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Background: There are alternative substrates to the mitochondrial respiration.
Results: Data-driven model-based analysis renders predictions of alternative substrates to the mitochondrial respiration.
Conclusion:Metabolomics data in conjunction with flux-basedmodels can discriminate among hypotheses based on enzymol-
ogy alone.
Significance: This analysis provides a basic framework for in silico studies of alternative pathways in metabolism.

Discrimination of metabolic models based on high through-
put metabolomics data, reflecting various internal and external
perturbations, is essential for identifying the components that
contribute to the emerging behavior of metabolic processes.
Here, we investigate 12 different models of the mitochondrial
electron transport chain (ETC) in Arabidopsis thaliana during
dark-induced senescence in order to elucidate the alternative
substrates to this metabolic pathway. Our findings demonstrate
that the coupling of the proposed computational approach,
based on dynamic flux balance analysis, with time-resolved
metabolomics data results in model-based confirmations of the
hypotheses that, during dark-induced senescence in Arabidop-
sis, (i) under conditions where the main substrate for the ETC
are not fully available, isovaleryl-CoA dehydrogenase and 2-hy-
droxyglutarate dehydrogenase are able to donate electrons to
the ETC, (ii) phytanoyl-CoA does not act even as an indirect
substrate of the electron transfer flavoprotein/electron-transfer
flavoprotein:ubiquinone oxidoreductase complex, and (iii) the
mitochondrial �-aminobutyric acid transporter has functional
significance in maintaining mitochondrial metabolism. Our
study provides a basic framework for future in silico studies
of alternative pathways in mitochondrial metabolism under
extended darkness whereby the role of its components can be
computationally discriminated based on available molecular
profile data.

The development of mathematical models of metabolic pro-
cesses is based on accurate gene annotations and functional
characterization of the involved enzymes. However, the sys-
tems biology paradigm has already recognized that an accurate
description of metabolism involves more than a mere enumer-
ation of its components (i.e. enzymes and metabolites). The

promise of mathematical modeling lies in its potential to quan-
titatively encompass the multitude of scenarios under which a
given biological process may operate and, as a result, elucidate
which components contribute to the emerging behavior (1–8).
For this purpose, the spatial separation of metabolites and bio-
chemical reactions into their cellular compartments is an
important feature to provide an accurate assessment of ener-
getic limitations thatmay be lost in decompartmentalizedmod-
els (9, 10). Nevertheless, the predictive power of decompart-
mentalizedmodels can be increased by providingmore realistic
constraints and objectives (10). To this end, high throughput
data from the recently establishedmetabolomics profiling tech-
nologies have already proven invaluable in positing hypotheses
related to the underlyingmechanisms of investigated processes
(11, 12).However, the usage of (time-resolved) high throughput
data in devising and discriminating between models that can
precisely capture not only a single environmental condition but
also various internal and external perturbations is still in its
nascent stages and strongly depends on the employed compu-
tational approaches.
Metabolic network analysis has provided numerous ap-

proaches for in silico probing of biological processes in order to
elucidate, to understand, and, ultimately, to control the under-
lying biochemical mechanisms (13, 14). For instance, flux bal-
ance analysis (FBA),3 as one of the prominent computational
approaches, facilitates the analysis of steady-state fluxes inmet-
abolic networks assumed to operate toward optimizing an
objective (e.g. biomass yield) under the constraints captured by
the stoichiometric matrix (2, 15–19). However, perturbedmet-
abolic networks, altered by removing reactions, may not obey
the assumptions inherent to FBA. To determine the flux distri-
butions in a perturbed metabolic network, the minimization of
metabolic adjustment (MOMA) approach has been proposed,
based on the hypothesis that fluxes undergo aminimal redistri-
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bution compared with those of the unperturbed network (20).
Nevertheless, FBA and MOMA are based on the steady-state
assumption and, thus, preclude the analysis of the dynamics of
metabolite levels and flux (re)distribution.
The dynamics of metabolic networks has traditionally

been investigated by methods rooted in ordinary differential
equations, which require a large amount of information for
simulating the temporal changes of metabolite concentra-
tions/levels and reaction fluxes (21, 22). To this end, the
phenomenological parameters of specific enzyme kinetics
(e.g. mass action, Michaelis-Menten, or Hill) have to be
determined by accurate measurements of enzyme activities
and data fitting to experimentally obtained data, constrain-
ing the application of these methods to well studied systems
of moderate size and complexity.
In contrast, dynamic FBA (DFBA) offers an alternative to

