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 1. Introduction 

 In case-control genome-wide association (GWA) stud-
ies, hundreds of thousands of single nucleotide polymor-
phisms (SNPs) are tested to determine whether they are 
associated with the common disease of interest. If a SNP 
is in linkage disequilibrium with a disease locus, it will 
not be independent of the status of the disease. Although 
there may exist gene-gene or gene-environment interac-
tions, the first and crucial step in GWA studies is to iden-
tify single SNPs that are associated with disease.

  For a SNP with two alleles,  A  and  a , which is   assumed 
to be at risk, there are three genotypes:  AA ,  Aa , and  aa . 
Suppose that there are  r  cases and  s  controls in the study. 
In the  r  cases, there are  r  0 ,  r  1 , and  r  2  affected people with 
genotypes  AA ,  Aa , and  aa , respectively. There are  s  0 ,  s  1 , 
and  s  2  people with genotypes  AA ,  Aa , and  aa , respective-
ly, in the  s  unaffected controls.

  Testing whether there is an association between the 
genotype and the disease status is equivalent to testing 
the association in the 2  !  3 contingency table. Pearson’s 
 �  2  test with 2 degrees of freedom (df) is one of the most 
commonly used statistical methods for testing the asso-
ciation in a contingency table. Note that for SNP data, it 
is reasonable to assume that the relative risk associated 
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with  Aa  is between the risks associated with  AA  and  aa . 
However, Pearson’s  �  2  test does not utilize this feature of 
the order-restricted risks in the SNP data. On the con-
trary, the Cochran-Armitage trend test (CATT) was de-
signed to incorporate the trend to increase the detecting 
power. The CATT with appropriate scores can be more 
powerful than Pearson’s  �  2  test if the underlying genetic 
model is known  [1–4] . In general, the scores used in the 
CATT for SNP data are (0,  x , 1), where  x  is a number be-
tween 0 and 1 and the optimal value of  x  depends on the 
true underlying genetic model. For instance, if the ge-
netic models are recessive, additive/multiplicative (log 
additive), and dominant, the optimal values of  x  in the 
CATTs are 0, 0.5 and 1, respectively. The CATTs with op-
timal scores have been shown to be more powerful than 
Pearson’s  �  2  test, provided that the underlying genetic 
model is known  [4] .

  However, the genetic model is usually unknown in 
practice and the CATT with a non-optimal score may per-
form poorly. In other words, the CATT is not as robust as 
the  �  2  test, and it is sensitive to the departure of assumed 
genetic models. To increase the robustness of CATT, sev-
eral trend-based methods have been proposed for the sit-
uations where the underlying genetic models are un-
known  [5–17] . For instance, the maxmin efficiency robust 
test (MERT) by Gastwirth  [18, 19] , and the maximum of 
the three optimal CATTs under recessive, additive, and 
dominant models (MAX3) have been studied  [7] . Zheng 
and Ng  [16]  also proposed a two-phase procedure (GMS) 
with the selection of the genetic model based on the data 
in the first stage and then used the optimal score based on 
the chosen model for the CATT in the second stage. Al-
though the above CATT-based methods have been shown 
to be robust compare to the CATT, there are some limita-
tions for these methods when the analytic null distribu-
tions are either unavailable or too complicated. Conse-
quently, Monte Carlo or numerical methods are required 
to compute the p values of these test procedures.

  This paper is organized as follows. First, in Section 
2.1, we propose a generalized genetic model for the SNP 
data, namely a generalized  order-restricted relative risks  

(ORRR) model, in which we assume that the two relative 
risks are monotonically increasing or decreasing. This 
ORRR model covers a wide range of ideal models. For 
instance, the recessive, additive, multiplicative and dom-
inant models are special cases of the ORRR model. Then, 
we propose a statistical test based on the ORRR model in 
Section 2.2. Moreover, a restricted likelihood ratio test 
under the ORRR model is also considered in Section 2.2. 
Since the new test uses the order-restricted property of 
the relative risks, it is expected to be more powerful than 
the  �  2  test under many situations in general. On the oth-
er hand, unlike the CATT, the proposed test does not as-
sume a specific genetic model; it is not sensitive to the 
misspecification of the underlying genetic models and 
therefore is more robust than CATT. In Section 3, a Mon-
te Carlo simulation study is used to study the perfor-
mance of the proposed procedure. We show that our pro-
posed method is more robust than the existing methods 
and has decent power properties. The proposed method-
ologies are illustrated using some real SNP data in Sec-
tion 4. Conclusions are provided in Section 5.

