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Abstract

Endogenous small molecule metabolites that regulate animal longevity are emerging as a novel means to influence health
and life span. In C. elegans, bile acid-like steroids called the dafachronic acids (DAs) regulate developmental timing and
longevity through the conserved nuclear hormone receptor DAF-12, a homolog of mammalian sterol-regulated receptors
LXR and FXR. Using metabolic genetics, mass spectrometry, and biochemical approaches, we identify new activities in DA
biosynthesis and characterize an evolutionarily conserved short chain dehydrogenase, DHS-16, as a novel 3-hydroxysteroid
dehydrogenase. Through regulation of DA production, DHS-16 controls DAF-12 activity governing longevity in response to
signals from the gonad. Our elucidation of C. elegans bile acid biosynthetic pathways reveals the possibility of novel ligands
as well as striking biochemical conservation to other animals, which could illuminate new targets for manipulating longevity
in metazoans.
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Introduction

Small molecule metabolites and peptide hormones are well

known to regulate various aspects of animal physiology, metab-

olism, and homeostasis. More recently they have emerged as

important modulators of life span. Notably, a modest reduction in

insulin/IGF-1 signaling (IIS) has been shown to increase longevity

in several organisms from worms to mice and possibly humans [1].

Several naturally occurring metabolites including spermidine,

trehalose, endocannabinoids, and oleic acid are among a handful

of small molecules impacting longevity in model systems [2–5].

Metabolites of cholesterol, such as steroids, oxysterols, and bile

acids, act through cognate nuclear hormone receptor transcription

factors (NHRs) to regulate gene expression [6,7]. Of these sterol

metabolites, bile acids are primarily known for their roles in

dietary fat absorption, but are increasingly recognized as

important signaling molecules, regulating aspects of cholesterol,

glucose, and fatty acid metabolism through the control of sterol-

sensing NHRs, including FXRa, LXR, and G-protein coupled

receptors [8–10].

In C. elegans, DAF-12, a homolog of FXRa and LXR, is

activated by the bile acid-like dafachronic acids (DAs) and governs

key events that influence longevity [11,12]. In particular, DAF-12

regulates the decision to undergo reproductive development or

arrest at the dauer diapause, an alternative developmental stage

characterized by stress resistance and extended longevity [12–14].

DAF-12 also regulates adult longevity in response to signals from

the gonad. Loss of the germline through laser microsurgery or

genetic manipulation leads to an extended lifespan, dependent

upon DAF-12 and its ligands [1,15,16]. The discovery of

endogenous ligands for DAF-12, which include D4- and D7-

dafachronic acids and the structurally related 25-S-cholestenoic

acid, provided the first evidence that bile acid-like molecules

modulate animal lifespan [11,17,18].

Molecular and genetic studies indicate that an endocrine

network governs dauer formation and longevity. These experi-

ments suggest a model whereby environmental signals indicating

favorable conditions are integrated via neurosensory processing,

which stimulate IIS and TGF-b signaling. These pathways

converge to activate DAF-12 by promoting DA biosynthesis, thus

facilitating growth to reproductive maturity and a normal lifespan.

Conversely, in unfavorable conditions, upstream endocrine

pathways are downregulated and are thought to decrease DA

levels. In the absence of its ligands, DAF-12 associates with the co-

repressor DIN-1/SHARP and promotes entry into the long-lived

dauer stage [12,19–21]. Thus, DA availability regulates DAF-12

activity, controlling the binary dauer decision and lifespan, but

how DA availability is achieved is not well understood. In

addition, DAF-12 and DA signaling play a conserved role in

regulating nematode dauer formation across wide evolutionary
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distances, including in parasitic nematodes whose infective stages

are analogous to dauer [22,23]. Treatment with DA promotes exit

from diapause in these animals, suggesting that components of DA

biosynthesis and DAF-12 signaling are potential anti-helminthic

therapeutic targets.