predicting time-resolved metabolic profiles with limited
knowledge of enzyme kinetics (23). Moreover, DFBA has
been combined with MOMA, resulting in the so-called
M-DFBA approach based on the hypothesis of minimal fluc-
tuation of the dynamic profile of metabolite levels over time
(24, 25). Unlike the analyses based on FBA, which focus on
the steady-state behavior, DFBA and M-DFBA offer the
means to analyze transient (non-steady) states. M-DFBA has
recently been employed in predicting time-resolved metab-
olite concentrations and flux (re)distributions in photosyn-
thetic metabolism under different CO2 and water conditions
(25) and in reconstructing the network of the myocardial
energy metabolism under normal and ischemic conditions
(24). However, although these approaches have resulted in
establishing viable hypotheses related to the system’s
dynamics (here represented by stoichiometry-constrained
polynomial-based approximation), to our knowledge, their
quantitative accuracy with respect to experimental data has
not yet been tested. Therefore, further investigations of the
capacity of constraint-based approaches to pose and validate
data-driven hypotheses in a dynamic setting are required,
particularly with respect to recently raised issues related to
the effect of different optimization criteria (26, 27).
In plants, like other organisms, the functional involvement

of the electron transfer flavoprotein-electron transfer flavopro-
tein:ubiquinone oxidoreductase (ETF-ETFQO) complex has
recently been demonstrated (28). It participates in an impor-
tantmechanism by which the cell can sustain respiration under
conditions in which carbon supply is severely compromised (1,
28). In fact, detailed enzymological studies, broad metabolite
profiling, and isotope tracer studies of a range of Arabidopsis
t-DNA knock-out mutants have ultimately led to the elucida-
tion of the pathways linking the alternative plant substrates to
the mitochondrial electron transport chain (ETC) (1, 29, 30).
Furthermore, it has been demonstrated that alternative path-
ways are not constitutively active (1) and that they are coordi-
nated with a general increase in protein and amino acid degra-
dation (31).
In this study, we devise and apply an extension ofM-DFBA

to 12 different model variants of the mitochondrial ETC in
Arabidopsis thaliana during dark-induced senescence in
order to elucidate alternative substrates of this important

pathway. This is achieved by statistically sound model dis-
crimination based on determining the likeliest model com-
plying with the experimental measurement of metabolite
levels. Moreover, the model is validated not only for the wild
type but also for four mutant lines (see Fig. 1). We opt for
A. thaliana as opposed to other microbial or mammalian
models due to the availability of data across a relatively broad
time scale (1). That said, variations on these varying inputs
are conserved across kingdoms; indeed, genetic defects in
paralogous inputs to the Arabidopsis system are responsible
for multiple mammalian diseases (32–35), indicating the
broad physiological importance of these alternative inputs
into the key respiratory pathway catalyzed by the mitochon-
drial ETC (36). Our findings demonstrate that the coupling
of the proposed extended M-DFBA approach and time-re-
solved metabolomics data results in an accurate description
of the dynamic behavior of metabolite levels following the
onset of dark-induced senescence in Arabidopsis thaliana.
The predictions from the modeling are in line with the
experimental data despite the simplification regarding
metabolite compartmentalization (i.e. the mitochondrial
and extramitochondrial pools are considered to be in equi-
librium). However, this is perhaps not surprising given the
size and substrate diversity of the mitochondrial carrier fam-
ily (37) alongside the physiological evidence of rapid metab-
olite exchange across the mitochondrial membranes (38).
Furthermore, we show that the integration of metabolomics
data facilitates the discrimination between different model
alternatives in the case when only pathway stoichiometry is
known. Finally, by using the experimentally validated
M-DFBA models, we provide computational model-based
confirmation that (i) under carbon starvation, isovaleryl-
CoA dehydrogenase (IVDH) and 2-hydroxyglutarate dehy-
drogenase (D2HGDH) feed electrons into the ETC; (ii)
phytanoyl-CoA does not act as a substrate of the ETF-ET-
FQO complex; and (iii) the �-aminobutyric acid (GABA)
transporter is of functional significance in maintaining nor-
mal mitochondrial metabolism in A. thaliana in conditions
of extended darkness.

MATERIALS AND METHODS

Experimental Data ofMetabolite Levels—Metabolite profiles
of wild type and mutant lines (ivdh-1, d2hgdh1–2, etfqo-1, and
etfqo-2) during dark-induced senescence were obtained from a
previous study (1). Metabolites were measured using the ninth
to twelfth leaves of 4-week-old, short day (8 h light/16 h dark)
grown Arabidopsis plants after treatment for 0, 3, 7, 10, and 15
days in extended darkness. The values for the absolute levels of
metabolites used in modeling are the means obtained from six
independent plants per genotype (see supplemental Table 2).
Absolute levels were estimated based on concentration curves
of authentic standard compounds that were run side by side
with the samples.
Dynamic Flux Balance Analysis Based on Minimization of

Metabolic Adjustment—DFBA has been developed to over-
come the main drawback of the classical FBA which, due to the
steady-state assumption, precludes the analysis of the network
dynamics. Computationally, the DFBA approach involves opti-
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mization over a given time period to obtain time-resolved flux
rates and metabolite levels. The optimization problem is
rendered computationally tractable by parameterizing the
dynamic equations with the help of orthogonal collocation on
finite elements (39). To this end, the time period of interest is
divided into a finite number of intervals, named finite elements.
Furthermore, the metabolite concentrations/levels and flux
rates are parameterized at the roots of an orthogonal polyno-

mial (e.g. Legendre polynomial) within each finite element (23).
A description of how this algorithm works is provided in the
supplemental material.
The combination of MOMA with DFBA has been formu-

lated by the objective function of minimizing the Euclidean
distance between metabolite levels at adjacent orthogonal
roots. Consequently, the objective function of the basic
M-DFBA is defined as follows,