  2. Proposed Test Procedure 

 2.1. A Generalized Genetic Model and Existing Methods 
  Table 1  gives the data structure of a case-control GWA study. 

The relative risks of genotypes  Aa  and  aa  to  AA  are defined as:

1

2

Pr / Pr

Pr / Pr

case|Aa case|AA

case|aa case|AA

�

�

                                               (1)

    For many genetic models, we can reasonably assume 
Pr(case  �   Aa ), the disease risk associated with genotype  Aa , is be-
tween Pr(case  �   AA ) and Pr(case  �   aa ). Specifically, if  a  is the at-risk 
allele, the relative risks satisfy:  �  1   6  1 and  �  2   6   �  1  with at least 
one of the inequalities being strictly greater. If  A  is the at-risk al-
lele, the relative risks satisfy 1  6   �  1  and  �  1   6   �  2  where at least one 
of the inequalities is strict. The monotonicity of the relative risks 
is also known as order-restricted relative risks. Here, a genetic 
model with order-restricted relative risks is called a generalized 
ORRR model. We can see that the aforementioned ideal models 
(assuming the at-risk allele is  a ), that is, recessive ( �  1  = 1,  �  2   1   �  1 ), 
additive ( �  1  = (1 +  �  2 )/2), multiplicative ( �  2   1   �  1  2 ), and dominant 
( �  1  =  �  2   1 1), are all special cases of the generalized ORRR model. 

 As mentioned in Section 1, in addition to the  �  2  test, existing 
statistical test procedures, including CATT, MAX3, GMS and 
MERT, for the null hypothesis that there is no association between 
disease and the genotype are also considered here. The CATT sta-
tistic can be written as  [10] :

2
1 2

0
1/22

2 2
2

0 0

,   wher

/
i i i

i
x

i i i i
i i

n x sr rs
Z

rs n x n x n

0 1 2e (x , x , x ) (0, x, 1).,

Table 1. S NP data in GWA studies

Genotype: AA Aa aa Total

Case r0 r1 r2 r
Control s0 s1 s2 s
Total n0 n1 n2 n
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    The statistic for MAX3 is  [7] : 

    MAX 3 =  MAX { �   Z  0   � ,  �   Z  1/2   � ,  �  Z  1   � }.

  The statistic for GMS is  [16, 17] : 

    GMS  =  
Z  0  I ( Z  1/2   1  0) I ( Z  HWDTT   1   c ) +  Z  1/2  I ( Z  1/2   1  0) I ( �   Z  HWDTT   �   !   c )
  +  Z  1  I ( Z  1/2   1  0) I ( Z  HWDTT   !  – c ) –  Z  1  I ( Z  1/2   ̂   0) I ( Z  HWDTT   1   c )
  +  Z  1/2  I ( Z  1/2   ̂   0) I ( �   Z  HWDTT   �   ̂    c ) –  Z  0  I ( Z  1/2   ̂   0) I ( Z  HWDTT   !  – c ),

  where  I  is the indicator function, and the Hardy-Weinberg dis-
equilibrium trend test (HWDTT) statistic is given by  [20] : 

 1/2

2 1 2 1

/
,

1 / / 2 / / 2
P Q

HWDTT

ˆ ˆrs n
Z

n n n n n n n n

� �

     � ̂   P  =  r  2 / r  – ( r  2 / r  +  r  1 /(2 r )) 2 ,  � ̂    Q  =  s  2 / s  – ( s  2 / s  +  s  1 /(2 s )) 2 , and  c  is a con-
stant and usually chosen as 1.645. 
 The statistic for MERT is  [19] :

   MERT  = ( Z  0  +  Z  1 )/{2(1 +  �  ̂   01 )} 1/2 , 

where  �  ̂    01  = ( n  0  n  2 ) 1/2 /{( n  0  +  n  1 )( n  1  +  n  2 )} 1/2 .  