Although DA availability controls DAF-12 activity to influence

longevity, the synthesis and regulation of these molecules are

poorly understood. The DAs are derived from dietary cholesterol,

which is required for nematode viability and fertility. Previous

studies identified DAF-36, a Rieske-like oxygenase with cholesterol

7-desaturase activity; DAF-9, a cytochrome P450 with activity

similar to mammalian CYP27A1; and HSD-1, a putative 3-b-

hydroxysteroid dehydrogenase homolog as acting in the biosyn-

thesis of DAs from dietary cholesterol [11,18,24–29]. However,

the nodes of regulation by upstream signaling pathways,

environmental and nutritional signals, as well as the functional

relationship of identified gene products, intermediary metabolites,

different ligands, and the extent, structure, and biochemistry of the

pathway are unclear. Moreover it is unknown whether these

sterols have other physiologic functions. Such knowledge could

provide novel targets for manipulation of longevity pathways or for

combating parasitic diseases. Additionally, understanding the

metabolism of cholesterol to bile acid synthetic pathways may

yield important insights into cardiovascular disease and obesity.

Here we elucidate new components of DA synthesis, including a

novel conserved 3-hydroxysteroid dehydrogenase, which plays a

key role in the control of reproductive development and longevity.

Our findings suggest remarkable conservation of bile acid

synthetic pathways, which may have implications for the

physiologic role of cholesterol and bile acid homeostasis in higher

organisms.

Results

Genetic Screens Identify New Components of
Dafachronic Acid Biosynthesis

Hormone biosynthetic mutants that reduce production of the

dafachronic acids (DAs) have a characteristic phenotypic profile.

Partial reduction of the pathway, as seen in daf-9(rh50)

hypomorphs, results in gonadal migration defects (Mig), in which

gonadal distal tip cells fail their scheduled turns and migrate

instead into head and tail along the ventral body wall [25]. Strong

reduction of the pathway, as seen in daf-9(dh6) null mutants, results

in 100% penetrant constitutive dauer entry (Daf-c) at all

temperatures, with the formation of ‘‘partial dauer’’ larvae, which

have the characteristic dauer cuticle but show incomplete radial

constriction of the pharynx and body. By contrast, daf-36(k114)

null mutants display these phenotypes with partial penetrance and

only in combination with additional stresses: animals are Mig

upon cholesterol deprivation and Daf-c at the elevated temper-

ature of 27uC, phenotypes that are rescued by DA supplementa-

tion [24]. These results suggest that DAF-36 may work in a

branched pathway in concert with other unknown activities, which

ultimately converge on DAF-9 for DA production.

To identify new activities in DA biosynthesis, we conducted

genome-wide RNAi screens looking for enhancers of daf-36(k114)

at the normally permissive temperature of 25uC. We identified

several loci that in combination with daf-36 gave Mig and Daf-c

phenotypes and whose molecular identity suggested a role in DA

biosynthesis. As expected, RNAi against daf-9 enhanced daf-36

mutant phenotypes (Figure 1A). We also identified ncr-1, a worm

homolog of the Niemann-Pick C1-like proteins implicated in sterol

transport that was previously noted to interact with daf-36

(unpublished data) [24,30]. Genes with potentially novel roles in

DA synthesis included dhs-16, a short-chain dehydrogenase/

reductase (SDR), and emb-8, a NADPH-Cytochrome P450

oxidoreductase. SDRs comprise a large superfamily that typically

carry out oxidation/reduction reactions on a variety of substrates,

including sterols, xenobiotics, retinoids, and fatty acids [31]. Of

the 84 SDRs present in C. elegans, the two closest relatives of DHS-

16 are DHS-2 and DHS-20, with ,37% identity in protein

sequences. Nematode orthologs include one in the parasitic

nematode Ascaris suum, which displays ,40% identity (Figure

S1). In humans, the closest relatives include SDR9C7/SDR-O

and HSD17B6, which display 40% and 38% identity to DHS-16,

respectively (Figure S1). HSD17B6 is involved primarily in

androgen metabolism, whereas SDR9C7/SDR-O is expressed

almost exclusively in the liver of mice and humans and reportedly

metabolizes retinoids [32,33].