FIGURE 1. Simplified electron transport chain network together with the considered model variants. The model variants for the single knock-out mutant
lines are given in dark blue for d2hgdh-2, green for ivdh-1, and yellow for both etfqo-1 and etfqo-2, resulting in four alternatives. The model variants of the single
knock-out mutant lines with exclusion of phytanoyl-CoA are highlighted in light blue followed by x. Analogously, the model variants of the wild type with
exclusion of GABA permease are given in red followed by x. A check mark next to an enzyme denotes inclusion of the corresponding reaction in the investigated
model variants.
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Objective � Min��
j � 1

M �
t0

tf��
i � 1

N

�xi, j � xi, j � 1�
2��t � tj�dt�

(Eq. 1)

where xi,j represents the level of the metabolite i at the time
point given by the orthogonal root j, and � is the Dirac delta
function (40).
Here, we extend the basic M-DFBA by including a minimi-

zation of the simulated data to experimentally obtainedmetab-
olite levels in order to improve the possibility of comparing the
considered model alternatives (41). As a result, the objective
function is expanded by the sum of the Euclidean distance
between predicted levels and experimentally obtained values
for all K measured metabolites over L time points. Note that,
due to the particular experimental setting and the collocation
points used in the parameterization, it always holds thatK � M
and L � N; in other words, it may be the case that the levels of
few metabolites are measured at some collocation points. The
nonlinear program used in solving this extended M-DFBA
approach is then formulated as follows,

Objective � Min��
j � 1

M �
t0

tf��
i � 1

N

�xi, j � xi, j � 1�
2��t � tj�dt

� �
k � 1

K ��
l � 1

L

�xk,l � yk,l�
2� (Eq. 2)

subject to dX/dt � S�v, vmin � v � vmax, Xmin � X � Xmax, and
X(t0) � X0, where X and v are vectors of metabolite levels and
reaction fluxes over time, S denotes the stoichiometric matrix
(with rows corresponding to metabolites and columns to reac-
tions of themetabolic network described by S), and t is the time.
Experimentally measured levels of metabolite k at time point l
are denoted by yk,l. The minimum and maximum allowable
fluxes of each reaction andmetabolite levels are defined by vmin
and vmax and Xmin and Xmax, respectively. The vector X0 gives
the initial level for the set of metabolites.
Statistical Analysis—Let yi,j represent the experimentally

obtained level of the ith metabolite at time point (collocation
point) j, and let xi,j represent the level predicted byM-DFBA. In
addition, let the number of time points, in our case collocation
points, be given byM.We validate the results for themetabolite
levels predicted by the modified M-DFBA with experimental
data by using statistics based on the residual sum of squares
(RSS). For the ith metabolite, this statistic is given by the
following.

RSSi �

�
j � 1

M � yi, j � xi, j�
2

M
(Eq. 3)

Experimental data for each orthogonal root are obtained by a
cubic spline interpolation of the mean of measurements of six
replicates for each plant at the five given time points. The resid-
ual sum of squares is only determined for the metabolites that

are present in all modeling variants and for which experimental
data are available.
The RSS statistics for the different metabolites do not pro-

vide a single value to denote how well the entire model fits the
data. Moreover, these statistics strongly depend on the actual
range in whichmetabolite levels may vary. Therefore, they can-
not be used for a meaningful and fair comparison of models.
The most common method for model discrimination is per-

formed by means of the F-test. However, the F-test can only be
used if the compared models are nested (i.e. one is a simplifica-
tion of the other). Moreover, the existing methods can be used
to compare two models only when both of them are fitted to
exactly the same data. In our setting, we do not have nested
models for all pair-wise comparisons; in addition, we do not use
the same data for any pair of mutants (see Fig. 2). Furthermore,
a statistical analysis is only useful for these metabolites for
which measured values are available, whereas only the metab-
olites that are present in all model alternatives lead to a signif-
icant comparison. Therefore, this setting of our analysis does
not justify the usage of the F-test.
Another alternative for comparison of modeling alternatives

is given by R-squared measures (R2), known as coefficients of
determination. However, many R-squared measures strongly
depend on the number of considered reactions and/or metab-
olites and, consequently, on the complexity of the compared
models (42, 43).
Here, we use the explained sum of squares (Rexp2 ) for each

metabolite defined as follows.

