
PEAKS DB: De Novo Sequencing Assisted
Database Search for Sensitive and Accurate
Peptide Identification*□S

Jing Zhang‡, Lei Xin‡, Baozhen Shan‡, Weiwu Chen‡, Mingjie Xie‡, Denis Yuen‡§,
Weiming Zhang‡, Zefeng Zhang‡, Gilles A. Lajoie¶, and Bin Ma§�

Many software tools have been developed for the auto-
mated identification of peptides from tandem mass spec-
tra. The accuracy and sensitivity of the identification soft-
ware via database search are critical for successful
proteomics experiments. A new database search tool,
PEAKS DB, has been developed by incorporating the de
novo sequencing results into the database search. PEAKS
DB achieves significantly improved accuracy and sensitivity
over two other commonly used software packages. Addi-
tionally, a new result validation method, decoy fusion, has
been introduced to solve the issue of overconfidence that
exists in the conventional target decoy method for certain
types of peptide identification software. Molecular & Cel-
lular Proteomics 11: 10.1074/mcp.M111.010587, 1–8, 2012.

Peptide identification from tandem mass spectrometry (MS/
MS)1 data is a central task in proteomics. The accuracy and
sensitivity of this task directly impacts the performance of
protein identification from peptide hits, as well as other down-
stream analyses. Many software tools have been developed
for peptide identification; these tools can be broadly divided
into two categories: de novo sequencing and database
search.

De novo sequencing derives the peptide sequence directly
from the MS/MS spectrum, whereas a database search que-
ries a sequence database for the best peptide to explain the
peaks in the MS/MS spectrum. Representative de novo se-
quencing software packages include PEAKS (1), PepNovo (2),
NovoHMM (3), and Lutefisk (4), and representative database
search software packages include Mascot (5), SEQUEST (6),

X!Tandem (7), OMSSA (8), ProteinProspector (9), MaxQuant
(10) (11) and MS-GFDB (12).

The database search is generally believed to be a simpler
approach because the protein sequence database provides a
limited space for the software to search. Therefore, when a
protein sequence database is available, a database search is
the most common method for peptide identification. How-
ever, existing database search tools still experience problems
of low identification rates (low sensitivity) (13) (14) and high
false discovery rates (low accuracy) (15). The improvement of
database search performance has always been an active
research area in this field.

Two competing objectives are sought in the database
search approach: accuracy and sensitivity. The accuracy is
usually measured by the false discovery rate (FDR), which is
defined as the percentage of the false identifications in all
identifications above the score threshold. Accuracy can be
accomplished by increasing the score threshold. However,
this will at the same time reduce the sensitivity. To improve
both accuracy and sensitivity, a new scoring function needs
to be developed that more accurately separates the true and
false identifications (16, 17). Meanwhile, to maintain an ac-
ceptable search speed, database search software often intro-
duces a filtration method to quickly select a shortlist of protein
or peptide candidates and will only evaluate those candidates
with a more advanced (and usually slower) scoring function
(see for example Ref. 7). However, this simple filtration often
excludes real peptides and causes reduced sensitivity. A
good filtration technique is required to balance sensitivity,
accuracy, and speed.

In this paper, the PEAKS DB software is described for
peptide identification using the database search approach.
However, as opposed to the traditional database search ap-
proach, the PEAKS DB software relies heavily upon de novo
sequencing results to improve the filtration and the scoring
function. This combination results in significantly improved
sensitivity and accuracy in comparison to existing database
search software.

In addition to the aforementioned two objectives (accuracy
and sensitivity), the high throughput generation of proteomics
mass spectrometry data requires the automated validation of
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database search results. Currently, this validation is typically
achieved by the target decoy method (18, 19). This method
introduces decoy proteins to be searched by the same search
engine and uses the engine’s outcome on the decoy proteins
to estimate the number of false positives. However, the
method has to be used with caution because a multi-stage
search procedure can make it biased toward underestimating
the FDR (20–22). A fix was initially proposed in Ref. 21, but
Bern and Kil (22) pointed out that the fix was still biased. They
proposed an alternative solution by adding more decoy pro-
teins at the second stage of the search on top of the decoy
proteins introduced initially. This requires changes of the
search engine at the source code level and may cause FDR
overestimation (which is a smaller problem than FDR under-
estimation). Another drawback of the standard target decoy
method is that it was incapable of validating a search en-
gine’s results if the protein information is used in the peptide
scoring function (23). In this paper, we show that a slight
change to the target decoy method will solve these two
problems. Instead of adding the decoy proteins as separate
entries of the database, we concatenate the target and
decoy sequences of the same protein together as a single
entry of the database. In this paper, this new strategy is
investigated, and an improved target decoy method, decoy
fusion, is presented.

