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Abstract
A detailed structural analysis of the entire human adenovirus capsid has been stymied by the
complexity and size of this 150 MDa macromolecular complex. Over the past 10 years, the steady
improvements in viral genome manipulation concomitant with advances in crystallographic
techniques and data processing software has allowed structure determination of this virus by X-ray
diffraction at 3.5 Å resolution. The virus structure revealed the location, folds, and interactions of
major and minor (cement proteins) on the inner and outer capsid surface. This new structural
information sheds further light on the process of adenovirus capsid assembly and virus-host cell
interactions.

Introduction
Adenoviruses (HAdVs) are large, non-enveloped viruses containing a dsDNA genome of
approximately 36 KD [1]. A significant percentage of the 56 different HAdV types cause
acute respiratory, gastrointestinal and ocular infections [2,3]. One of these virus types,
HAdV-5, is also being employed as a gene delivery vector for cardiovascular diseases and
cancer [4,5] as well as a vaccine vehicle to protect against infection by diverse microbial
agents [6,7]. A detailed structural analysis of HAdV may foster the development of
antivirals to thwart virus infections as well as facilitate the generation of improved HAdV
vectors for clinical applications. However, the adenovirus capsid contains nearly 1 million
amino acids and is over 900 Å in diameter, and therefore presents a daunting task for
structural analyses. Despite this impediment, early structural studies of HAdV have a rich
and productive history. In fact, the HAdV hexon, the major outer capsid protein of the virus,
was the first animal virus protein to be crystallized [8], allowing subsequent determination
of its X-ray structure [9,10]. These early hexon X-ray diffraction studies set the stage for
more complex structural analyses of the entire virus particle by cryoelectron microscopy and
image reconstruction [11,12]. The continuing improvements in cryoEM methods allowed
visualization of the locations, folds, and interactions of some of the major and minor
(cement) proteins in the outer HAdV capsid [13,14]. Very recently, cryoEM techniques were
used to visualize HAdV-5 at nearly atomic resolution, 3.6 Å, providing one of the most
detailed analyses of the entire virus to date [15]. In addition, the X-ray structures of the
isolated penton base [16] and fiber proteins [17] have provided insights on the early events
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in virus infection. Despite these major advances, the precise locations, folds and interactions
between the hexon and several capsid proteins within the virus particle have yet to be
completely resolved.

The challenges and solutions to solving the X-ray structure of adenovirus
Adenovirus, along with the bluetongue virus core [18], PRD1 [19], and reovirus core [20],
are among the largest non-enveloped viruses to be studied by EM or X-ray diffraction
techniques. The complexity of HAdV that displays pseudo T=25 icosahedral symmetry as
well as its instability at non-neutral pH were factors that hindered the growth of X-ray
diffraction quality virus crystals. In particular, the highly elongated fiber protein (~30 nm)
that is present at each of the twelve 5-fold axes in most HAdV types, interfered with crystal
lattice formation. Fiberless HAdV-5 particles [21,22] were considered as an alternative for
virus crystallization, however these “bald” particles were difficult to propagate and were less
stable than normal HAdV particles. As an alternative approach, an HAdV-5 vector bearing
the short (~12 nm) flexible fiber of HAdV-35 (designated Ad35F) could be produced at high
titer and was relatively stable. We were able to grow diffraction quality crystals of Ad35F
(space group P1; a=853.9 Å, b=855.6 Å, c=865.3 Å, =119.6°, =91.7°, =118.1°) at near
neutral pH conditions identified in a robotic screening approach [23]. However, the Ad35F
crystals were weakly diffracting as determined at several different synchrotron X-ray
beamlines. Eventually, a relatively new synchrotron beamline (GM/CA CAT 23-ID-D, APS/
Chicago) with a high flux X-ray source was found to be capable of achieving optimal
exposure of the virus crystals. In addition, we were able to identify appropriate freezing
conditions of virus crystals using Paratone N as a cryoprotectant. This allowed the collection
of multiple images from each crystal, a situation that was crucial for accumulating a large
diffraction data set. The structure was determined using conventional molecular replacement
methods employed in virus crystallography [23,24].

