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Abstract
Treatment of metastatic melanoma has long been a challenge. Over the past 8 years significant
advances have been made in understanding the genetic changes that drive melanoma development
and progression. These studies have shown melanoma to be a heterogeneous group of tumors,
driven by a diverse array of oncogenic mutations. There is now good evidence that activating
mutations in the serine/threonine kinase BRAF and the receptor tyrosine kinase KIT constitute
good therapeutic targets for restricted sub-groups of melanoma. In this article, we discuss the
genetics and etiology of cutaneous and non-cutaneous melanoma and review some of the latest
pre-clinical and clinical data on the new targeted therapy agents that are beginning to make an
impact upon the lives of melanoma patients.

1. Introduction
Despite many years of research, disseminated melanoma remains a major clinical problem.
This frustrating lack of progress led some commentators to describe melanoma as being
“intrinsically therapy resistant” and there are suggestions that the resistance phenotype may
be a characteristic of underlying melanocyte biology 1. The recent years have seen an
explosion in high throughput genomic profiling that have provided important new
information about the molecular events that drive melanoma initiation and progression 2-4.
Of particular note is the frequent occurrence of mutations or amplifications in oncogenes
that have opened opportunities for highly selective therapeutic targeting. Based upon these
studies it is now clear that melanomas are a heterogeneous group of tumors with different
etiologies requiring different therapeutic strategies. The current paradigm being explored in
melanoma is one of targeted therapy, an approach that matches selective small molecule
inhibitors to tumors expressing specific oncogenic mutations. This strategy is exemplified
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by the use of imatinib in chronic myeloid leukemia (CML) and gastrointestinal stromal
tumors (GIST) and erlotinib in subsets of non-small cell lung cancer (NSCLC) that harbor
activating EGFR mutations 5-7. In the current review we discuss the latest research on
molecular sub-grouping of melanoma and outline promising targeted therapy strategies
being developed for the treatment of the molecular subtypes of melanoma.

2. The genetic sub-groupings of cutaneous and non-cutaneous melanoma
BRAF V600 mutations

The melanoma genomic revolution was kick-started by the 2002 discovery that ~50% of all
melanomas harbor an activating mutation in BRAF 4 (Figure 1). Raf proteins constitute a 3
member family of Serine/Threonine kinases (ARAF, BRAF and CRAF) with closely
overlapping functions 8. So far over 50 distinct mutations in BRAF have been identified 9.
Of these, the BRAF V600E mutation, resulting from a valine to glutamic acid substitution, is
by far the most common and accounts for over 80% of all reported BRAF mutations 4, 10.
Other less common, but clinically relevant variants identified from melanoma specimens are
the V600K mutation (16% of all BRAF mutations) and V600D/V600R (3% of all BRAF
mutations)11. Most of the oncogenic activity of mutant BRAF is mediated through activation
of the mitogen activated protein kinase (MAPK) cascade, which regulates the cell cycle
entry through control of cyclin D1 expression, and the suppression of p27KIP1 12, 13 as well
as through effects upon invasion and survival 14, 15. In experimental systems, the role of
mutated BRAF in melanoma seems convincing with in vitro studies showing that the BRAF
V600E mutation is an oncogene in immortalized mouse melanocytes 16 and that selective
downregulation of the BRAF V600E mutation using RNAi leads to reversal of the melanoma
phenotype 17, 18. Although mutated BRAF is undoubtedly important for melanomagenesis,
introduction of BRAF V600E alone is not sufficient for the transformation of primary human
or mouse melanocytes19. Instead, melanoma development seems to require both BRAF/
MAPK and activity in the PI3K/AKT pathway. This was most convincingly demonstrated in
a recent transgenic mouse study showing that full transformation to melanoma occurred only
when the BRAF V600E mutation was activated in concert with suppression of PTEN
expression20.

Although BRAF mutations are not ultraviolet (UV) radiation signature mutations, they have
a tendency to occur on UV-exposed skin sites and are more prevalent in individuals with a
poor tanning response 21. There is also evidence that intermittent, rather than chronic sun-
exposure is predictive for BRAF mutational status with BRAF mutant melanoma patients
tending to be younger in age (<55 years old) with a lower cumulative UV exposure 22.
BRAF mutational status is also of prognostic value and is associated with inferior survival in
the metastatic setting (8.5 months in BRAF wild-type vs 5.7 months for BRAF mutant
melanoma)23.