EXPERIMENTAL PROCEDURES

The aim of PEAKS DB is to identify peptides from a sequence
database with MS/MS data. As such, PEAKS DB belongs to the
database search category of peptide identification software. How-
ever, PEAKS DB employs de novo sequencing as a subroutine and
exploits the de novo sequencing results to improve both the speed
and accuracy of the database search. The main algorithmic steps of
the PEAKS DB software proceed as follows:

• De novo sequencing: The PEAKS algorithm (1) is used to perform
de novo sequencing for each input spectrum.

• Protein shortlisting: The de novo sequence tags are used to find
approximate matches in the protein sequence database. All of
the proteins in the database are evaluated according to the
sequence tag matches. The 7,000 top ranked proteins form the
protein shortlist and are used in future analysis.

• Peptide shortlisting: All of the peptides of the protein shortlist are
used to match the MS/MS spectra with a rapid scoring function.
Only the 512 highest scoring peptide candidates (including those
with PTMs) are kept for each MS/MS spectrum.

• Peptide scoring: From the 512 candidates calculated in the
peptide shortlisting step, a precise scoring function is used to
find the best peptide for each spectrum. The similarity between
the de novo sequence and the database peptide is an impor-
tant component in the scoring function. In addition, the score
is normalized to ensure it can be compared across different
spectra.

• Result validation: A modified target decoy approach is used to
determine the minimum peptide spectrum matching score
threshold to meet the FDR requirement of the user.

• Protein inference and grouping: The high confidence peptides
identified through the above steps are used to infer the proteins.
Those proteins that share the same set of peptide hits are
grouped together for a more convenient report.

The details of these steps are discussed in the following
sections.

De Novo Sequencing—The PEAKS algorithm is used to perform de
novo sequencing for each input spectrum. The same parameters
(mass error tolerance and PTMs) specified by the user for database
search are also used for de novo sequencing. For each spectrum,
only the first de novo sequencing peptide reported by PEAKS is
utilized. The PEAKS algorithm also computes a confidence for each
amino acid in the de novo sequence; this confidence is a percentage
value. The output of PEAKS is converted to a sequence tag by
replacing the low confidence amino acids by their mass values. More
specifically, each stretch of adjacent amino acid residues with �30%
confidence is replaced by a “mass segment” that is equal to the total
mass of the residues. See Fig. 1 as an example.

Protein Shortlisting—In this step, the algorithm uses the de novo
sequence tags to select a short list of proteins from the protein
database. Future steps in the process will only work on this short list
to reduce the total computing time.

The matching quality between a de novo sequence tag and a
database peptide is measured by the number of common amino
acids (the CAA score). In Fig. 2, the computation of the CAA score is
illustrated. Note that in this protein shortlisting step, because there is
no modification information in the sequence database, a modified
residue on the de novo sequence can match an unmodified residue in
the sequence database. However, in the later peptide scoring step, a
modified residue can only match the same residue with the same
modification for the CAA score calculation.

The proteins are ranked by the highest CAA score achieved by the
peptides of each protein. If two proteins have the same highest CAA
score, the tie is broken by the second and the third highest CAA
scores. Within this ranking, the 7,000 top database proteins are
selected as the protein shortlist, which should be a superset of the
identifiable proteins in most proteomics experiments. No special
treatment is made on handling homologous proteins in the database.
Therefore, the number of shortlist proteins may need to be increased
if the biological system studied has a larger number of proteins and
the search is on a large database (such as NCBInr) without specifying
the taxonomy information. This can be adjusted in the configuration
file of PEAKS DB.