X-ray structure of Ad35F revealed inter-hexon associations
Ad35F crystals diffracted to a resolution of 3.5 Å resolution, revealing significant new
structural features on the outer and inner surfaces of the virus capsid [24]. As the inner DNA
core of the virus is not icosahedrally-ordered it could not be visualized. On the outer surface
of the capsid, the 240 trimeric hexons, that have 4 unique locations, were revealed as
expected from earlier cryoEM studies (Fig. 1a). However, the X-ray structure of Ad35F
revealed much greater detail of the hexon, including the locations and orientations of several
hypervariable region loops that were missing in previous structural analyses of the isolated
hexon. It is likely that the greater structural information gleaned from X-ray structure is due
in part to the fact that hexons provide the major contact sites between adjacent virus
particles in the crystal lattice [23]. In addition, certain HVR loops interact with neighboring
loops and/or neighboring cement proteins (Fig. 1b).

Penton base association with the fiber protein at the 5-fold vertices
The penton base protein, present at each vertex in Ad35F, serves as the attachment site for
cell surface integrins αvβ3 and αvβ5 that serve as receptors for virus internalization into host
cells [25]. Interestingly, the penton base in the virus crystal structure adopted a different
conformation than that previously observed in the isolated protein [16]. In the virus the
central pore of the penton base is wider than that of the isolated penton. Moreover, the
Ad35F fiber shaft appears to penetrate the pore of the virus penton base, inserting well into
the center of the pentamer (Fig. 2). These findings suggest that the penton base is a rather
flexible molecule that can undergo conformational changes. These structural changes might
have been induced by the high calcium conditions used to produce virus crystals [23].
Conformational changes in the penton base were indicated by a cryoEM study of adenovirus
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in association with integrin αvβ5 [26]. However, the integrin-induced changes that were
hypothesized were distinct from those observed in the virus crystal structure. Thus, further
structural and functional studies will be needed to identify the triggers for penton base
conformational change and the specific conformations adopted at particular points in the
virus life cycle.

Cement proteins on the outside and inside surface of the virus capsid
A prominent structural element on the outside of the virus capsid is a well-ordered four-
helix bundle (4HB) that is present at three copies per facet. The longest helix is
approximately 80 Å in length and the entire 4HB corresponds to a ~200 amino acid domain
of a cement protein. Earlier cryoEM studies [11,14] assigned this structure to protein IIIa, a
63 KDa cement protein that is required for the late stage of virus maturation [27]. However,
more recent cryoEM analyses at ~ 6Å [13] and at 3.6Å [15] resolution assigned this protein
module to the C-termini of protein IX. Our X-ray structure of Ad35F 3.5 Å resolution
revealed that two of the helices in the 4HB were clearly connected, raising doubt as to
whether this module could be the C-termini of protein IX. The principles of quasi-
equivalence as well as the established protein IIIa copy number (60 per capsid), are
consistent with the idea that the 4HB is a domain of protein IIIa. Further improvements in
the X-ray maps of HAdV are needed to definitively assign this domain to a particular
cement protein. The accurate identification of this cement protein should aid our
understanding of capsid assembly, as there are close contacts between the 4HB and the
HVR4 loop of hexon trimers.

The X-ray structure of Ad35F also revealed well-ordered density, corresponding to cement
protein VIII that lies underneath the capsid. Approximately 70 amino acid residues could be
fitted into the X-ray density of pVIII that included an N-terminal alpha helical domain of ~
20 residues followed by a prominent U-shaped bend that contained several proline residues
and ending with an extended polypeptide region (Fig. 3). Interestingly, pVIII is present at
two distinct locations on the inner surface of the capsid and these sites closely trace the
outline of hexons that comprise the group of nine hexons (GON). The group of nine hexons,
which can be dissociated from intact virions by treatment with 10% pyridine, are thought to
represent an assembly intermediate during the capsid maturation [28]. Two isoleucine
residues, Ile 41 and Ile54, located on the N-terminal helical domain of pVIII mediate non-
polar associations with two neighboring hexon N-termini (Fig. 4) while a third hexon
association is mediated in a similar fashion via the proline-containing U-shaped domain.
Thus, pVIII appears to play a significant role in stabilizing the inside surface of the virus
capsid by interactions with the N-termini of multiple hexon trimers.