Small molecule BRAF inhibitors: Sorafenib, PLX4032/4720, GSK2118436
Since the discovery of activating BRAF mutations in melanoma, a number of BRAF
inhibitors have been developed and subjected to extensive in vitro testing 24-28. The most
extensively studied of these is the kinase inhibitor sorafenib (BAY43-9006, Nexxavar ®) 28.
Although originally developed as a CRAF inhibitor, sorafenib was also found to inhibit
BRAF with moderate potency and was initially embraced as being the proof-of-concept for
BRAF inhibition in melanoma29. In animal studies, sorafenib treatment led to limited
regression of BRAF V600E mutated melanoma xenografts and was associated with only
minor levels of apoptosis induction 29, 30. Further pre-clinical investigations have shown
sorafenib to be a relatively weak inhibitor of BRAF, with many off-target effects most
notably inhibition of VEGFRs and PDGFRs 28, 31. It now seems likely that any anti-

Smalley and McArthur Page 2

Semin Oncol. Author manuscript; available in PMC 2013 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



melanoma activity of sorafenib is largely independent of its putative effects upon BRAF
inhibition32.

Since the evaluation of sorafenib a new generation of BRAF inhibitors has been developed.
These drugs show higher potency against mutated BRAF and have fewer off-target effects;
the list of those currently under pre-clinical investigation includes: SB590885, dabrafenib
(GSK2118436), AZ628, XL281, GDC-0879 and vemurafenib (RG704,
PLX4032/4720) 24, 25, 33-39. PLX4032 (and its analogue PLX4720) are ATP-competitive
RAF inhibitors (wt BRAF IC50 100nM, mutated BRAF 31nM) that selectively inhibit
growth in melanoma cell lines harboring the BRAF V600E mutation both in vitro and in vivo
mouse in xenograft models 25, 38, 40. Henceforth we will refer to PLX4032 in the discussion
of the preclinical studies and vemurafenib in the context of clinical studies. Responses to
PLX4032 in melanoma xenograft models were BRAF V600E specific and impressive; with
either partial or complete responses observed in all cases with a close relationship observed
between drug exposure and response within individual xenograft models 38, 40. Interestingly,
not all BRAF mutated melanoma cell lines were similarly sensitive to PLX4032 and
PLX4720, with a significant proportion showing varying degrees of intrinsic
resistance 33, 36, 37. Current data suggests that PLX4032/4720 induces both cell cycle arrest
and apoptosis in the most sensitive cell lines and cell cycle arrest only in resistant less
sensitive cell lines 33, 37. A recent genetic study, looking for patterns of mutation and
genomic amplification between PLX4032 sensitive and resistant cell lines, was unable to
identify any unifying differences between the two groups 37. It therefore seems that intrinsic
resistance to BRAF inhibitors may be complex and multi-factorial 41. There is already
evidence that sub-groups of BRAF V600E mutated melanomas exist with alterations in
PTEN, cyclin D1, CDK2, CDK4, MITF and AKT3 42, 43. How the expression and mutational
status of these genes impacts upon biological behavior and future therapy selection remains
to be determined.

Another BRAF inhibitor currently exciting much interest in both the pre-clinical and clinical
arenas is dabrafenib (GSK2118436), an ATP-competitive inhibitor of BRAF V600E/D/K,
wild-type BRAF and CRAF 44. The compound has been shown to have promising activity in
pre-clinical models of melanoma and is now undergoing clinical evaluation 45, 46.