Peptide Shortlisting—All of the peptide sequences digested in
silico from the protein shortlist are compared against the input spec-
tra to find peptide spectrum matches (PSMs). Each peptide sequence
may produce multiple modified peptides by enumerating all possible
combinations of the user-specified variable PTMs. For each peptide

FIG. 1. A de novo sequence computed with PEAKS has a local
confidence score on each amino acid, as represented by the
heights of the vertical bars. By using a threshold of 30%, the
consecutive amino acids below the confidence threshold are substi-
tuted by their total residue mass.

FIG. 2. A de novo sequence tag is compared with a database
peptide. The alignment ensures that the mass of each aligned block
(surrounded by square brackets) is equal for both sequences. The
CAA score is the number of common amino acids in the alignment,
which is 4 in this example.
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sequence (modified or not), the peptide mass is calculated, and the
MS/MS spectra with the matching precursor mass is compared with
the sequence. A “quick scorer” is used to compute the score of the
PSM. A priority queue data structure is used to keep the top 512
sequence candidates for each spectrum.

The quick scorer is derived from the same de novo sequencing
scoring function used in PEAKS de novo sequencing (1). Briefly, a
spectrum is converted to two functions fN(m) and fC(m), where fN(m)
indicates the odds that the correct peptide has a prefix (a subse-
quence containing the N terminus) with total residue mass m, and
fC(m) indicates the odds that the correct peptide has a suffix (a
subsequence containing the C terminus) with total residue mass m.
The odds are estimated with the corresponding fragmentation ions.
For a collision induced dissociation (CID) spectrum, a, b, c, y, z,
b-H2O, y-H2O, and y-NH3 are used (see Ref. 1 for details). For an ETD
spectrum, a, b, c, c-H, y, z, and z�H ions are used (see Ref. 24 for
details of the calculation). After fN(m) and fC(m) are calculated, the ion
match score of a peptide is determined as the sum of the fN(m) and
fC(m�) for all the prefix masses m and suffix masses m�. This score can
be calculated efficiently by indexing fN(m) and fC(m) in memory. With
this simple quick scorer, the correct peptide of a given MS/MS
spectrum may not be the top scoring sequence but is most likely
among the 512 top scoring sequence candidates kept in the priority
queue for this spectrum.

Peptide Scoring—A more sophisticated scoring function is used to
rerank the sequence candidates for each spectrum. First, the ion
match score sion_match is normalized by the formula s�ion_match �
(sion_match � �)/�, where � represents the mean score of the top 10
candidates, and � represents the standard deviation of the scores of
the top 150 candidates. Such normalization against the incorrect
peptides is necessary to compare scores across different spectra. A
number of other features are used in addition to the normalized ion
match score. Several features have been evaluated. However, the
following nine features of a peptide candidate were found to be most
effective and are now included in PEAKS DB: 1) the number of amino
acids matching the de novo sequence tag (CAA score); 2) the protein
feature: each protein obtains a score by adding its three highest
peptide CAA scores, and the protein feature of a peptide is the
maximum score of the proteins containing this peptide; 3) the peptide
length; 4) the average sequence length per missed cleavage in the
peptide; 5) the average sequence length per PTM in the peptide; 6)
the precursor mass error; 7) the charge state; 8) the maximum length
of the consecutively matched fragment ion series; and 9) the number
of termini violating the enzyme’s digesting rule.

Some of these features or similar features were also previously
used in the Percolator (16) and PeptideProphet (17) programs. In
particular, 6), 7), and 8) were used in Percolator; 6) and 9) were used
in PeptideProphet; features similar to 4) and 5) were used in Perco-
lator; and a feature similar to 4) was used in PeptideProphet. Both
Percolator and PeptideProphet used more features than listed here.

These nine features, together with the normalized ion match score,
are combined with a weighted sum. The weights are trained with an
iterative search on a large LC-MS/MS training data set to maximize
the area on the left of the 1% FDR curve, as shown in Fig. 3. Once the
weights are determined by the training for a particular instrument
type, they do not change from experiment to experiment.

The weighted sum score is converted to a p value for easier human
interpretation. For a given score, the corresponding p value is defined
as the probability that a false identification in the current search
achieves the same or better matching score. The p value attempts to
predict the false positive rate, i.e. the ratio between the number of
false identifications above the given score T and the total number of
false identifications. Note that false positive rate is a different concept
from FDR. If the p value is P, the final peptide score (called the

significance score) output by PEAKS DB is �10lgP. Here lg(F) is the
common logarithm with base 10.