  2.2. The Proposed Test 
 The proposed test is designed to detect the alternative hypoth-

esis that the underlying genetic model belongs to the generalized 
ORRR model. Suppose the allele frequencies for  AA ,  Aa , and  aa  
are  p  0 ,  p  1 ,  p  2  for case and  q  0 ,  q  1 , and  q  2  for control, respectively. 
Under the null hypothesis that there is no association between 
disease and the genotype, we have  p  0  =  q  0 ,  p  1  =  q  1 , and  p  2  =  q  2 .

  Equation 1 can be expressed as

1
1

0

2
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p aa

�

�

                                                                           

(2)

    where Pr( AA ) = Pr( AA   �  case)Pr(case) + Pr( AA   �  control)Pr(cont-
rol) =  kp  0  + (1 –  k ) q  0  and  k  is the disease prevalence. Similarly we 
have Pr( Aa ) =  kp  1  + (1 –  k ) q  1  and Pr( AA ) =  kp  2  + (1 –  k ) q  2 . 

 Then, equation 1 can be written as
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(3)

    Assuming the at-risk allele is  a , the alternative hypothesis we 
want to test is based on the generalized ORRR genetic model for 
which the relative risks satisfy  �  1   6  1 and  �  2   6   �  1 , with at least 
one of the inequalities being strict. 

 From equation 3, we can write  �  1   6  1 and  �  2   6   �  1  as

1 0 0 1

2 1 1 2

  
p q p q
p q p q

�

�
                                                                                  (4)

    Let

1 1 0 0 1

2 2 1 1 2

,
T p q p q
T p q p q

    then detecting the alternative hypothesis is equivalent to detect-
ing that both  T  1  and  T  2  are non-negative and at least one of them 
is strictly greater than 0. Therefore, we propose a statistical test 
procedure based on  T  1  and  T  2 . 

 Given the observed data presented in  table 1 , the sample esti-
mates of  T  1  and  T  2  can be obtained as

1 0 0 1
1

2 1 1 2
2

r s r s
T̂

rs
r s r s

T̂
rs

                                                                            
(5)

    respectively. It can be shown that under the null hypothesis of no 
association (i.e.  p  i  =  q  i ,  i  = 0, 1, 2), the expected values of  T̂  1  and  T̂  2  
are zeros (i.e.  E (T̂ 1 ) =  E ( T̂  2 ) = 0) and the variance-covariance ma-
trix of  T̂  1  and  T̂  2  is 

 
1 1 2

1 2 2

,
,

,

ˆ ˆ ˆVar T Cov T T

ˆ ˆ ˆCov T T Var T

    where 

    Var ( T̂  1 ) =  p  0  p  1 (2 p  2  +  n ( p  0  +  p  1 ))/ rs ,
   Var ( T̂  2 ) =  p  2  p  1 (2 p  0  +  n ( p  2  +  p  1 ))/ rs ,
   Cov ( T̂  1 ,  T̂  2 ) =  p  0  p  1  p  2 (2 –  n )/ rs .

  Since the variance-covariance matrix is unknown, it can be 
estimated by replacing the  p  i s by their consistent estimators,  p̂  i  = 
 n  i / n ,  i  = 0, 1, 2. The estimated variance-covariance matrix can be 
expressed as

0 2 0 1 0 21
3

0 2 2 0 2 1

2 2
.

2 2

n n n n n n n nnˆ
rsn n n n n n n n n

�

    Because  � ̂  is a positive definite square matrix, eigen-decompo-
sition of  � ̂  gives  � ̂  =  PDP �  , where D is a diagonal matrix 
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d

     d  1  and  d  2  are the eigenvalues of  � ̂  , and the columns of  P  are the 
corresponding eigenvectors of  � ̂  which satisfies  PP �   =  I . 

 Let
1

1 12

2 2

,
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�

    under the null hypothesis,  Z  1  and  Z  2  are asymptotically indepen-
dent standard normally distributed random variables, where 

 1
1 2

12
1
2

2

0
.
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dˆ P P
d
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    It can be shown that all elements in  � ̂  –1/2  are non-negative. 
Therefore, under the alternative hypothesis, we would expect 
E( Z  1 ) and E( Z  2 ) to be non-negative where at least one of them is 
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strictly positive. Note that if the at-risk allele is  A  instead of  a  in 
 table 1  (i.e. column 1 and column 3 are being switched), statistics 
 Z  1  and  Z  2  are still valid with E( Z  1 ) and E( Z  2 ) being non-positive 
and with at least one of them being strictly negative under the al-
ternative hypothesis. 