Low-activity (non-V600) BRAF mutants and CRAF-dependent melanomas—A
minor sub-group of melanomas have been identified with BRAF mutations in positions other
than 600. Many of the non-V600 BRAF mutants tend to show impaired BRAF kinase
activation in isolated kinase assays (hence the name “low-activity” BRAF mutants) and
required the presence of CRAF to transactivate their MAPK signaling 10. Analysis of a large
panel of melanoma cell lines and tissues revealed that ~1% of melanoma cell lines had either
D594G or G469E mutation in BRAF, respectively and that 1% of melanoma specimens
harbored a G469A mutation in BRAF 30. These non-V600 BRAF mutated cell lines differed
in their signaling from the BRAF V600E mutants and showed high levels of phospho-ERK,
low levels of phospho-MEK and resistance to MEK inhibition 30. Interestingly, these non-
V600 BRAF mutants seem to form part of a broader sub-group of melanoma cell lines,
including some that are BRAF wild-type and BRAF V600K mutated, that are reliant upon
CRAF for their survival 47. Studies from two independent groups have now demonstrated
that shRNA knockdown of CRAF in the CRAF-dependent melanoma groups leads to MEK-
independent effects upon BAD phosphorylation and Bcl-2 expression, leading in turn to
apoptosis and impaired tumor growth in a mouse xenograft model 30. Although sorafenib is
a relatively weak BRAF inhibitor, it does show reasonable potency against CRAF. There is
pre-clinical evidence demonstrating that sorafenib has good pro-apoptotic activity against
melanoma cell lines with low-activity BRAF mutations, and leads to regression of these cell
lines grown as mouse xenografts 30. Furthermore the development of more selective and
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potent inhibitors of CRAF may also offer benefit for melanomas and other malignancies
expressing these low-activity/non-V600 mutations in BRAF.

NRAS, KRAS and HRAS—RAS proteins constitute a large family of low molecular
weight GTP-binding proteins that localize to the plasma membrane. Three of the RAS
family members, NRAS, HRAS and KRAS are often mutated in human cancers, and >20% of
all tumors harbor activating mutations in one of their RAS genes 48. Mutations in NRAS,
KRAS and HRAS have been identified in 20%, 2% and 1% of all melanomas, respectively 49.
Mutations in NRAS are most commonly the result of a point-change leading to the
substitution of leucine to glutamine at position 61 4, 50, with mutations at positions 12 and
13 being reported less frequently 2. Large-scale analysis of melanoma samples and cell lines
have shown that although BRAF V600E and NRAS mutations are mutually exclusive, there
is overlap between low activity BRAF mutations and NRAS mutations 2, 51. Mechanistically,
mutations in NRAS lead to impairment of GTPase activity, so that the GTPase is locked into
its “On” position. In its GTP-bound state RAS binds to and activates a number of effector
enzymes involved in proliferation, the best characterized of these being CRAF 52. Thus,
melanomas harboring activating NRAS mutations differ from melanomas with BRAF
mutations in that they rely upon CRAF to induce their MAPK pathway activity 52. RAS is
also known to activate the phospho inositide-3-kinase (PI3K)/AKT pathway, which
contributes to tumor progression via the modulation of growth and survival of transformed
cells 13. In addition to MAPK and PI3K/AKT, mutated NRAS can also activate other
intracellular signaling pathways important for malignant transformation. In particular, recent
studies have demonstrated the importance of Ral guanine nucleotide exchange factors (Ral-
GEFs) in the anchorage-independent growth observed following the NRAS-mediated
melanocytes transformation 53. A role for RAS mutations in melanoma initiation has been
confirmed in animal models, where the introduction of mutated HRAS or NRAS (Q61K)
leads to melanoma in transgenic mice lacking expression of the CDK inhibitor
p16INK4A 54, 55.

Farnesyltransferase inhibitors, dual MEK/PI3K inhibition
NRAS is a small GTPase, and thus a difficult target for conventional drug discovery 48.
Farnesyltransferase inhibitors (FTIs), a class of drugs that prevent the membrane
localization (and thereby activation) of small G-proteins, were originally developed as
agents to target oncogenic Ras signaling 56. Despite an extensive research effort, these
compounds have shown little single-agent activity, even in colorectal carcinoma where
~40% of the tumors have activating mutations in KRAS 56. FTIs have never been evaluated
in a clinical trial of melanoma patients selected for their NRAS status. Although there is
limited evidence that FTIs may have some activity against melanoma cell lines in vitro,
these studies preceded the era of molecular sub-grouping melanoma cell lines 57. Attention
has now turned to pathways that are downstream of Ras activation that may be more
tractable to pharmacological intervention. Pre-clinical evidence suggests that simultaneous
blockade of the MEK and PI3K pathways leads to the regression of Ras-driven tumors in
animal models 58, 59. Other experimental studies have shown that dual inhibition of BRAF
and CRAF or BRAF and PI3K (using shRNA knockdown) was effective at reducing the
growth and survival of NRAS-mutated human melanoma xenografts 60. Although NRAS
mutated melanomas are known to rely upon CRAF for their MAPK signaling, there is little
evidence that sorafenib is any more effective on the NRAS mutants than melanoma cell lines
with BRAF mutations 30.