Cytochrome P450 oxidoreductases are obligate co-factors for

many CYP450 oxygenases, catalyzing electron transfer from

NADPH/NADH to CYP450 enzymes, including those involved in

sterol and bile acid synthesis. In humans, NADPH-CYP450

oxidoreductase is required for the activity of most microsomal

CYP450 enzymes [34]. The single ortholog found in C. elegans,

emb-8 (46% identity), is essential for early embryonic development

[35]. EMB-8 is required for CYP450-mediated enzymatic

activities in C. elegans [36,37] and presumably serves as a co-factor

for DAF-9/CYP450 in DA production.

Larval Phenotypes Suggest a Role in DA Production
To investigate whether loss of dhs-16 leads to characteristic

phenotypes associated with DA deficiency, we obtained a putative

null allele from the knockout consortium (NBP, Japan). dhs-

16(tm1890) is a 607 bp deletion removing the first exon, including

part of the SDR/NAD(P)-Binding Rossman Fold domain (Figure

S2). dhs-16 mutants appear normal at 20uC but have Daf-c

phenotypes at 27uC, forming transient partial dauers with

incomplete penetrance (65%611%) (Figure 1B–D, Table 1). They

also exhibit gonadal Mig defects upon cholesterol deprivation

(37%613%). Similar larval phenotypes were visible with dhs-16

RNAi, confirming the dhs-16 loss of function phenotype (Figure 1E,

Table S1). Consistent with a role in DA production, dhs-

16(tm1890) phenotypes were enhanced by mutations in other

biosynthetic genes, including daf-36(k114)/Rieske oxygenase and

hsd-1(mg433)/3b-hydroxysteroid dehydrogenase null mutants, as

Author Summary

Although well known for their role in the absorption of
dietary fat, bile acids have emerged as important
metabolic signaling molecules that regulate cholesterol,
fat, and glucose metabolism. Bile acids work through
nuclear receptors, a class of transcription factors that bind
to fat soluble hormones to directly control target gene
expression. In the roundworm C. elegans, DAF-12 is a
nuclear receptor for bile acids, called the dafachronic acids,
which are known to regulate development and longevity,
however the synthesis and regulation of these molecules
remain unclear. Here we identify novel biochemical
activities, including a conserved 3-hydroxysteroid dehy-
drogenase, involved in the production of the dafachronic
acids, illuminating their role in cholesterol and bile acid
metabolism, and longevity. The identified activities reveal
remarkable evolutionary conservation to those seen in
mammalian bile acid synthesis, potentially providing novel
ways to manipulate animal lifespan and cholesterol
homeostasis.

Elucidation of C. elegans Bile Acid-Like Pathways
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Figure 1. Newly identified loci display phenotypes resembling DA deficiency. (A) Enhancement of daf-36(k114) gonadal Mig defects is seen
upon knockdown of daf-9, dhs-16, and emb-8. Arrowheads indicate the arms of the gonad, visible along the body due to failure of proper distal tip
cell migration. (B) Mig and Daf-c phenotypes of dhs-16(tm1890) deletion mutants, under conditions of cholesterol deprivation (upper image) and 27uC
(lower image). (C) Analysis of dauer formation at 27uC on NGM. dhs-16(tm1890) mutants show Daf-c phenotypes similar to daf-36(k114) (N = 3, M6SD;
**p,0.01). (D) Analysis of the gonadal Mig defects of dhs-16 null animals on NGM without added cholesterol (N = 3, M 6 SD; **p,0.01, *p,0.05). (E)
RNAi knockdown of dhs-16 and emb-8 in wild-type worms at 27uC induces Daf-c phenotypes, similar to knockdown of daf-36 (N$4, M 6 SD;
**p,0.005). (F) Genetic epistasis analysis of dhs-16(tm1890) (Daf-c) together with Daf-d mutations in transcription factors of insulin/IGF, TGF-b, and
DA signaling show that DHS-16 works downstream of DAF-16/FOXO and DAF-5/SKI, but upstream of DAF-12/NHR (N = 3, M 6 SD; **p,0.01). (G)
Similar genetic epistasis analysis of emb-8 RNAi-induced dauer phenotypes at 27uC suggests that EMB-8 acts downstream of DAF-16 and upstream of
DAF-12 (N = 3, M 6 SD; **p,0.01). (H) The DAF-12 target gene mir-241, a let-7 related microRNA, shows reduced expression in dhs-16 mutants under
low cholesterol conditions at 25uC (N = 3, M 6 SD; **p,0.01, *p,0.05).
doi:10.1371/journal.pbio.1001305.g001
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well as daf-9(k182) hypomorphs (Table 1). Comparable enhance-