Result Validation—A modified target decoy approach, called decoy
fusion, is used to estimate the FDR at any given score threshold. The
more conventional target decoy approach requires the generation of
a decoy protein sequence for each target protein sequence in the
database (16). The target and decoy databases are then searched
either separately or together by the software, and the FDR is calcu-
lated by the ratio between the numbers of the decoy and target
matches. However, in PEAKS DB, the target and decoy sequences
are not treated as separate entries in the database. Instead, they are
concatenated together for each protein. Thus, the newly generated
database contains the same number of protein entries, but the length
of each protein is doubled. The software searches this newly gener-
ated database. After the search, the target and decoy identifications
are separated by checking whether they are from the first or the
second half of each concatenated sequence. For each user-specified
score threshold, the FDR is calculated as the ratio between the
number of decoy hits and the number of target hits above the score
threshold.

If the C-terminal amino acid of the target protein is not an enzyme
cleavage site, then appending a decoy sequence to its end may
prevent the search engine from considering the C-terminal peptide of
the target protein. To solve this problem, a special letter J is added in
between the target and decoy sequences as the separator. Both
Mascot and PEAKS DB algorithm can cleave at both sides of the letter
J for the in silico digestion, ensuring that the C-terminal peptide from
the target protein is considered.

Protein Inference and Grouping—Although protein inference is not
the focus of this paper, the following is a brief outline of the protein
inference procedure in PEAKS DB. Proteins are grouped according
to their shared peptides. Given a score threshold T, a protein (X) is
called to dominate another protein (Y) if all of the peptides of Y with
a significance score �T are also found in X. In the current version
of PEAKS DB, T is equal to 15, corresponding to a p value of �0.03.

If X dominates Y, then Y is not a confident identification and is
therefore added to the X group. After each pair of proteins is exam-
ined for domination relations, the proteins are clustered into several
groups. Note that there may be a few proteins dominating each other
in a group. For each group, the user can choose to display or export
only one dominating protein, all dominating proteins, or all proteins
from the user interface.

The significance score of each protein is computed from its iden-
tified peptides as follows. First, redundant peptides are removed; if
the same peptide is identified multiple times from different spectra,

FIG. 3. The FDR curve shows the FDR (y axis) with respect to the
number of peptide spectrum matches to be reported (x axis). The
training of the weighted sum coefficients in the peptide scoring func-
tion maximizes the area on the left of the curve and below the 1% FDR
threshold.
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only the highest scoring peptide is retained. Two peptides are con-
sidered the same if they are identical or differ only by the PTM
location, but considered different if the amino acid sequence or PTMs
are different. Second, all the nonredundant significance scores of the
peptides are sorted as s1 � s1 � . . . � sk. Finally, the score of the
protein is equal to s1 � (1/2)s2 � (1/3)s3 � . . . � (1/k)sk. The score of
a protein group is equal to the score of the dominating protein.

RESULTS

Two public data sets, one fragmented with CID and the
other ETD, were used to evaluate the performance of PEAKS
DB. Both data sets were generated with LTQ-Orbitrap
instruments.

The CID data set came from the trypsin digest of Pseu-
domonas aeruginosa and was previously used to study the
relation between protein and mRNA abundances (25). The
data file was downloaded from http://www.marcottelab.org/
MSdata/Data_12/DATA/20090115_SMPA14_2.RAW.gz. For
the CID data set, the P. aeruginosa PAO1 protein database,
downloaded from PseudoCAP (http://www.pseudomonas.
com) in April 2011 was used for database search. The data-
base contains 5566 protein entries.

The ETD data set was obtained from the Lys-C digest of a
yeast lysate following strong cation exchange peptide frac-
tionation prior to LC-MS. The raw data from fraction 10 was
previously used in the 2011 study by the Proteome Informat-
ics Research Group (iPRG) of the Association of Biomolecular
Resource Facilities (15). The same data is used here. For the
ETD data set, the same protein sequence database provided
by the Association of Biomolecular Resource Facilities iPRG
2011 study was used for database search. It was the com-
plete proteome for Saccharomyces cerevisiae with typical
laboratory contaminant proteins appended. The database
contains 6666 protein entries.