Rexp,i
2 �

�
j � 1

M �xi, j � y� i�
2

�
j � 1

M � yi, j � y� i�
2

(Eq. 4)

Due to the usage of a nonlinear objective in the extended
M-DFBA, the predicted values for themetabolite levels and flux
rates may not linearly depend on the measured data. Conse-
quently, the value of Rexp,i2 may exceed unity in small samples;
however, it does not need to increase due to an increasing
model complexity. As a result, formodel comparison, we used a
modified Rexp,i2 , whereby in the numerator, the sample mean of
experimental data, y�i, is replaced by the sample mean of the
fitted values x� i (42, 43).

Rexp,i
2 �

�
j � 1

M �xi, j � x� i�
2

�
j � 1

M � yi, j � y� i�
2

(Eq. 5)

The value of Rexp2 for the entire model is the average of Rexp,i2

over all considered metabolites; a larger value indicates better
correspondence between model predictions and experimental
observations.
Implementation—Allmathematical programming approaches

are implemented inMATLAB7.8.0,R2009awith theoptimization
platformTOMLABversion7.6 (44).WeuseSNOPTto solvenon-
linear programming problems.
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RESULTS
Modeling of Mitochondrial Electron Transport Chain of

A. thaliana—Here we have constructed a simplified model of
the ETC in themitochondria ofA. thaliana to formally describe
themetabolic responses in plants under conditions of extended
dark conditions and examined it by using different model vari-
ants. The model considers the basic tricarboxylic acid (TCA)
cycle reactions as well as the involvement of other enzymes,
such as IVDH and D2HGDH, which can supply electrons and
carbon skeleton to the TCA cycle during dark-induced senes-
cence in order to supply electrons to the ETC. Although it is
clear that not only the classical phosphorylating pathways
but also several non-phosphorylating pathways, involving
NAD(P)H dehydrogenases, the alternative oxidase, and active
uncoupling protein, have an effect on themitochondrialmetab-
olism (45), there is no evidence for alteration in their function in
the analyzed mutants. It is also important to mention that sug-
ars, the substrate of the main pathway of electron transfer, are
almost fully consumed within a few days of darkness, whereas
paradoxically someof theTCAcycle intermediates increase (1),
indicating that they are not greatly catabolized, making the
usage of alternative substrates such as those considered here
essential for plant survival.

The process of themodel analysis is divided into two parts: (i)
model discrimination and (ii) simulation, depicted in Fig. 2. It
should be noted that the experimentally obtained metabolite
levels included in the modeling process belong to different cell
types of the leaves and are not resolved with respect to subcel-
lular levels. Therefore, the model is set up on a leaf rather than
on a cell level. As a simplification of this leaf-basedmodel, other
substrates, such as NAD, are excluded. However, we point out
that during dark-induced senescence, themain respiratory sub-
strates are completely consumed within few days of stress (1,
29, 30, 46), making the presence of alternative pathways an
essential condition to maintain respiratory rates, which further
justifies the exclusion of other substrates of the ETC in the
modeling.
Altogether, the model of the ETC in the mitochondria of

A. thaliana during dark-induced senescence consists of 30
metabolites biochemically transformed via 39 reactions. Six of
the metabolites, including phytanoyl-CoA, lysine, valine, leu-
cine, isoleucine, and sucrose, are considered as external
(depicted as dashed ovals in Fig. 1). Reactions 1 and 2 (v1 and v2)
capture the transformation of sucrose into pyruvate, which
then enters the TCA cycle (reactions 3–9 (v3–v9)). Reactions
15–17 (v15–v17) model the transport (from mitochondria to

FIGURE 2. Overall process of model analysis and discrimination. Model discrimination is initially carried out for the complete and the reduced model
variants. The better performing model is subjected to two additional steps of model discrimination, each with the help of a different data set. The extended
version of M-DFBA is used in conjunction with the available data sets at every level of model discrimination.
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cytosol) and transformation of 2-oxoglutarate into glutamate,
its subsequent conversion into GABA, and the experimentally
confirmed transport (from cytosol to mitochondria) (47) and
transformation ofGABA into succinate. Reactions 14–23 (v14–
v23) model the transport of electrons, whereas reactions 10–13
(v10–v13) model the import of the four (external) amino acids.
From the 39 reactions included in the model, 29 are set as irre-
versible, with an unboundedmaximal flux rate (see supplemen-
tal Table 1). Furthermore, as common practice in stoichiome-
try-based modeling, the reversible reactions are split into two
irreversible reactions (48, 49).
As a central part of our study, the electron transfer between

different metabolites (referring also to the proteins participat-
ing in this process) is modeled with the help of coupled reac-
tions. Each metabolite involved in electron transfer can exist in
two states, with or without a bound electron (e�), denoted by
the subscripts c and p, respectively. To illustrate, the reaction
modeling the transfer of an electron from ubiquinone (UQ) to
complex III is modeled as follows,

UQc ¡ complex IIIc

SCHEME 1

where the subscript c denotes that both ubiquinone and com-
plex III are with a bound e�. Because ubiquinone can also exist
in a state without a bound electron, an additional reversible
reaction is added, whereby the following is true.