ment was also seen with mutants of ncr-1/Niemann-Pick C1-like

protein. Phenotypic enhancement of daf-36 null animals suggests

that DHS-16 works in a branched rather than linear biosynthetic

pathway for DA biosynthesis. Similar to dhs-16, knockdown of emb-

8 by RNAi resulted in Daf-c phenotypes at 27uC and strongly

enhanced the Mig defects of daf-9(k182) hypomorphs, daf-36(k114)

nulls, as well as dhs-16(tm1890) deletion mutants in a daf-12-

dependent manner (Figure 1E, Table S1), consistent with a role in

DA production.

Genetic Epistasis Experiments Place dhs-16 at a Position
Consistent with a Role in DA Production

Genetic and molecular experiments reveal that downregulation

of insulin/IGF-1 and TGF-b signaling triggers dauer formation by

stimulating their respective transcriptional outputs daf-16/FOXO,

daf-3/SMAD, and daf-5/SNO-SKI [12]. In addition, significant

crosstalk occurs between these pathways. Ultimately, IIS and

TGF-b signaling converge upon DA production/DAF-12 activity

and are thought to downregulate DA synthesis and promote

assembly of a DAF-12/DIN-1 repressor complex that specifies

dauer. Loci involved in DA biosynthesis work downstream of IIS

and TGF-b signaling components but upstream of DAF-12/NHR,

with respect to dauer formation [25,26]. DA can rescue the Daf-c

phenotypes of daf-2/InsR, daf-7/TGF-b, and daf-9/CYP450

mutants, and all DA-related phenotypes show DAF-12 depen-

dence [11]. To determine where DHS-16 acts in these pathways,

we conducted epistasis experiments with dhs-16(tm1890) Daf-c

mutants, constructing strains with the dauer defective (Daf-d) loci

daf-12/NHR, daf-16/FOXO, and daf-5/SNO-SKI. Double mu-

tants were then analyzed for whether Daf-c or Daf-d phenotypes

prevailed. Whereas daf-12 completely suppressed dhs-16 Daf-c

phenotypes, daf-16 and daf-5 did not (Figure 1F, Table 1).

Similarly, Daf-c phenotypes of emb-8 RNAi induced at 27uC were

suppressed by daf-12 but not by daf-16 null mutations, placing it at

a similar position in the pathway, although unexpectedly daf-5

mutants formed dauers under RNAi culture conditions (Figure 1G,

Table S1). These results place DHS-16, and possibly EMB-8,

downstream of DAF-16/FOXO and DAF-5/SKI but upstream of

DAF-12/NHR, consistent with a role in DA biosynthesis.

Accordingly, expression levels of the let-7 related microRNA mir-

241, a direct target gene responsive to DA and DAF-12 in

developmental timing events, were down in dhs-16 mutants

(Figure 1H).

Sterol Supplementation Experiments Position DHS-16 in
the DA Biosynthetic Pathway

The nature and intermediates of the DA biosynthetic pathway

are not well understood and elements of a pathway have been

assembled from fragmentary evidence. Major identified sterols

metabolized from cholesterol include 7-dehydrocholesterol and

lathosterol, but their function and the enzymes that produce them

Table 1. dhs-16 epistasis and synergy experiments.