KIT—Melanomas developing on body sites with low-levels of environmental ultraviolet
radiation exposure, such as on the soles of the feet or subungual sites (acral melanomas) or
the mucous membranes (mucosal melanomas) are known to have a low incidence of BRAF
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mutations 61. Instead, these more rare histological sub-types of melanoma are often
associated with genetic amplification of and/or activating mutations in the receptor tyrosine
kinase KIT. A recent landmark study showed that 21% of mucosal melanomas, 11% of acral
melanomas and 17% of melanomas arising on sun-damaged skin harbor activating mutations
in KIT, with many of these occurring at the imatinib-sensitive juxatmembrane position 61.
Sequencing of c-KIT exons 11, 13, 17 and 18 revealed the most prevalent mutations to be
K642E, L576P, D816H and V559A, that interestingly are enriched at different locations
from KIT mutations in GIST or hematological malignancies 62. In most cases, the
acquisition of a KIT mutation was accompanied by an increase in copy number and some
degree of genomic amplification. There were also instances where KIT was amplified in the
absence of a mutation 61. Since the initial report of KIT aberrations in melanoma, a number
of further studies have validated this finding 63-65. Pooling of the currently available data
suggests the KIT mutational frequency to be 14% in acral melanoma and 18% in mucosal
melanoma 66. Given that acral and mucosal melanomas each represent only 2% of all
melanomas, the total percentage of melanomas with KIT mutations is likely to be quite low.
Moreover in an Australian population where over 40% of melanomas are associated with
chronic sun damaged skin KIT mutations were observed at a similar low frequency of
2% 67.

In experimental studies, introduction of the D814Y mutant of KIT into non-tumorigenic
immortalized melanocytes did not lead to either oncogenic transformation or enhanced
proliferation 68. The lack of proliferation seen in the KIT mutated melanocytes was
unexpected, but is likely to be a consequence of KIT constituting only one oncogenic “hit”.
In agreement with this idea, it was recently shown that the two most common c-KIT
mutations found in melanoma (K642E and L576P) were only able to transform melanocytes
when grown under hypoxia or following the introduction of exogenous hypoxia-inducible
factor 1α(HIF-1α) 69. Mechanistically, it seemed that introduction of mutated c-KIT
activated PI3K/AKT signaling but not MEK/ERK and that the combination of hypoxia and
mutated c-KIT was required to fully activate both pathways. Interestingly, these data again
support the transformation model seen in BRAF mutated melanoma where dual MAPK/AKT
signaling is required for tumor initiation and progression 69.

Imatinib, sunitinib and dasatanib
The relative scarcity of melanoma cell lines harboring activating KIT mutations has made
pre-clinical studies a challenge. It is becoming clear that the presence of a KIT mutation,
rather than genomic amplification is predictive of response to small molecule KIT
inhibitors 66. It further seems likely that the nature of the KIT mutation dictates which KIT
inhibitor should be used 66. To date, only two pre-clinical studies have been published on
melanoma cell lines derived from either acral or mucosal melanomas 65, 70. The first of these
characterized 3 primary mucosal melanoma cell lines, of which one was noted to have an
exon-11 V559D mutation in c-KIT 65. Treatment of this cell line with imatinib led to cell
cycle arrest and apoptosis induction and was associated with inhibition of JAK/STAT, PI3K/
AKT and MAPK signaling and the inhibition of Bcl-2, survivin and Mcl-1 expression 65. A
second study reported the identification of a mucosal melanoma cell line with a D820Y
exon-17 mutation in c-KIT (the mutation often associated with imatinib resistance in GIST)
with sensitivity to sunitinib (only at high concentrations) 70. One other recent publication
reported the identification of a non-acral/non-mucosal melanoma cell lines harboring an
L576P KIT mutation 71. In this instance, the cell line was found to be resistant to imatinib,
nilotinib and sorafenib but sensitive to dasatanib 71. There is also limited evidence
suggesting that the presence of constitutive KIT activity (as shown by phospho-KIT) may be
predictive of KIT inhibitor responsiveness 72.
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Another subtype of melanoma that seems to be associated with activation of KIT signaling
are those arising in the pigmented cells of the eye. Uveal melanoma is the most common
primary eye tumor in adults; these derive from the melanocytes of the choroid, ciliary body
and iris. In common with other forms of non-cutaneous melanoma, uveal melanomas
generally lack activating mutation in BRAF and NRAS 73 and instead maintain expression of
c-KIT in up to 87% of cases. Although unlike acral and mucosal melanomas, uveal
melanomas typically lack activating c-KIT mutations 74. Cell culture experiments have
demonstrated that uveal melanoma cell lines harbor phospho-KIT expression and undergo
imatinib-mediated cell cycle arrest 75. Clinical results of KIT inhibitors in uveal melanoma
have not been reported.