 By taking the order-restricted property of the SNPs data into 
account, we consider the statistics

1 1 2

2

2log

2log

C Z Z

C Z

� �

� 1 2

,  
Z�

                                                (6)

    where Ф( � ) is the cumulative distribution function of the standard 
normal distribution. The asymptotic distributions of  C  1  and  C  2  
are as follows. 

 Theorem 1 
 Under the null hypothesis,  C  1  and  C  2  are asymptotically  �  2  

distributed with 4 df.
  The proposed test statistic is the maximum of  C  1  and  C  2  de-

noted as

   W  = max{ C  1 ,  C  2 }.                                                                          (7)

  It should be noted that  C  1  and  C  2  are not independent. However, 
the following asymptotic property can lead us to an approxima-
tion of the p value associated with statistic  W . 

 Theorem 2 
 Under the null hypothesis of no association, the survival func-

tion of  W  is asymptotically bounded by

  2 	  –  	  2   ̂   Pr( W   1   w )  ̂   2 	 ,                                                        (8)

  where  	  = 1 –  �  2  4 ( w ) and  �  2  4 ( � ) is the cumulative distribution func-
tion of the  �  2  distribution with 4 df. 

 Theorem 2 suggests that we can estimate the p value of the test 
procedure based on  W  by 2 	 , and with small  	 , the approximation 
is very accurate.

  Under the ORRR genetic models, some other statistical tests 
can also be applied. For instance, the restricted likelihood ratio 
test (RLRT) has been proposed to detect the association for the 2 
 !   k  contingency table  [21, 22] . For SNP data with  k  = 3, the RLRT 
statistic is:

2 2

0 0
2 log / log 1 / 1 ,i i i i

i i

ˆ ˆˆ ˆRLRT r p s p
 


  where  p̂  =  r / n , and  
  ̂    i  =  r  i  / n  i ,  i  = 0, 1, 2, are order-restricted MLEs 
satisfying  
  ̂    0   ̂    
  ̂    1   ̂    
  ̂    2  or  
  ̂    0   6   
  ̂    1   6   
  ̂    2 . 

 Usually  
  ̂    i  is estimated using the pool adjacent violators algo-
rithm (PAVA)  [23] , and the above statistic has a weighted  �  2  
distribution ( �  – 

2  ) under the null hypothesis  [24] . Its p value is 
Pr( RLRT  1  c ) =  w  1 Pr( �  2  1   1   c )  w  2 Pr( �  2  2   1   c ). For the SNP data,  k  = 
3 and the weights can be estimated using  [22]   w  1  = 0.5,  w  2  = 0.5 – 
cos –1 (–  �  r  1  r  2 /[( r  –  r  1 )( r  –  r  2 ))/(2 
 ). For association studies, the or-
der (increase or decrease) is usually unknown before we observe 
the data. According to Barlow et al.  [24] , we can first compute the 
p values for both increasing and decreasing alternatives and then 
compute the overall p value as two times the smaller one.

  3. Monte Carlo Simulation Study 

 A Monte Carlo simulation study is used to study the 
performance and the power properties of the proposed 
procedure as well as some existing procedures in the lit-
erature. We assume that the rows of case and control in 
 table 1  follow multinomial distributions with probabili-
ties  p  = ( p  0 ,  p  1 ,  p  2 ) and  q  = ( q  0 ,  q  1 ,  q  2 ), respectively.

  Let
0 1 0 2 0

1 1 2 2
0 1 0 2 0

, , ,p p p p pu u u
q q q q q

� � � �

    where  �  1  and  �  2  are the relative risks. Since  p  0  +  p  1  +  p  2  = 
1, we have 

 
0

0
0 1 1 2 2 0 1 1 2 2

1 1 2 2
1 2

0 1 1 2 2 0 1 1 2 2

1 , ,

and .

qu p
q q q q q q

q qp p
q q q q q q

� � � �

� �
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    Therefore, for given  q  i s, and  �  1 ,  �  2 , the values of the cor-
responding  p  i s can be obtained from the above formulas. 