Genotype

Daf-c at 256C ±
SE(%)a N b

Daf-c at 276C ±
SE(%)a N b

Mig at 206C ± SE(%)

NG-cholc N b

WT 060 1,792(3) 1363 1,869(3) 060 146(3)

daf-36(k114) 060 467(2) 9165 2,849(3) 59611 136(3)

dhs-16(tm1890) 060 492(3) 65611 1,252(3) 37613 158(3)

dhEx396(dhs-16::gfp) nd 060 174(3) 060 122(3)

dhs-16; dhEx396 nd 161 335(3) 060 150(3)

daf-5(e1386) nd 060 1,136(3) nd

dhs-16; daf-5 nd 5963 706(3) nd

daf-16(mu86) nd 060 1,849(3) nd

dhs-16; daf-16 nd 4263 2,390(3) nd

daf-12(rh61rh411) nd 060 1,223(3) nd

dhs-16; daf-12 nd 060 1,072(3) nd

daf-9(k182) 060d 1,222(2) 66629 909(2) 1860e 68(1)

daf-36;daf-9 10060d 356(2) nd nd

dhs-16; daf-9 1469d 947(2) nd 6460e 66(1)

dhs-16; daf-36 3364 968(2) 7767 224(2) 7862e 50(2)

daf-2(e1370) 060d 370(2) nd nd

dhs-16;daf-2 363d 150(2) nd nd

hsd-1(mg433) 060 964(2) 060 909(2) nd

dhs-16; hsd-1 68621 628(2) 9563 565(2) nd

ncr-1(nr2022) 060 660(2) 47616 342(2) 060 78(2)

dhs-16; ncr-1 060 550(2) 6063 295(2) 4167e 50(2)

nd, not determined.
aDauers formed under reproductive growth conditions.
bNumber of experiments is given in parentheses.
cHermaphrodite distal tip cells that fail to turn in L3, n.50 cells, grown on NGM without added cholesterol.
dMeasured at 20uC.
ePercentage Mig on normal NGM plates with cholesterol.
doi:10.1371/journal.pbio.1001305.t001
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are unclear. Recently we showed that DAF-36/Rieske oxygenase

is involved in the conversion of cholesterol to 7-dehydrocholes-

terol, revealing this metabolite as a precursor in DA biosynthesis

[29]. Best understood is DAF-9/CYP450, with an established

activity as a sterol-27-hydroxylase that successively oxidizes the

side chain of the 3-keto steroids, lathosterone and 4-cholesten-3-

one, to the carboxylic acid moieties of D7-DA and D4-DA,

respectively [11]. We used these and related sterols to a priori

build a pathway model, using metabolic genetic and biochemical

approaches.

To place dhs-16 at a specific step in DA biosynthesis, we first

performed sterol supplementation experiments by feeding loss-of-

function mutants proposed DA precursors, including cholesterol,

lathosterol, lathosterone, and 4-cholesten-3-one, and looked for

rescue of Daf-c phenotypes at 27uC. Compounds working

downstream or parallel to the synthetic block should rescue

mutant phenotypes, while those working upstream should not.

Consistent with working at the last step, the daf-9(k182)

hypomorphic mutant was fully rescued only by the DAs

(Figure 2A), while the Daf-c ligand-insensitive daf-12(rh273)

mutant was mostly unaffected by provision of DAs (Figure S3A).

In accord with a role in DA production, dhs-16 mutants were

rescued by D4-DA and D7-DA (Figure 2B).