GNAQ and GNA11—Activation of MAPK signaling seems to be a requisite for melanoma
development. In uveal melanomas, most of which lack BRAF and RAS mutations, there is
emerging evidence that MAPK activity is driven through activating Q209 mutations in the
heterotrimeric G-protein alpha subunit GNAQ 76 or the equivalent residue in the closely
related G-protein alpha subunit GNA11. Mutations at Q209 of GNAQ are analogous to
those seen in NRAS (at Q61), and result in impaired GTPase activity leading to constitutive
signaling. Large scale molecular profiling has identified GNAQ Q209 mutations in 46-49%
of uveal melanoma samples and 27% of uveal melanoma cell lines 76, 77. In vitro studies
showed that although introduction of GNAQ-Q209L alone was unable to transform primary
human melanocytes, it did lead to anchorage-independent growth when transfected into
immortalized melanocytes (mutated p53/CDK4 and hTERT) 76. Although no small
molecule inhibitors of GNAQ currently exist, the potential therapeutic relevance of this G-
protein was demonstrated by that fact that siRNA knockdown of GNAQ led to increased cell
death in uveal melanoma cell lines that harbored the mutation 76.

4. Matching treatments to mutational profiles: clinical data
The preclinical data described above has led to a number of hypothesis-driven clinical trials
to target the oncogenic mutations found in melanoma. The initial attempts to target
oncogenic mutations in melanoma were to treat all melanomas regardless of genotype with
targeted agents. This has now been replaced by clinical studies where patients are selected
based on mutational profile that is leading to some striking results.

MEK inhibitors
The findings of frequent mutations in BRAF and NRAS in melanoma led to the evaluation of
MEK inhibitors in melanoma including AZD6244, CI-1040 and PD0325901. These early
studies did not select patients based on genotype and it was not clear if these agents were
able to reliably inhibit MEK and phosphorylation of ERK in melanoma cells at the
maximum tolerated doses78-80. Results were disappointing with ~10% objective response
rates and retrospective analyses of genotypes in a subset of treated patients failing to predict
clinical benefit. Dosing with MEK inhibitors has been limited by diarrhea and visual
disturbance including retinal vein thrombosis in a small subset of patients. Recently the
MEK inhibitor GSK1120212 with more reliable and sustained inhibition of MEK and pERK
at clinically achievable doses has been evaluated in melanoma patients harboring BRAF
V600E mutations with preliminary data indicating response rates in excess of 20% 81, 82.
Definitive randomized studies with this agent are planned that should determine the duration
and rate of clinical response to inhibition of MEK in patients with advanced disease.

BRAF inhibitors
Sorafenib was the first RAF inhibitor to enter clinical development in patients with
melanoma. In these initial studies patients were not selected on the basis of genotype. Due to
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its poor selectivity for the active conformation of BRAF induced by the V600E mutation,
coupled with significant “off-target” activity, results were disappointing with very low
response rates 83. Randomized studies of sorafenib in combination with chemotherapy have
given variable results with low response rates but provided no evidence that clinical effects
were mediated through inhibition of BRAF 31, 84.