In all of the experiments involving decoy sequences, the
decoy sequences were produced by randomly shuffling the
amino acids in each protein. Decoy peptides were removed
before FDR calculation. That is, FDR � number of decoy
hits/number of target hits. When a target decoy method was
used to estimate the FDR, the target and decoy databases
were searched together.

The Effectiveness of de Novo Sequencing in Database
Search—This section demonstrates the relative performance
of the de novo sequencing and database search approaches
when analyzing the same data set. Their complementary abil-
ities will justify the utilization of the de novo sequencing re-
sults in PEAKS DB. With the CID data set, PEAKS 5.3 and
Mascot 2.3 were employed for the de novo sequencing and
database search analyses, respectively. For each spectrum,
only the first de novo sequencing peptide reported by
PEAKS was selected. For each peptide reported by Mascot
2.3, the number of matched amino acids with the de novo
sequence (the CAA score) is calculated. Fig. 4 shows the
distribution of the scores when the P. aeruginosa database
is used. It can be seen that the best separation of the target

and decoy matches is achieved by a combination of both
the database search score and the CAA score, clearly indi-
cating the effectiveness of using de novo sequencing re-
sults in the peptide scoring.

For Mascot to confidently identify a peptide, the required
spectrum quality is different when databases of different sizes
are used. For example, on the CID data set, the 1% FDR
corresponds to Mascot scores of 23.6 and 55.1 when the P.
aeruginosa and Swissprot databases were employed, respec-
tively. As a result, the relative performance of de novo se-
quencing and database search varies. When the P. aerugi-
nosa and Swissprot databases are used for the Mascot
database search, respectively, the de novo sequencing was
able to correctly compute five or more amino acids (CAA
score � 5) on 70 and 88% of the PSMs identified by Mascot
with 1% FDR.

Comparing the Target Decoy and Decoy Fusion Methods—
The basic assumption of the target decoy and the decoy
fusion methods is that the score distribution of the false target
hits and the decoy hits are similar. Therefore the number of
decoy hits can be used to estimate the number of false target
hits. Unfortunately there is no effective way to verify this
assumption, because it is difficult to assess whether a target
hit is true or false. Thus, the following simulated experiment
was conducted to verify the assumption.

The CID data set was searched against the P. aeruginosa
database by Mascot, SEQUEST, and PEAKS DB. The pep-
tides identified by all three engines were considered as
correct. A simulated database was created by keeping
these peptides unchanged in the P. aeruginosa database,
while randomly shuffling all other amino acids in each pro-
tein. When a search engine is used to search in this simu-
lated database, the peptides that do not have significant

FIG. 4. The comparison of de novo sequencing results (PEAKS
5.3) with database search results (Mascot 2.3). Each data point
represents a peptide found by Mascot database search. The x axis is
the Mascot score, and the y axis is the number of matching amino
acids with the de novo sequencing result (CAA score). For a better
view of the data density, a small random number between 0 and 0.8
is added to each CAA score. The best separation of target and decoy
matches is achieved by combining the CAA and Mascot scores
(dashed line).
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(five or more amino acids) overlap with the unchanged
peptides can be safely regarded as false hits. Thus, by using
the simulated database as the target, the score distribution

of the false target hits and the decoy hits can be compared.
Both decoy fusion and target decoy methods were exam-
ined, and the results are shown in Fig. 5.

FIG. 5. The score distribution of the false target hits and the decoy hits when the simulated protein database was used. The height
of each bar represents the number of PSMs around the corresponding score. The target decoy method generated fewer decoy hits than the
false target hits for the PEAKS DB results, which may lead to FDR underestimation. The decoy fusion method has no such problem.

PEAKS DB: De novo Assisted Database Search
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Fig. 5 illustrates that for the PEAKS DB results, only the
decoy fusion method could produce similar score distribu-
tions. The target decoy method produced fewer decoy hits
than the false target hits, which might cause FDR underesti-
mation. This indicates that decoy fusion is more appropriate
for validating the PEAKS DB results. However, the two decoy
methods showed no noticeable difference for Mascot, SE-
QUEST, and Mascot�Percolator results. The result of Fig. 5 is
consistent with another experiment aiming to compare the
FDR curves estimated by the two decoy methods, respec-
tively (supplement Fig. S1). The two methods produced iden-
tical or very similar FDR curves for each of Mascot, SEQUEST,
and Mascot�Percolator, whereas the decoy fusion curve of
PEAKS DB is noticeably more conservative than the target
decoy curve. As such, in all following experiments the decoy
fusion method was used to estimate the FDR of PEAKS DB,
and the target decoy method was used to estimate the FDR of
all other searching methods.