UQc 7 UQp � e�

SCHEME 2

Themaximumallowable levels for themetabolites in a c state as
well as for the e� are unconstrained. On the other hand, in
absence of data concerning the temporal behavior of metabo-
lites in state p, the levels for the metabolites in this state are
assumed to remain constant during the modeled time period.
Such reaction coupling fully captures the mechanism of elec-
tron transfer. Finally, for every metabolite for which experi-
mental measurements are available, the initial level at time
point t0 � 0 (X0), is defined to be the mean of the available data
(marked in red in supplemental Table 2); X0 for pyruvate is set
to 5000 �mol mg�1 fresh weight; for the remaining metabo-
lites, the initial levels are set to 1 �mol mg�1 fresh weight.
By applying the extended M-DFBA approach, we model the

metabolite levels and flux rates over a time period of 16 days,
corresponding to the experimental design (1). This time period
is divided into eight finite elements, and the metabolite levels
and flux rates within each finite element (spanning 2 days) are
predicted at five time points, corresponding to the collocation
points. Therefore, altogether, the metabolite levels and flux
rates at 40 time points are considered in the computational
investigation.
Whereas the stoichiometric coefficients of the network are

fixed by the biochemical reactions (see “Materials and Meth-
ods”), the bounds for themetabolite levels are adjusted by using
the available experimental data (see supplemental Table 2). To
this end, the minimum and maximum metabolite levels mea-
sured over the considered time interval were used as lower and

upper bounds (Xmin andXmax), respectively, for the internal and
external metabolites. In addition, for the external metabolites,
the metabolite level bounds at the orthogonal roots, coinciding
with the measured time points, are set to the corresponding
minimum andmaximummeasured levels. Moreover, the levels
measured at the fourth time point, corresponding to 10 days,
are used as constraints for the orthogonal root (collocation
point) at 10.0938 days as a root of closest value. The levels of
metabolites for which no experimental data are available were
assumed to be �0 �mol mg�1 fresh weight.
Model-based Confirmation of Posited Hypotheses—The pre-

dictions obtained from the model by using the proposed
M-DFBA approach are in turn used to discriminate between
different modeling alternatives representing the possible
behaviors under dark-induced senescence. The model variant
that predicts time-resolved metabolite levels closest to the
experimental data will be considered as the likeliest model that
can explain the electron transfer under the investigated
conditions.
First, we focus on the behavior of the A. thaliana wild type

during dark-induced senescence. Here, we discriminate
between two different model variants: the first consisting of all
considered components, including 30 metabolites and 39 reac-
tions, and the second excluding the reactions 10–14 as well as
18–21, given in Fig. 1. Clearly, the exclusion of reactions 10–14
and 18–21 results in a submatrix of the stoichiometric matrix
of the complete model.
The average residual sum of squares (RSS) for each metabo-

lite is employed to demonstrate that the predictions for the
metabolite levels are close to the experimental data, as summa-
rized in the first and second row of Table 1, corresponding to
the two investigated model variants. From the 11 metabolites
for which RSS can be computed, the levels of the following four
are closest to the time-resolved experimental data: GABA, glu-
tamate, 2-oxoglutarate, and succinate. Larger discrepancies can
be observed for glucose, fructose, sucrose, and malate. Taken
together, the range of the values forRSS for bothmodel variants
confirms that M-DFBA can closely predict the time-resolved
metabolite levels.
Averaging the values of RSS over all metabolites, however,

cannot be used for selecting the model that best fits the exper-
imental data (see “Materials and Methods”). To discriminate
between the two model variants, we used the modified
explained sumof squares (Rexp2 ), presented inTable 2. The value
of 0.89 for the Rexp2 in the case of the complete model is higher
than that for the reduced model variant (0.8118). This finding
indicates that the first model variant, which includes all consid-
ered reactions, provides the best fit to the data. As a result, we
are able to not only ascertain the experimental data but also
provide modeling support in confirming the hypotheses con-
cerning the feeding of electrons into the ETC from IVDH and
D2HGDH during dark-induced senescence (1). However, it
should be noted that, although these pathways are particularly
prominent during dark-induced senescence (1, 46), recent evi-
dence suggests that they also operate in the dark period of a
normal light-dark cycle in the photosynthetic tissue of Arabi-
dopsis (50, 51).
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Knowing that the complete model performs better, in the
next step, we use it to predict the metabolite levels for four
differentmutant lines, namely ivdh-1 (green), d2hgdh1-2 (blue),
and etfqo-1/etfqo-2 (yellow), described in the legend to Fig. 1. In
this context, it should be mentioned that a metabolic model is
only useful as long as it can explain not only wild type data but
also data coming from different environmental and/or genetic
scenarios. For this purpose, the maximum allowable flux rate is
set to zero for reactions that are knocked out in the different
mutants. By employing the submatrix of stoichiometries, cor-
responding to each of the four model variants, as input to
M-DFBA, we observe that the resulting RSS values indicate a
good agreement between the obtained predictions and experi-
mental data (1). More specifically, GABA, 2-oxoglutarate, glu-
tamate, sucrose, glucose, and fructose exhibit a small RSS,
whereas moderate discrepancies between predictions and
experimental data are observed for all other metabolites. The
exception is malate, whose RSS in all model variants has a value
higher than 40,000.
Moreover, the values for the modified explained sum of