 For the controls, we first assume Hardy-Weinberg 
equilibrium (HWE) holds and the minor allele frequen-
cies (MAF) are 0.3 and 0.5. The numbers of cases ( r ) and 
controls ( s ) both equal 2,500 in our simulations. We use 
different  �  1  and  �  2  to compare the performance of our 
proposed method with those of GMS, MERT, MAX3, 
Pearson’s  �  2  test, CATT with  x  = 0.5, and the RLRT. In 
our simulation study, we use significance level  �  = 10 –5  to 
reflect the real situation of GWA studies where the total 
number of SNPs are large and the point-wise significance 
levels are usually very small. For each setting, we used 
1,000,000 realizations to estimate the type I error rates 
(sizes) and power values of those test procedures. To esti-
mate the p values of MAX3, GMS, and MERT, we used R 
package ‘Rassoc’ with option ‘asy’ which uses the asymp-
totic null distribution  [17] .

  Note that under the null hypothesis that  �  1  =  �  2  = 1, 
the estimated rejection rates are the estimated type I error 
rates. These estimated type I error rates of different test 
procedures are presented in  table 2 .  Figures 1  and  2  plot 
the estimated rejection rates of different test procedures 
when HWE holds. We also considered the situations 
where HWE does not hold for controls. Specifically, we 
assume the probabilities for genotypes ( AA ,  Aa ,  aa ) are  
 (0.1, 0.3, 0.6) or (0.6, 0.3, 0.1) in controls.  Figures 3  and  4  
plot the estimated rejection rates for these two settings, 
respectively.

  From the simulation results, for all of the methods ex-
cept for RLRT, the methods control type I error rates 
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quite well. In general, RLRT and our proposed method 
have similar powers. However, our simulation study 
shows that sometimes RLRT had inflated type I error 
rates. For example, when HWE holds and MAF = 0.3, the 
estimated size using RLRT was 2.3  !  10 –5 , which is sta-
tistically significantly different than the nominal level 1 
 !  10 –5  at significance level 0.05. The situation can be 
even worse when MAF is smaller. If we assume HWE 
holds and MAF = 0.2 and 0.1, the estimated sizes from 
RLRT were 2.5  !  10 –5 , and 2.8  !  10 –5 , respectively. Also 
we can see that MAX3 and GMS have similar perfor-
mances, while CATT with score  x  = 0.5 and MERT have 
power values close to each other.

  For additive models ( �  1  = 1.2,  �  2  = 1.4), MERT and 
CATT are usually more powerful than other methods, as 
expected. However, when the true genetic model is dom-

inant ( �  1  =  �  2  = 1.4) or recessive ( �  1  = 1,  �  2  = 1.4), MERT 
and CATT perform much worse than other methods. 
This indicates that MERT and CATT are sensitive to the 
underlying genetic models and therefore they are not ro-
bust. In contrast, MAX3 and GMS perform much better 
than MERT and CATT for dominant and recessive mod-
els; while they both have low power values for additive 
models. Under models other than recessive, additive, and 
dominant (i.e.  �  1  = 1.1,  �  2  = 1.4 and  �  1  = 1.3,  �  2  = 1.4), the 
proposed test and RLRT have among the three largest 
power values. Furthermore, if our proposed method is 
not the most powerful test for a given situation, it always 
has power value close to the largest one (usually the sec-
ond or the third largest in power values). This indicates 
that our proposed method is robust in the sense that it has 
comparable power under different situations considered 

Table 2. E stimated type I error rates for the test procedures discussed under different settings

