine-learning approach has been developed for
helical membrane protein modeling (11). Comparison of our scoring function with this
MQAP program showed that IQ clearly performed better in selecting native structures
among all models (Figure 5). Furthermore, compared to the machine-learning based
approach, for which the interpretation of the outcome is often not very straight forward, our
knowledge-based approach has the advantage that clearly indicates why one structure is
favored over others (Figure 6). The difference in the pattern of the underlying inter-residue
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interactions of models, on which our scoring function is based, is easily obtained. On the
other hand, ProQM has the advantage of scoring individual residues and also can potentially
pinpoint problem areas of a model, which could be quite useful.

In summary, through the analysis of specific types of inter-residue interactions in membrane
proteins, we have developed a knowledge-based scoring function for model discrimination.
The discrimination power of this scoring function was tested using three large-scale,
independently generated, high-quality model sets. The success rates of selecting native
structures among the models were 93%, 85% and 100%. The diversity of models of these
test sets suggests this scoring function can be applied to models of a broad range of
membrane proteins.
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Fig. 1.
Analysis of the inter-residue interactions in the high-resolution structure dataset, showing
the distribution of the frequency scores vs. distribution of the average number of
interactions. The PDB IDs for structures 1–18 are listed in Table I. Structures with different
numbers of TM helices were represented differently.
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Fig. 2.
Analysis of the inter-residue interactions in the GPCR Dock 2008 set. Models are sorted
from low to high by their Accession ID from reference (23). Models with the same
Accession ID are grouped together and have the same gray scale, which is toggled between
black and gray as the Accession ID changes.
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Fig. 3.
Analysis of the inter-residue interactions in the GPCR Dock 2010 set. Models of the same
target are grouped together and have the same gray scale, which is toggled between black
and gray as the Accession ID changes. The PDB ID and chain number of the X-ray structure
of each GPCR target are: 1, 3ODU, chain A; 2, 3ODU, chain B; 3, 3OE0, chain A; 4, 3OE6,
chain A; 5, 3OE8, chain A; 6, 3OE8, chain B; 7, 3OE8, Chain C; 8, 3OE9, chain A; 9,
3OE9, chain B; 10, 3PBL, chain A; 11, 3PBL, chain B.
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Fig. 4.
Analysis of the inter-residue interactions in the HOMEP set. Gray scale indicates the type of
alignment used in generating a model. The PDB IDs of each query-template pair are: 1,
1E12-1H68; 2, 1E12-1M0L; 3, 1E12-1U19; 4, 1EYS-1OGY; 5, 1EYS-1PRC; 6,
1FX8-1J4N; 7, 1FX8-1RC2; 8, 1H68-1E12; 9, 1H68-1M0L; 10, 1H68-1U19; 11,
1J4N-1FX8; 12, 1J4N-1RC2; 13, 1KB9-1BCC; 14, 1KB9-1NTM; 15, 1KQF-1L0V; 16,
1KQF-1QLA; 17, 1M0L-1E12; 18, 1M0L-1H68; 19, 1M0L-1U19; 20, 1M56-1AR1; 21,
1M56-1V54; 22, 1NTM-1BCC; 23, 1NTM-1KB9; 24, 1OGV-1EYS; 25, 1OGV-1PRC; 26,
1PRC-1EYS; 27, 1PRC-1OGV; 28, 1QLA-1KQF; 29, 1QLA-1L0V; 30, 1RC2-1FX8; 31,
1RC2-1J4N; 32, 1U19-1E12; 33, 1U19-1H68; 34, 1U19-1M0L; 35, 1V54-1AR1; 36,
1V54-1M56; 37, 1AR1-1M56; 38, 1AR1-1V54; 39, 1BCC-1KB9; 40, 1BCC-1NTM; 41,
1KPL-1OTS; 42, 1L0V-1KQF; 43, 1L0V-1QLA; 44, 1OTS-1KPL; 45, 1PV6-1PW4; 46,
1PW4-1PV6.
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Fig. 5.
Comparison of the proposed scoring function IQ with the learning-based model assessment
program ProQM (11). I. GPCR Dock 2008 dataset; II. GPCR Dock 2010 dataset; and III.
HOMEP dataset.
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Fig. 6.
Comparison of the frequency distribution of various types of inter-residue interactions
between a GPCR model (Accession ID: 2200) and the high-resolution dataset. In total, there
should be 84 categories of possible inter-residue interactions. Only those categories of
interactions greater than zero are presented.
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