squares (Rexp2 ) of 0.72 and 0.8464 for the ivdh-1 and d2hgdh1-2
mutant lines, respectively, indicate that both IVDH and
D2HGDH play an important conditional role in feeding elec-
trons to the mitochondrial ETC in many diverse species (28,
31). Analogous conclusions can be elicited for the etfqo-1 and
etfqo-2 mutant lines, whose model variants exhibit Rexp2 of

1.0064 and 0.9127, respectively. That said, the fact that
phytanoyl-CoA, as the chlorophyll breakdown intermediate,
accumulates both in knock-out mutants of ETF-ETFQO com-
plex and of IVDH following dark-induced senescence (1) sug-
gests that it may also serve as a plant-specific substrate for this
pathway.
For this reason, in the subsequentmodeling steps, we analyze

the barely explored influence of phytanoyl-CoA in transferring
electrons into the ETC during dark treatment. For eachmutant
line, two model variants are considered in M-DFBA-based
analysis: with and without electron feeding from phytanoyl-
CoA. Interestingly, our findings demonstrate that phytanoyl-
CoA does not act as a substrate of the ETF-ETFQO complex in
A. thaliana during dark-induced senescence, a hypothesis put
forth by Araújo et al. (46). This claim is quantitatively sup-
ported by the larger values for the Rexp2 of the model variants
without phytanoyl-CoA acting as substrate compared for three
of the four model variants, corresponding to the mutant lines,
namely d2hgdh1-2, etfqo-1, and etfqo-2. The computational
findings presented in Table 2 indicate that the value of Rexp2 for
the ivdh-1 model variant with phytanoyl-CoA is larger by
0.0027 compared with that of the model variant without
phytanoyl-CoA. Although this small discrepancy may still be
indicative of phytanoyl-CoA acting as alternative substrate,
closer inspection of RSS in Table 1 shows that for all metabo-
lites, the model variant without phytanoyl-CoA results in pre-

TABLE 1
Average residual sum of squares (RSS) for each metabolite in the 12 considered model variants
Shown are the values of RSS for 11 metabolites whose levels have been experimentally measured: sucrose (suc), glucose (gluc), fructose (fru), citrate (cit), 2-oxoglutarate
(2OG), succinate (succ), fumarate (fum), malate (mal), glutamate (glu), and GABA. The complete model includes all 30 metabolites and 39 reactions, whereas the reduced
model variant excludes reactions 10–14 and 18–21, shown in Fig. 1. Themodel variant “No phyt-CoA” excludes phytanoyl-CoA as the electron donor via the ETF-ETFQO
complex, whereas the model variant “No phyt-CoA and no GABA” excludes in addition the GABA permease (reaction 17) from the complete model. Values for RSS closer
to zero indicate a better agreement between time-resolved predictions of metabolite level and the employed experimental data.

Model suc gluc fru cit iso 2OG succ fum mal glu GABA

WT Complete 159.02 221,230.76 191,918.84 48.34 9.38 28.93 5.57 0.82 103,723.82 26.95 0.95
WT Reduced 1529.96 3005.61 2307.22 59.57 11.93 43.70 5.90 0.19 43,305.98 104.27 0.62
WT No phyt-CoA 3415.16 5506.61 4338.30 58.51 8.42 52.44 6.09 0.04 44,943.25 285.25 0.95
WT No phyt-CoA & no GABA 477.47 2065.20 819.33 19.48 0.99 14.69 1.42 0.02 43,507.80 24.90 0.08
d2hgdh1-2 Complete 488.61 135,187.01 155,327.49 122.87 2.57 0.63 19.18 207.76 127,850.79 1.22 1.51
d2hgdh1-2 No phyt-CoA 890.94 2482.94 947.50 165.81 64.27 2.79 28.58 307.95 852,055.93 5.02 1.56
etfqo-1 Complete 408.56 2943.75 1138.70 176.00 24.93 2.27 54.46 15.17 469,183.19 17.96 5.55
etfqo-1 No phyt-CoA 146.95 1354.74 583.71 14.16 31.34 0.91 46.62 14.74 657,855.62 3.96 2.89
etfqo-2 Complete 803.83 3524.91 1268.16 863.69 26.61 4.26 64.24 28.35 1,256,949.23 31.93 2.48
etfqo-2 No phyt-CoA 813.56 3136.59 1403.67 793.27 23.84 3.49 60.90 28.17 1,253,703.10 36.66 1.58
ivdh-1 Complete 976.12 5556.01 4530.74 115.37 122.38 0.89 16.64 9.37 719,997.15 4.39 0.73
ivdh-1 No phyt-CoA 1163.52 5959.82 4884.76 79.20 89.29 0.31 16.59 7.70 701,012.11 4.26 0.95