Setting W �2 MAX3 GMS CATT MERT RLRT

HWE (MAF = 0.3) 1.2!10–5 1.3!10–5 1.4!10–5 1.4!10–5 1.3!10–5 1.5!10–5 2.3!10–5

HWE (MAF = 0.5) 0.7!10–5 0.8!10–5 0.8!10–5 0.8!10–5 0.9!10–5 0.8!10–5 0.9!10–5

q = (0.1, 0.3, 0.6) 1.2!10–5 1.1!10–5 1.0!10–5 1.0!10–5 1.1!10–5 1.4!10–5 1.6!10–5

q = (0.6, 0.3, 0.1) 0.6!10–5 1.1!10–5 0.6!10–5 0.6!10–5 1.1!10–5 0.8!10–5 0.5!10–5
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  Fig. 1.  The estimated power values of the different test procedures 
when HWE (MAF = 0.3) holds for controls with  �  1  = 1.0, 1.1, 1.2, 
1.3, 1.4, and  �  2  = 1.4. 
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  Fig. 2.  The estimated power values of the different test procedures 
when HWE (MAF = 0.5) holds for controls with  �  1  = 1.0, 1.1, 1.2, 
1.3, 1.4 and  �  2  = 1.4. 
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in the simulation study. This robustness property is one 
of the merits of the proposed method because the under-
lying genetic models are seldom known in practice.

   Figures 1–4  clearly show that the proposed methods 
have highest or close to highest powers for all the situa-
tions considered in the simulations. It should be noticed 
that for  figures 1  and  2 , when the estimated power values 
for MAX3 and GMS are very close to each other, the dif-
ferences between the two lines for these two methods are 
not appreciable. From our simulation study, we observe 
that the power values of some methods not only depend 
on the genotypic frequencies, but also the genetic model. 
For example, in  figure 2 , except for CATT and MERT, the 
power values of all other methods decrease when  �  1  in-
creases for  �  1   ! 1.2 ( �  1  = 1.2 is the additive model) and the 
power values increase when  �  1  increases for  �  1   1 1.2.

  4. Numerical Illustrations 

 In this section, we apply our proposed method with 
others to some real SNPs reported from four GWA stud-
ies with 100,000–500,000 SNPs for age-related macular 
degeneration (AMD)  [25] , two cancer studies  [26, 27] , and 
a hypertension study  [28] . The datasets are summarized 
in  table 3 , which were taken from  [17] .

Table 3. D atasets for numerical illustrations (adapted from [17])

GWA study
SNP ID

Case Control

AA Aa aa AA Aa aa 

AMD
rs380390 50 35 11 6 25 19
rs1329428 2 24 68 5 29 14

Prostate cancer
rs1447295 25 283 864 10 218 929
rs6983267 223 598 351 301 579 277
rs7837688 27 283 861 11 206 939

Breast cancer
rs10510126 10 180 955 14 272 854
rs12505080 50 477 608 99 408 628
rs17157903 18 316 777 26 220 862
rs1219648 250 543 352 170 538 433
rs7696175 187 605 353 249 496 396
rs2420946 242 546 357 165 537 440

Hypertension
rs2820037 40 587 1,325 72 684 2,180
rs6997709 118 716 1,116 237 1,201 1,500
rs7961152 416 963 570 492 1,448 992
rs11110912 67 647 1,237 83 804 2,049
rs1937506 113 742 1,097 244 1,205 1,484
rs2398162 111 624 1,205 194 1,121 1,608

1.0

0

0.2

0.4

0.6

0.8

1.1 1.2 1.3 1.4

q = (0.1, 0.3, 0.6)

�1

Po
w

er

New
�2

MAX3
GMS
CATT
MERT
RLRT

1.0

0.2

0.4

0.6

0.8

1.1 1.2 1.3 1.4

q = (0.6, 0.3, 0.1)

�1

Po
w

er

New
�2

MAX3
GMS
CATT
MERT
RLRT

  Fig. 3.  The estimated power values of the different test procedures 
when probabilities for genotypes ( AA, Aa, aa ) are (0.1, 0.3, 0.6) in 
controls with  �  1  = 1.0, 1.1, 1.2, 1.3, 1.4, and  �  2  = 1.4. 