Performance Comparison of PEAKS DB with Other Data-
base Search Tools—Following the general practice, the pep-
tide identification performance of PEAKS DB was compared
by FDR curves with two commonly used software packages:
Mascot 2.3 and SEQUEST (in Proteome Discoverer 1.2). The
search with each of the three engines used the same set of
parameters: The parent ion mass error tolerance was 15 ppm,

and fragment ion mass error tolerance was 0.8 Da. Up to three
missed cleavages were allowed in one peptide, and at most one
end of each peptide could violate the enzyme cleavage rule.
One fixed PTM: carboxyamidomethylation of Cys, and three
variable PTMs: deamidation of Gln and Asn, oxidation of Met,
and Pyro-glu from Gln, were used. Trypsin and Lys-C were used
as the enzymes for the CID and ETD data sets, respectively. For
each peptide spectrum match (PSM), SEQUEST outputs two
scores, Xcorr and DelCn. In this experiment Xcorr � 5 DelCn
was used as SEQUEST score because this combination pro-
duced the optimal FDR curve for SEQUEST.

Recently, the Percolator program has been developed to
improve Mascot database search results by rescoring with a
rigorous machine learning method (16). It is not a self-contained
database search engine. Nevertheless, a comparison with the
combination of Mascot and Percolator was also conducted.

Figs. 6 and 7 display the FDR for the CID and ETD data sets,
respectively. At a 1% FDR, the numbers of identified target
PSMs are PEAKS DB (10668) � Mascot�Percolator (9969) �

SEQUEST (8236) � Mascot (7515) from the CID data set; and
PEAKS DB (3652) � Mascot�Percolator (2702) � Mascot
(2398) � SEQUEST (2233) from the ETD data set.

Another recent database search program, MS-GFDB (12),
also reported a significant improvement over Mascot. Be-
cause the published MS-GFDB does not deal with variable

FIG. 6. FDR curves of the compared
software tools on the CID data set.
The x axis represents the number of pep-
tide spectrum matches kept from the
target sequences, and the y axis repre-
sents the corresponding FDR.

FIG. 7. FDR curves of the compared
software tools on the ETD data set.
The x axis represents the number of pep-
tide spectrum matches kept from the
target sequences, and the y axis repre-
sents the corresponding FDR.
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PTMs at the time of this study, we also conducted a special
comparison by not specifying any variable PTMs in PEAKS
DB (this caused a reduction of the overall performance of
PEAKS DB). PEAKS DB also outperformed MS-GFDB by �58
and 8% in such a special comparison for CID and ETD,
respectively. The detail of this comparison is included in the
supplemental materials.

DISCUSSION

Accuracy and Sensitivity—The first conclusion from Figs. 6
and 7 is that PEAKS DB could confidently identify significantly
more PSMs than Mascot and SEQUEST. In particular, in com-
parison to Mascot, at a 1% FDR, PEAKS DB could identify 42%
more PSMs for the CID data set and 52% more PSMs for the
ETD data set. In fact, PEAKS DB identified more PSMs (9494 for
CID and 3299 for ETD) at 0.1% FDR than Mascot (7515 for CID
and 2398 for ETD) at 1% FDR. Although Percolator significantly
improved the performance of Mascot, PEAKS DB still outper-
formed Mascot�Percolator by 7% for CID data and by 35% for
ETD data at 1% FDR on these data sets.

In terms of the total number of peptides identified, many
search engines outperformed Mascot on the ETD data set in
the iPRG study mentioned above (15). Among the single-
engine results in the iPRG study, the most number of PSMs
were reported by the following few engines (in decreasing
order): ProteinProspector (9), unnamed in-house software,
PEAKS DB, another unnamed in-house software, pFind (26),
and Spectrum Mill. However, among these several results,
only PEAKS DB and pFind results possessed the accuracy
required by the iPRG study (1% FDR). However, it is possible
that the FDR estimation method used by the iPRG study and
the relative experience of users in operating different software
tools might have affected the above ranking. More details are
provided in the full report of the iPRG study (15).