In contrast, the development of BRAF-inhibitors that are selective for the active
conformation of the kinase have given very encouraging results. The BRAF-inhibitor
vemurafenib (PLX4032) when delivered at the maximum-tolerated dose, induces strong
inhibition of downstream signaling as determined by inhibition of pERK, reduction in Ki67
and inhibition of glucose uptake into melanoma metastases as measured by FDG-PET 40, 85

(Figure 2). In a recent phase III trial of individuals with previously untreated BRAF V600E
mutant melanoma (n=675) vemurafenib treatment (960mg BID twice daily) led to responses
in 48% of patients 86. The response rate of the dacarbazine control group was 5%. At 6
months, the overall survival was 84% and 64% for the vemurafenib and dacarbazine treated
groups, respectively86. Similar impressive effects on signaling and response have been
observed with another selective BRAF inhibitor GSK2118436 45 that has also entered phase
III clinical trials.

Interestingly all BRAF inhibitors including sorafenib, vemurafenib, GSK2118436 and
XL281 that have been evaluated clinically have induced proliferative squamous lesions in
the skin that closely resemble squamous cell carcinomas of the keratoacanthoma
type 39, 45, 85-87. These lesions are frequently rapidly growing and can be managed with
surgery or other local measures. Although the mechanism by which inhibition of RAF
kinases induces these lesions remains to be fully elucidated there is now clinical evidence
that the paradoxical activation of MAPK signaling, arising as a result of BRAF inhibition,
may play a role in SCC development (see below) 46.

KIT inhibitors
Inhibition of KIT by tyrosine kinase inhibitors has been reported to induce clinical responses
in melanomas harboring KIT mutations. Case reports and small series have reported
objective responses to the KIT-inhibitors imatinib and sorafenib 88-92. Definitive
randomized studies are underway to determine if KIT-inhibition improves progression-free
survival in melanoma (clinicaltrials.gov number NCT01028222). As 5 KIT inhibitors are
currently approved for GIST or CML (imatinib, dasatnib, nilotinib, sorafenib and sunitinib)
that have varying inhibitory profiles against a range of KIT mutations, it may be possible to
match an individual KIT mutation to a particular drug. Indeed clinical response has been
reported to sorafenib in a case of metastatic anal melanoma with the imatinib resistant
mutation D820Y91.

5. Resistance and the development of combination therapies
Although the presence of an activating BRAF V600E mutation generally predicts for
sensitivity to BRAF inhibition, not all patients with BRAF V600E mutant melanoma respond
to vemurafenib and there is evidence that some patients may be intrinsically resistant 85.
Recent preclinical studies have demonstrated that amplification of cyclin D1 (in up to 17%
of BRAF V600E mutant melanomas) or loss of the tumor suppressor RB together with loss
of the tumor suppressor phosphatase and tensin homolog (PTEN) may both contribute to
intrinsic BRAF inhibitor resistance 93-95. In the case of PTEN loss, BRAF inhibition was
found to paradoxically activate AKT which prevented cell death by suppressing the levels of
the pro-apoptotic protein BIM 94.
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Almost all BRAF mutant melanoma patients who respond to vemurafenib ultimately fail
therapy and become resistant. These observations mirror the pattern of response seen to
targeted therapy in CML, GIST 96, 97 and most recently medulloblastoma 98, 99, where an
initial period of tumor regression is later followed by relapse. Even before the development
of BRAF specific inhibitors it was already known that both growth factors and cytokines
could rescue melanoma cells from apoptosis following the siRNA-induced knockdown of
BRAF100, 101, 82. A number of studies have now begun to address the mechanisms of
acquired BRAF inhibitor resistance in both melanoma cell lines and specimens from BRAF
mutant melanoma patients failing vemurafenib therapy. So far a large number of potential
acquired resistance mechanisms have been reported; these include upregulated receptor
tyrosine kinase signaling (both PDGFRβ and IGF1R), the emergence of apparently de novo
mutations in NRAS, acquisition of novel mutations in MEK1 and the increased expression of
MAP3K8 (otherwise known as COT) 102-106. Although the resistance mechanisms reported
so far are diverse, nearly all involve the reactivation of a common set of signaling pathways
already known to be important for melanoma progression, such as MEK/ERK and PI3K/
AKT/mTOR106. There is already preclinical data showing that dual BRAF + MEK
inhibition may prevent or delay the onset of resistance to PLX4720 and may overcome
resistance mediated by MEK1 mutations, COT overexpression and the acquisition of de
novo NRAS mutations 104, 107, 108. In contrast, resistance mediated through IGFR1 signaling
can be overcome by dual MEK + PI3K inhibition and resistance mediated through PDGFR
signaling can be ameliorated through the targeting of the mTOR/PI3K/AKT pathway 103. As
a number of these mechanisms reactivate MEK phase I/II trials of the BRAF inhibitor
GSK2118436 in combination with the MEK inhibitor GSK1120212 (NCT01072175) and
vemurafenib combined with the MEK inhibitor GDC-0973 (NCT01271803) are underway.
There are already indications that these combinations may be effective. In a recent
presentation at ASCO, the phase I/II trial of the GSK112012 + GSK2118436 combination
was associated with objective response rates (complete response + partial response) of 77%
at a dose level of 150mg GSK118436/1mg GSK112012 and 74% at the dose level of 150mg
GSK118436/2mg GSK1120212 46. Even more significantly, the combination of the BRAF +
MEK inhibitor was associated with significantly reduced levels of squamous cell carcinoma
(<1%, n=109) 46. Other clinical studies combining BRAF inhibitors with inhibitors of the
mTOR/PI3K/AKT pathway are due to commence in the near future.