  Fig. 4.  The estimated power values of the different test procedures 
when probabilities for genotypes ( AA, Aa, aa ) are (0.6, 0.3, 0.1) in 
controls with  �  1  = 1.0, 1.1, 1.2, 1.3, 1.4, and  �  2  = 1.4. 
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   Table 4  reports the p values for each SNP from the dif-
ferent methods. It can be observed that when the genetic 
model is between recessive and dominant ( Z  1   1  0 and  Z  2  
 1   Z  1 , or  Z  1   !   Z  2  and  Z  2   !  0), the proposed method has 
similar p values with those from CATT, which is usually 
more powerful than other methods. However, when the 
genetic model is close to recessive or dominant, CATT 
performs poorly, but GMS, MAX3 and our proposed 
method have similar p values and better than CATT. This 
indicates that GMS, MAX3 and our proposed method 
perform similar under this situation. For SNPs having 
large absolute values but with different signs of  Z  1  and  Z  2 , 
their genetic models do not belong to the generalized ge-
netic model. Under those situations, Pearson’s  �  2  test has 
the smallest p value as expected, since it is more robust 
than any other method, while CATT and MERT have 
large p values. The p values of the proposed method are 
similar to those from GMS and MAX3. Note that the p 
values from RLRT are usually similar to or smaller than 
those from our proposed test. However, we found that ten 
out of the seventeen estimated MAF values from controls 
are less than 0.3; these small p values may be due to the 
liberal nature of the RLRT for highly unbalanced data as 
mentioned before.

  In these illustrations, we can also see that the two ob-
served statistics  Z  1  and  Z  2  can be used to determinate the 
genetic model and the at-risk allele. For example, for 
SNP rs380390 in  table 4 ,  Z  1  = –4.04,  Z  2  = –3.11, since 
both  Z  1  and  Z  2  are negative, the at-risk allele is  A  instead 

of  a ; the genetic model should be neither recessive nor 
dominant, but between the two since the absolute values 
of  Z  1  and  Z  2  are much larger than 1. From  table 4 , we also 
see that some SNPs have  Z  1  and  Z  2  with different signs. 
Three out of six SNPs from the breast cancer data fall 
into this category. This situation deserves special atten-
tion. It is possible that the underlying genetic models are 
over- or under-dominant. But it is also possible that this 
happened merely due to chance or something else, such 
as population substructure, which needs further inves-
tigation. The breast cancer SNP data in  table 3  were tak-
en from the Nurses’ Health Study (NHS) and three ad-
ditional studies have been conducted by the authors  [26] . 
The p values for SNP rs17157903 from the other three 
studies are 0.72, 0.49 and 0.92, respectively, using the 
 �  2  test. Therefore the association between the SNP 
rs17157903 and breast cancer needs to be validated by 
future studies.

  5. Conclusions 

 In GWA studies, since the underlying genetic models 
are usually unknown, choosing a powerful statistic test is 
desirable. There is no single test performing uniformly 
better than the other competitors, and most of the exist-
ing methods may suffer from serious power lost under 
some models. Through Monte Carlo simulations and the 
study of real SNP data, we have seen that our proposed 

Table 4.  p values for real SNP data from the various methods and observed statistics Z1 and Z2 from the proposed method

SNP �2 MAX3 GMS CATT MERT RLRT Z1 Z2 W

rs380390 1.8!10–6 1.0!10–6 2.0!10–6 3.1!10–7 3.9!10–7 3.1!10–7 –4.04 –3.11 9.0!10–7

rs1329428 3.6!10–6 1.0!10–6 1.0!10–6 8.7!10–7 8.5!10–6 9.2!10–7 1.92 4.60 2.0!10–6

rs1447295 1.9!10–4 8.3!10–5 8.1!10–5 4.5!10–5 6.0!10–5 4.7!10–5 –2.46 –3.32 8.4!10–5

rs6983267 3.5!10–5 3.0!10–5 2.9!10–5 7.9!10–6 7.4!10–6 1.5!10–5 3.67 2.66 1.5!10–5

rs7837688 1.6!10–5 5.0!10–6 6.0!10–6 2.7!10–6 8.3!10–6 3.5!10–6 –2.51 –3.98 6.9!10–6

rs10510126 3.7!10–6 1.0!10–6 3.0!10–6 1.4!10–6 1.7!10–4 8.2!10–7 0.78 4.94 2.9!10–6

rs12505080 1.8!10–5 7.4!10–5 8.3!10–5 0.32 0.039 5.3!10–5 4.27 –1.90 2.4!10–4

rs17157903 9.9!10–6 5.3!10–5 4.8!10–5 6.3!10–4 0.058 3.8!10–5 1.31 –4.62 5.0!10–5