Strikingly, dhs-16 mutants were also rescued by the 3-keto

steroid lathosterone, the proposed precursor of D7-DA, but not by

the 3b-hydroxyl steroid lathosterol, nor by cholesterol and 7-

dehydrocholesterol (Figure 2B). Similarly, rescue was seen with the

3-keto steroid 4-cholesten-3-one, the proposed precursor of D4-

DA, but not by 4-cholesten-3b-ol. These results indicate that the 3-

alcohol sterols (cholesterol, 7-dehydrocholesterol, lathosterol, and

4-cholesten-3b-ol) lie upstream of the block, whereas the 3-keto

steroids (lathosterone, 4-cholestene-3-one, and the DAs) lie

downstream. Furthermore, lathosterone rescued animals at

nanomolar concentrations more efficiently than 4-cholesten-3-

one (Figure S3C). This may be due to the 5-fold lower activity of

D4-DA relative to D7-DA, rendering precursors of D4-DA less able

to rescue [38]. Alternatively, DHS-16 may act with greater

specificity in the D7-DA branch. Also consistent with a role

downstream of daf-36, the Daf-c phenotype of dhs-16;daf-36 double

mutants was rescued by provision of lathosterone and the

dafachronic acids in a manner similar to dhs-16 single mutants

(Figure S3C–E). Given the structures of these molecules, the

simplest hypothesis is that DHS-16 converts 3-hydroxy steroids to

3-keto steroids—that is, it functions as a 3b-hydroxysteroid

dehydrogenase in the production of the DAs. If so, DHS-16 is

surprisingly not orthologous in sequence to known 3b-hydroxy-

steroid dehydrogenase enzymes, thereby identifying a novel

function for a conserved orphan dehydrogenase.

We also examined rescue of emb-8 RNAi Daf-c phenotypes by

proposed DA precursors and found that rescue was achieved only

by provision of the DAs and not by lathosterone or 4-cholesten-3-

one (Figure 2C), suggesting emb-8 functions at the same step as daf-

9, consistent with a role as a CYP450 reductase.

DHS-16 Has Lathosterol 3b-Dehydrogenase Activity
The feeding experiments described above indicated that DHS-

16 may act in the production of lathosterone and possibly 4-

cholesten-3-one. To further investigate this hypothesis, synchro-

nized wild-type N2 and dhs-16 mutant animals were cultured in

liquid media en masse and harvested at the L3 stage. Lipid extracts

were obtained from these animals and analyzed by LC/MS/MS

for changes in proposed DA precursors. Consistent with

predictions based on feeding experiments, dhs-16 mutants had

3.5-fold less lathosterone compared to wild-type animals

(p,0.0001), indicating that dhs-16 is required for production of

lathosterone (Figure 2D–E).

Similar results were also obtained by growing worms on solid

media and analyzing lipid extracts by GC/MS/MS: dhs-16

mutants had levels of the putative product lathosterone that were

below the limit of detection, as well as significantly decreased levels

of the downstream product D7-DA compared to wild-type (1.5

versus 4.5 pg/mg protein, p,0.05) (Figure 2F). The residual D7-

DA seen in dhs-16 mutants suggests that other pathways exist for

its production. D4-DA was below the detection limit for both WT

and mutant extracts (unpublished data). Surprisingly, levels of the

putative precursor lathosterol did not accumulate, nor did

cholesterol, 7-dehydrocholesterol, or 4-cholesten-3-one (Figure 2F).

These results suggest the pathway is not strictly linear and that

lathosterol may be metabolized through other pathways.

Interestingly, dhs-16 mutants also showed significantly decreased

levels of 4-methyl sterols (consisting of lophenol and 4-methyl-5a-

cholest-8(14)-en-3b-ol), suggesting a role in their production

(Figure 2F). 4-methyl derivatives are nematode-specific modifi-

cations catalyzed by STRM-1 methyltransferase. STRM-1 is

proposed to irreversibly shunt sterols, such as lathosterone and 4-

cholestene-3-one, away from DA production and thereby

regulate dauer formation [39]. Taken together, these results

reveal that DHS-16 is required for the normal production of

lathosterone, which subsequently impacts levels of D7-DA, and

that earlier proposed intermediates may have complex branch

points or tissue-specific changes.

In order to directly test whether DHS-16 could convert 3-

hydroxysteroids to 3-ketosteroids, we expressed FLAG-tagged

DHS-16 in HEK293T cells and incubated microsomes isolated

from these cells with putative substrates. LC/MS/MS analysis of

lipid extracts from these incubations revealed a dramatic increase

in lathosterone concentration when DHS-16(+) microsomes were

incubated with the substrate lathosterol compared to controls

(p,0.005) (Figure 3A–B). In addition, DHS-16(+) microsomes

were also capable of producing 4-cholesten-3-one when incubated

with cholesterol, as levels of this compound were produced at

significantly higher concentrations compared to controls (p,0.05)

(Figure 3C–D). When extracts from these incubations were fed to

dhs-16 mutants, only incubations with lathosterol were able to

rescue the Daf-c phenotypes of these animals at 27uC, whereas

extracts from incubations with the vehicle control ethanol or

cholesterol could not, consistent with the decreased ability of 4-

cholesten-3-one to rescue at low concentrations (Figure 3E). In

sum, these biochemical data demonstrate that DHS-16 has activity

similar to 3b-hydroxysteroid dehydrogenases in the conversion of

3-alcohol to 3-keto steroids.