TABLE 2
Explained residual sum of squares (RSS) for each metabolite together with its mean and variance for the 12 considered model variants
Shown are the values of RSS for 11 metabolites whose levels have been experimentally measured: sucrose (suc), glucose (gluc), fructose (fru), citrate (cit), 2-oxoglutarate
(2OG), succinate (succ), fumarate (fum), malate (mal), glutamate (glu), and GABA. The complete model includes all 30 metabolites and 39 reactions, whereas the reduced
model variant excludes reactions 10–14 and 18–21, shown in Fig. 1. The model variant “No phyt-CoA” excludes phytanoyl-CoA as electron donor via the ETF-ETFQO
complex, whereas the model variant “No phyt-CoA and no GABA” excludes in addition the GABA permease (reaction 17) from the complete model. A larger value for the
mean RSS indicates a model with higher explanatory power.

Model suc gluc fru cit iso 2OG succ fum mal glu GABA Mean RSS Variance RSS

WT Complete 0.95 0.02 0.02 0.53 1.34 0.75 1.75 2.71 0.11 0.81 0.80 0.8900 0.6544
WT Reduced 0.62 0.52 0.62 0.66 1.37 0.63 1.82 0.72 0.00 0.88 1.09 0.8118 0.2292
WT No phyt-CoA 1.92 1.53 1.83 0.82 1.41 1.33 1.69 1.42 0.00 1.72 1.44 1.3736 0.2954
WT No phyt-CoA and no GABA 0.88 0.69 0.82 0.60 1.12 0.75 1.38 0.94 0.01 1.07 0.95 0.8373 0.1224
d2hgdh1-2 Complete 0.87 0.33 0.36 0.91 1.02 0.95 1.42 0.86 0.68 1.06 0.85 0.8464 0.0951
d2hgdh1-2 No phyt-CoA 0.80 0.72 0.79 0.95 1.06 0.81 1.63 0.85 0.00 0.99 0.95 0.8682 0.1436
etfqo-1 Complete 1.31 1.09 1.51 0.84 1.14 0.82 1.49 1.41 0.04 0.78 0.64 1.0064 0.1949
etfqo-1 No phyt-CoA 1.06 0.91 1.26 1.07 1.12 1.01 1.59 1.36 0.01 1.07 0.84 1.0273 0.1579
etfqo-2 Complete 0.81 0.63 0.84 0.78 1.15 0.70 1.33 1.90 0.00 0.91 0.99 0.9127 0.2203
etfqo-2 No phyt-CoA 0.80 0.65 0.86 0.75 1.14 0.74 1.35 1.93 0.00 0.93 1.04 0.9264 0.2266
ivdh-1 Complete 0.70 0.48 0.51 0.92 0.82 0.77 0.97 0.80 0.00 0.93 1.02 0.7200 0.0876
ivdh-1 No phyt-CoA 0.67 0.45 0.48 0.88 0.80 0.87 0.95 0.80 0.01 1.00 0.98 0.7173 0.0897
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dictions of metabolite levels that are consistently closer to the
used experimental data. Additionally, these results are in good
agreement with the recent finding that ivdh-1/d2hgdh1�2
double mutants have a phenotype similar to that of mutants of
the ETF-ETFQO complex (46). Moreover, our findings suggest
that alternative pathways of plant respiration occur indepen-
dently of phytanoyl-CoA 2-hydrolase and its substrate,
phytanoyl-CoA. It is important to mention that the maximum
capacity of this alternative pathway is theoretically much lower
than the respiratory rate in leaves.
Iterative Refinement of Confirmed Hypotheses—Our finding

that phytanoyl-CoA does not act as a substrate of the ETF-
ETFQOcomplex in plantmitochondrialmetabolismholds true
in the model variants for the four investigated mutant lines. In
the following, we refine this confirmed hypothesis and show
that it is also valid for the complete wild type model of plant
mitochondrial metabolism (including all considered compo-
nents). To this end, we compare the explained sum of squares
Rexp2 and RSS between the two variants of the complete model:
with and without phytanoyl-CoA as alternative electron donor
via the ETF-ETFQOcomplex. The computational findings pre-
sented in Table 2 indicate that the value of Rexp2 for the model
variant without phytanoyl-CoA is larger by 0.4836 compared
with that of the model variant with phytanoyl-CoA.
Finally, we investigate the extent towhich our computational

results depend on the inclusion of GABA transport in the
model without phytanoyl-CoA. Although recent experimental
evidence suggests that mitochondrial GABA permease plays a
functional role in plants (47), its contribution to the mainte-
nance of mitochondrial metabolism is not fully understood yet.
Here we compare two variants of themodel without phytanoyl-
CoA: with and without GABA transport into the mitochondria
(reaction 17). In the latter, an additional reaction is included
that allows the usage ofGABA in further reactions. The value of
0.8373 for Rexp2 demonstrates that the model variant without
GABA transport has less explanatory power comparedwith the
model variant inwhich theGABA transport into themitochon-
dria is present. Therefore, these findings confirm the existence
of GABA flux into the mitochondrion, deemed necessary for
maintaining the experimentally observed levels of this metabo-
lite. It should be noted, however, that the GABA permease is
certainly not the only protein capable of catalyzing mitochon-
drial GABA uptake.