rs1219648 7.5!10–6 4.0!10–6 7.0!10–6 1.8!10–6 1.4!10–6 2.9!10–6 –3.92 –2.87 3.2!10–6

rs7696175 1.6!10–5 2.1!10–3 1.9!10–3 0.59 0.40 1.8!10–3 3.77 –2.80 1.7!10–3

rs2420946 8.8!10–6 7.0!10–6 4.0!10–6 1.9!10–6 1.5!10–6 3.5!10–6 –3.82 –2.95 3.7!10–6

rs2820037 7.7!10–7 1.0!10–6 2.0!10–6 5.8!10–5 0.013 2.3!10–6 1.03 –5.21 2.9!10–6

rs6997709 4.4!10–5 2.8!10–5 1.4!10–5 7.9!10–6 1.9!10–5 1.4!10–5 2.43 3.77 1.9!10–5

rs7961152 3.0!10–5 1.4!10–5 1.6!10–5 7.4!10–6 6.0!10–6 1.4!10–5 –3.68 –2.70 1.3!10–5

rs11110912 1.9!10–5 5.0!10–6 1.9!10–5 9.2!10–6 2.2!10–4 5.8!10–6 –1.08 –4.53 1.3!10–5

rs1937506 4.5!10–5 3.4!10–5 2.6!10–5 9.2!10–6 8.5!10–6 1.3!10–5 3.13 3.19 1.9!10–5

rs2398162 5.7!10–6 1.0!10–6 2.0!10–6 7.9!10–6 1.2!10–4 1.7!10–6 1.02 4.81 4.0!10–6
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method is more robust and powerful than existing meth-
ods in many situations.

  The robustness of the proposed test is expected since, 
unlike the CATT test, it does not require a complete ge-
netic model specification except that we assume the 
model belongs to a generalized ORRR model. Therefore 
it is not very sensitive to model mis-specification. Mean-
while, the proposed test correctly incorporates the prop-
erty of the monotonicity of the relative risks for SNP data 
in GWA studies which results in power gains. Moreover, 
based on the simulation results, we observed that when 
the genetic models are not one of the perfect models (i.e. 
recessive, additive, and dominant models), the proposed 
test usually has the highest or second highest power. In 
real world applications, the perfect models may be rare if 
not impossible; hence the proposed method is certainly 
preferable. Finally, through simulation (data not shown) 
and real data (see  table  4 ), when the genetic model is 
not ORRR, e.g. over- or under-dominant, the proposed 
method has reasonable power. Beside the robustness of 
the proposed method, another advantage of the pro-
posed method is that the p value can be easily approxi-
mated with very high accuracy. Although sometimes 
RLRT can also be applied to generalized ORRR models, 
it should be used with caution as it inflates type I error 
rates when the data are highly unbalanced (e.g. HWE 
with small MAF).

  Since some of SNPs are highly correlated due to link-
age disequilibrium, the p values obtained from individu-

al SNPs are also correlated. Traditional multiple tests cor-
rection methods, such as the Bonferroni procedure, are 
not appropriate. One may choose instead to use the re-
cently proposed method which is based on the concept of 
effective number  [29] .

      Appendix 

 Proof of Theorem 1 
 For large sample sizes, which are usually available for GWA 

studies, we can assume  Z  1  and  Z  2    are independently and identi-
cally distributed as standard normal, so that Ф( Z  1 ) and Ф( Z  2 ) are 
independently and identically distributed uniformly between 0 
and 1. Therefore, according to Fisher  [30] ,  C  1  is  �  2  distributed with 
df = 4. Similarly,  C  2  is  �  2  distributed with df = 4.

  Proof of Theorem 2 
 For a large sample size, from Theorem 1,  C  1  and  C  2  are both  �  2  

distributed with df = 4. Using the concept of associated random 
variables by Esary et al.  [31]  and Theorem 2 by Owen  [32] , we have

  Pr( C  1   1   w ) + Pr( C  2   1   w ) – Pr( C  1   1   w )Pr( C  2   1   w )  ̂   Pr( W   1   w ) 
 ̂   Pr( C  1   1   w ) + Pr( C  2   1   w ), i.e. 2 	  –  	  2   ̂   Pr ( W   1   w )  ̂   2 	 .
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