The approach being taken to manage therapeutic escape in melanoma differs from the
current model of treating acquired targeted therapy drug resistance seen in other cancers,
where resistance is often associated with secondary mutations in drug target proteins. The
most well known examples of this phenomenon are imatinib resistance in CML and GIST
that arises as the result of de novo “gatekeeper” mutations in BCR-ABL and c-KIT,
respectively 96, 109, 110. Although preclinical studies identified Threonine-529 to be the
BRAF gatekeeper site, there is currently little evidence that chronic treatment of melanoma
patients with vemurafenib leads to acquisition of secondary mutations in BRAF at the
gatekeeper site or at any others 32, 85, 102.

6. Future perspectives
The importance of patient selection

A future can be envisaged where the molecular profiling of patient tumors will become an
integral part of therapy selection for medical oncologists. The importance of matching the
right targeted therapy to the correct melanoma genotype is illustrated by recent pre-clinical
studies showing that inhibitors of BRAF paradoxically activate MAPK signaling in tumors
that lack activating BRAF mutations. Reports from at least 6 independent groups have
shown that BRAF inhibition activates MAPK in cell lines with NRAS and KRAS mutations
as well as those cell lines where the MAPK pathway is activated through other oncogenes
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such as HER2 34, 111-115. Mechanistic studies showed that although vemurafenib and other
BRAF inhibitors were able to profoundly inhibit the activity of BRAF V600E containing
complexes in melanoma cells they instead promoted the activity of CRAF-CRAF dimers in
cells with RAS mutations, leading in turn to MEK activation 34, 115. There is also evidence
that PLX4032 increases the invasive potential of NRAS-mutated melanoma cells through the
through the activation of ERK and FAK signaling 113. Additional studies demonstrated that
BRAF inhibitors may even contribute to the progression of NRAS mutated melanomas in
part by suppressing apoptosis through the modulation of Mcl-1 expression 114. Following
these observations a new generation of BRAF inhibitors were recently unveiled that
apparently prevent the paradoxical activation of MAPK signaling. Although data is currently
lacking on these new drugs, it is hoped that their improved selectivity profile may prevent
the onset of SCC and delay the time to resistance.

These studies are extremely important in the approaching the development of new cancer
therapies as they indicate that simple empiric evaluation of novel cancer therapeutics in
patients could be associated with adverse outcomes. Instead they affirm the approach of
rationally developing therapies in cancer patients based on strong preclinical data and
individual patient molecular profiling. It is indeed time to get personal in treatment of
melanoma.
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Figure 1.
Sample scheme showing some of the important molecular pathways important for melanoma
progression. Genes with activating mutations in melanoma are highlighted in red.
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Figure 2.
FDG-PET scans of patient on the phase I trial of vemurafenib. Panels show scans of tumor
burden at baseline and after 15 days of treatment at 960mg bid.
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