Although DHS-16 is capable of producing of 4-cholesten-3-one

in vitro, analysis of worm extracts suggested that it is not required

for this activity (Figure 2F, Figure 3F). Another enzyme, the

canonical 3b-hydroxysteroid dehydrogenase HSD-1, has been

postulated to carry out this reaction [27], and therefore could work

in parallel to DHS-16. Accordingly, dhs-16 mutants synergized

strongly with hsd-1 (61% Daf-c, 25uC), more so than with daf-36

(30% Daf-c, 25uC), despite the fact that dhs-16 and hsd-1 single

mutants had weaker phenotypes than daf-36 (Table 1). Sterol

analysis of hsd-1 single mutants, however, revealed no significant

reduction in levels of 4-cholesten-3-one and D7-DA at 20uC
(Figure 3F, Figure S4A). In addition, at the elevated temperature

of 25uC, these animals displayed elevated levels of D7-DA relative

to wild-type (Figure S4B). Thus, while HSD-1 may act in a parallel

pathway, it is not required for 4-cholesten-3-one nor D7-DA

production. Moreover, the sterol rescue profile of dhs-16;hsd-1

double mutants resembled that of dhs-16 alone, exhibiting rescue

Elucidation of C. elegans Bile Acid-Like Pathways
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of Daf-c phenotypes at 27uC by excess lathosterone, 4-cholesten-3-