Additional alpha helical domains, organized as pairs, were revealed underneath the vertex
region. We were not able to definitively identify these protein segments in the X-ray
structure, although they have been assigned to protein IIIa in cryoEM studies of the virus
[13,15]. However, it remains possible that they correspond to one or more domains of a
different cement protein pVI that is released along with other vertex proteins (i.e. penton
base and fiber) upon heating. Protein VI plays multiple roles in the virus life cycle including
endosome disruption [29], acting as a cofactor for protease cleavage [30] and serving as a
chaperone for hexon import into the nucleus prior virus assembly [31]. Recent studies have
demonstrated that the N-terminal amphipathic helix (AH) of pVI plays a crucial role in
endosome disruption [32]. Specifically, a single amino acid substitution, L40Q, in the AH of
pVI attenuates virus-mediated membrane association and disruption, leading to
accumulation of virus particles in endosomes. One unresolved question related to HAdV-
mediated membrane disruption is the precise pVI copy number present in the mature virion.
The answer to this question is not only an important for understanding the process of virus
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assembly but it is also relevant for obtaining a complete picture of capsid disassembly and
membrane disruption. Previous estimates based on biochemical or mass spectrometry
indicated that there are 340–360 copies of pVI per virion [33,34]. As this copy number is
higher than that of the 240 hexon trimers in the virion, this raises the possibility that some of
the hexons in the virion are associated with more than one pVI molecule. It is also possible
that previous estimates of the pVI copy number are too high as suggested by recent cryoEM
analyses revealing the association of single densities with each hexon [35]. Further
biochemical and structural analyses are needed to accurately determine the pVI-hexon
stoichiometry in the HAdV capsid.

Conclusions and Future Directions
The crystal structure of HAdV at 3.5 Å resolution represents one of the largest
macromolecular structures determined by X-ray diffraction. The HAdV crystal structure
revealed the locations and associations of the four different hexon trimers as well as a
surprising conformational change in the penton base and fiber on the outer surface of the
capsid. Although the cause for the penton alteration has not been established, these findings
emphasize the plasticity of the vertex region that is known to undergo release during capsid
disassembly. Further functional and biochemical studies are needed to establish the basis for
these structural observations and to determine their relationship to the structural information
obtained by cryoEM analyses [15,36]. The crystal structure of HAdV also revealed the
locations, folds and associations of several cement proteins, although only one of these,
protein VIII, was definitely identified by fitting the sequence (~ 70 residues) into the X-ray
density. CryoEM studies have tentatively assigned the locations of the other cement proteins
in the virion, IIIa, VI and IX. We are currently exploring the incorporation of heavy atoms
into the virus crystals to positively assign the sequences of these cement molecules by X-ray
diffraction.

All of the structural information obtained by X-ray diffraction analysis of HAdV
corresponds to the outer and inner surfaces of the virion capsid. We still lack structural
information on the dsDNA core of the virion that contains several nucleic acid associated
proteins, V, VII and Mu. Unlike some other dsDNA viruses, the HAdV core lacks
icosahedral symmetry thus impeding progress in structural determination by X-ray
diffraction. It might be possible to obtain additional structural information on HAdV core by
collecting very low resolution X-ray diffraction data [37,38] and/or by fitting the crystal
structures of isolated protein V or VII into the virus core electron density. The knowledge
and experience gained in solving the 3D structure of mature HAdV-5 may also facilitate
structural determination of distinct HAdV serotypes as well as immature virus particles that
contain unprocessed pre-proteins in their outer capsids [39,40]. Such knowledge should
improve our understanding of adenovirus maturation and assembly as well as viral
pathogenesis and may provide the basis for the development of safer and more efficient viral
vectors.

Highlights

1. X-ray structure of the entire adenovirus particle determined at 3.5 Å resolution

2. The penton base and fiber adopt an altered conformation in the virus.

3. The locations, associations and structural features of several cement proteins
were revealed.
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Figure 1.
A. A schematic representation illustrating the arrangement of major capsid proteins (hexon
and penton base) in the adenovirus capsid. The colored hexagons represent the 4 unique
hexon trimers of the pseudo T=25 icosahedral lattice. Five-fold related penton base subunits
shown in magenta are located at each of the 12 vertices of the capsid. B. Interaction of
hypervariable (HVR) loops HVR4 and HVR6 that help stabilize the Ad capsid. These
interactions result in the ordering of HVR4 loop, which was disordered in the isolated hexon
structure.
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Figure 2.
Fo-Fc difference density (colored red) revealed along the 5-fold axis that penetrates the pore
formed by the 5-fold related penton base subunits. This density is suggested to correspond to
the shaft region of the trimeric fiber molecule, although sidechain density is not clearly
identifiable presumably because of the symmetry mismatch between the fiber and the 5-fold
capsid vertex.
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Figure 3.
A. Model showing the extended structure of a PVIII molecule. Nearly 70 residues of VIII
are ordered in one of the two independent molecules present in the adenovirus structure. B.
Electron density corresponding to the inverted U shaped structure highlighted by the
rectangle in panel A.
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Figure 4.
Interactions mediated by the protein VIII helix located between two hexon subunits. The
VIII helix, shown in pink, helps to stabilize the N-termini of two hexon subunits through
non-polar interactions.
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