DISCUSSION

In mammals, the ETFQO is a component of the mitochon-
drial ETC, which, together with ETF, forms a short pathway
able to transfer electrons from at least 11 different mitochon-
drial flavoprotein dehydrogenases to the ubiquinone pool (28).
By sharp contrast, in plants, only two major donors, IVDH and
D2HGDH, have been characterized to date (1). In the same
study, the authors provide compelling evidence for a condi-
tional role of those enzymes in the maintenance of mitochon-
drial respiration under conditions of carbon starvation and
indicate alternative pathways as an essential role for the main-
tenance of respiratory rates.
Here, by using a computational approach, we aid in the elu-

cidation of plant-specific substrates that donate electrons to the

ubiquinone pool. We show that the presented model predic-
tions and the experimentally observed behavior in A. thaliana
are in excellent agreement, supporting the claim that both
lysine and 2-hydroxyglutarate are the major substrates supply-
ing electrons to the mitochondrial ETC under carbon limita-
tion conditions. Moreover, our modeling approach provides
compelling evidence that the phytanoyl-CoA breakdown does
not contribute to the electron donation via the ETF-ETFQO
complex, as suggested very recently on the basis of experimen-
tal data (46).
Although the metabolic significance of GABA in plants and

animals has not yet been fully understood (47), considerable
advances in our understanding will probably be achieved by
studying the dynamics of GABA distribution and transport.
Here, we provide model-based evidence that GABA transport
plays a functional role in augmenting the TCA cycle and main-
taining of a normal metabolism (47). This claim is experimen-
tally supported by demonstrating the existence of GABA flux
into the mitochondrion in rat brain (52, 53) as well as the
recently demonstrated presence and (albeit relatively minor)
functional role of a mitochondrial GABA permease (AtGABP)
in both primary carbon metabolism and growth as well as its
importance in ensuring proper GABA-mediated respiration in
plants (47). It is important to mention that it is currently not
experimentally possible to produce a mutant fully deficient in
GABA uptake because we do not know the molecular nature of
additional mitochondrial transporters. On the other hand, this
renders the use of modeling approaches, such as the one
reported here, an essential tool for characterizing themetabolic
system.
The agreement between the main biochemical properties

observed in previous experimental studies and our computa-
tional predictions further implies that theM-DFBA approach is
a suitable method to study complex metabolic networks.
M-DFBA captures smooth changes over time (by the Euclidean
distance); thus, internal perturbations are reduced, which arise
due to temporal changes of themetabolic state characterized by
the coupling of metabolite concentrations and flux distribu-
tions. For instance, even with the assumption of the simplest
kinetic law, namely, mass action kinetics whereby a reaction
flux rate is proportional to the product of the concentrations of
the participating reactants (54), a change inmetabolite concen-
trations may affect flux rates. The change in fluxes, in turn, as a
result of themass balances, has an effect on the concentrations.
In addition, our findings demonstrate that the combination of
the extended M-DFBA approach with the explained sum of
squares provides the means for model discrimination, which
can be used for model-based confirmation of hypotheses. We
believe that the model discrimination in which no parameter
values are allowed to change between modeling scenarios rep-
resents the most objective setting for model selection. In
accordancewith our claims, here, the (sub)stoichiometries, flux
boundaries, and polynomials used to obtain the collocation
points remain unchanged for the 12 consideredmodel variants,
further confirming the strength of stoichiometry-based
modeling.
Altogether, the data-driven model-based confirmation of

alternative substrates to the mitochondrial ETC highlights the
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potential of molecular profiling data in the development of
models consistent with previously described observations
under changing conditions. We believe that this information is
of high relevance for our basic understanding of plant respira-
tion and its alternative pathways. In fact, our computational
study indicates that the proposed model in conjunction with
M-DFBA has the potential to probe various in silico scenarios
that are in line with in vivo plant mitochondrial metabolism.
Therefore, this study provides a basic framework for future in
silico studies of mitochondrial metabolism under carbon limi-
tation conditions, through which hypotheses related to the role
of its components can be tested. Although the present study
relies on data frommodel plant species, we believe that any data
set of a similar quality could be analogously interrogated.
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20. Segrè, D., Vitkup, D., and Church, G. M. (2002) Analysis of optimality in
natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. U.S.A.
99, 15112–15117

21. Rios-Estepa, R., and Lange, B. M. (2007) Experimental and mathematical
approaches to modeling plant metabolic networks. Phytochemistry 68,
2351–2374
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