Reliable Result Validation—The use of the decoy fusion
method is necessary for validation of the PEAKS DB result. As
shown under “Results”, the standard target decoy approach
may underestimate the FDR of PEAKS DB results and should
be avoided. This inaccuracy comes from two sources that are
due to the fact that the decoy sequences are introduced as
separate entries of the database. First, the protein shortlisting
step may select more target proteins than the decoy proteins.
This causes the false identifications in later steps to fall in the
target proteins with a higher probability. The decoy fusion
method avoids this problem by combining the target and
decoy sequences in the same protein entry. Second, the
“protein feature” is used in the peptide scoring. This increases
the scores of the random peptide matches in the highly con-
fident target proteins. Consequently, more false hits will be
reported from the target proteins than from the decoy pro-
teins. By fusing the target and decoy sequences together, the
score increment is applied equally to the target and decoy
peptide hits. Thus, the score distributions of the false target
hits and decoy hits remain the same.

There were different opinions in the literature regarding the
use of protein information in the peptide scoring function. On
one hand, the protein information may compromise the reli-
ability of the target decoy validation method and thus was not
used in PeptideProphet (17) and is no longer used in the
Mascot Percolator (23). On the other hand, Bern et al. (20)
reported significantly improved sensitivity by a second round
search on the confidently identified proteins for finding more
peptides, which can be regarded as an extreme case of using
the protein information in the peptide scoring function. We
argue that the use of the protein information is appropriate. By
limiting the search on a protein database, a database search
engine makes the implicit assumption that each peptide se-
quence appears in the sample with equal probability, prior to
the search. Such prior probability should be updated when
another peptide from the same protein is identified with high
confidence. This will surely contribute toward the peptide
identification sensitivity, but the use of the protein information
does require a more robust result validation method than the
standard target decoy approach. The decoy fusion method
proposed in this paper provides a very simple alternative to
solve this problem.

In PEAKS DB, the coefficients for the weighted sum score
for peptide scoring are trained only once for each instrument
type. This is different from the approach used in Percolator,
where the scoring function is retrained for each experiment
after the search is completed, and the target and decoy
peptides found by the search become known. Although the
retraining may further improve the sensitivity, it exposes the
decoy information to the scoring function. This creates a risk
of impairing the FDR estimation method. To keep the FDR
estimation invulnerable, the retraining approach is not used in
the current version of PEAKS DB.

De Novo Sequencing and Database Search—De novo se-
quencing was historically thought to be slow and to require
spectra with higher mass accuracy. Therefore it has been
mostly used when the protein database was unavailable.
Thanks to the recent development in computer algorithms
and continuous improvement of computers, the speed is no
longer an issue for de novo sequencing. For example, in our
experiments the PEAKS algorithm was able to de novo se-
quence 15 spectra/second on a moderate desktop PC (Intel
Core i7 Processor, quad core, 2.8 GHz). The high mass ac-
curacy has also become available because of the develop-
ment of new mass spectrometers such as the Orbitrap. This
makes de novo sequencing a viable choice for every mass
spectrometry analysis in proteomics. De novo sequencing
and database search should not anymore be regarded as two
separate approaches that are used in different circumstances.
Instead, they should work together to provide better sensitiv-
ity and accuracy in proteomics analysis, as illustrated in this
paper. Additionally, the spectra that produce highly confident
de novo sequencing tags but no database hits are likely from
novel or modified peptides. These “de novo only” peptides
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may arguably be more interesting than those in the database
but are currently rejected in an analysis purely based on
database search.

Conclusion—In summary, we described the PEAKS DB
software that takes advantages of fast de novo sequencing
results and several new features. The net outcome is an
increase in both sensitivity and accuracy and an overall su-
perior performance to other commonly used search engines.
This is particularly true for mass spectral data obtained by
ETD fragmentation, which makes PEAKS DB a particularly
useful tool for identifying peptides with PTMs. We also pro-
posed a more robust result validation method, decoy fusion,
for controlling the FDR of PEAKS DB results.
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