one, and D7-DA (Figure S3F). Also similar to dhs-16 single

mutants, dhs-16;hsd-1 double mutants were deficient in lathoster-

one. At 20uC, double mutants showed no decrease in 4-cholesten-

3-one levels, and surprisingly no change in D7-DA levels,

suggesting that hsd-1 reverses the D7-DA deficiency seen in dhs-

16 single mutants at this temperature. By contrast, at 25uC, D7-DA

levels were lower in double mutants (Figure S4B), consistent with

Figure 2. dhs-16 mutant animals are deficient in lathosterone. (A) daf-9(k182) rescue is seen only with the DAs. Experiments were carried out
at 27uC with 33 mM concentration of supplemented compounds (N$3, M 6 SD; ***p,0.0001). (B) dhs-16(tm1890) rescue is seen with lathosterone
and dafachronic acids, but not by cholesterol, 7-dehydrocholesterol, and lathosterol. Similarly, 4-cholesten-3-one rescues, but not cholesterol or 4-
cholesten-3b-ol. This indicates that dhs-16 may function in the conversion of lathosterol to lathosterone in the production of D7-DA and in the
formation of 4-cholestene-3-one in the production of D4-DA (N$3, M 6 SD; ***p,0.0001). (C) emb-8 RNAi rescue is seen only with the DAs, and not
with lathosterone or 4-cholesten-3-one. (N$3, M 6 SD; **p,0.01). (D) LC/MS/MS analysis of lipid extracts from L3 stage animals reveals that
lathosterone levels are reduced in dhs-16(tm1890) mutant animals compared to N2 wild-type (WT) animals, shown quantitatively in (E). Lathosterone
levels are significantly reduced in dhs-16 animals relative to N2 wild-type (3.5-fold decrease; N = 7, M 6 SD; **p,0.001). (F) GC/MS/MS analysis of
sterol levels in dhs-16 mutants reveals deficiencies in lathosterone, D7-dafachronic acid, and 4-methyl sterols compared to N2 wild-type (N$10, M 6
SEM; *p,0.05, **below detection limit).
doi:10.1371/journal.pbio.1001305.g002
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Figure 3. DHS-16 acts as a 3-hydroxysteroid dehydrogenase in DA biosynthesis. (A) LC/MS/MS analysis of lipid extracts from DHS-16 and
control microsomes incubated with the proposed substrate lathosterol, shown quantitatively in (B). Significantly more lathosterone is detected in
incubations of DHS-16 microsomes with lathosterol than in incubations with empty vehicle ethanol controls. DHS-16 microsomes also do not
produce lathosterone when incubated with cholesterol, demonstrating that specific products are made depending upon the substrate provided
(N$3, M 6 SD; **p,0.005). (C) LC/MS/MS analysis of 4-cholesten-3-one levels in lipid extracts from DHS-16 and control microsomes incubated with
cholesterol, shown quantitatively in (D). Concentrations of 4-cholesten-3-one in incubations of DHS-16 microsomes with cholesterol are significantly
greater than that seen in control microsomes or incubations with lathosterol (N = 3, M 6 SD; *p,0.05). (E) Rescue of the Daf-c phenotype of dhs-
16(tm1890) mutants at 27uC is seen when fed lipid extracts of DHS-16 microsomes incubated with the proposed substrate lathosterol. Rescue is not
seen with extracts from DHS-16 microsomes incubated with ethanol vehicle alone or with cholesterol, and extracts from empty vector pCMV control
microsomes do not rescue in any condition (estimated concentrations of 300 nM in plates; N = 3, M 6 SEM; *p,0.05). (F) GC/MS/MS analysis of sterol
levels in N2 wild-type, dhs-16(tm1890), hsd-1(mg433), and dhs-16;hsd-1 double mutants reveals that hsd-1 is not required for 4-cholesten-3-one
production, as previously proposed, suggesting HSD-1 may act in an alternative parallel pathway. In addition, although the dhs-16;hsd-1 double
mutants did not contain measurable lathosterone levels, D7-DA levels were not reduced, suggesting that lathosterone is not required for its
production and that alternate pathways must exist that are independent of dhs-16 (N$6, M 6 SEM; **below detection limit, *p,0.05).
doi:10.1371/journal.pbio.1001305.g003
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the stronger phenotypes of these animals at elevated temperatures.

Taken together these observations suggest that other pathways

must exist for D7-DA production independent of lathosterone and

dhs-16 and that additional dafachronic acid ligands or inhibitors

may also exist, which may interact with complex regulation.

Hypodermal DAF-9 Expression Reflects Decreased
Dafachronic Acid Levels in dhs-16 Mutants

To further elucidate the activity of DHS-16 in the DA pathway

we examined its behavior in hormonal feedback loops. Previous

studies demonstrated that daf-9 expression in the hypodermis is an

important point of control. Hypodermal daf-9::gfp exhibits low

levels of expression in wild-type animals under normal growth

conditions, but is shut off in response to stressful dauer-inducing

conditions during the L2 stage [40,41]. By contrast, it is

upregulated in response to weak stress, including elevated

temperatures (25uC), reduced food or cholesterol, and modest

exposure to dauer pheromone, in animals undergoing reproduc-

tive growth. This upregulation is also seen in normal growth

conditions in mutants that partly diminish IIS, TGF-b signaling,

and DA biosynthesis, suggesting these pathways convey environ-

mental stress and converge on regulation of daf-9. Hypodermal

daf-9::gfp shows strict dependence on daf-12, as expression is absent

in daf-12 null mutants but enhanced in ligand insensitive mutants,

suggesting both positive regulation and negative feedback control

by DAF-12 [40,41].

We wondered whether the environmental and genetic effects on

hypodermal daf-9::gfp expression ultimately reflect DA/DAF-12

signaling. If so, then hypodermal daf-9 expression should be

responsive to DA. We found that under conditions of mild thermal

stress (25uC, 27uC) upregulation of hypodermal daf-9::gfp in wild-

type animals was reversed by excess D4- or D7-DA (Figure 4A,

Figure S5), providing direct evidence that the effect of temperature

on daf-9::gfp expression reflects DA availability. We next examined

the regulatory behavior in response to perturbations in DA

biosynthesis. When grown at 27uC, dhs-16 mutants either entered

the dauer diapause and shut off hypodermal daf-9::gfp (Figure 4B)

or bypassed dauer and massively upregulated expression (Figure

S5). When grown in normal 20uC growth conditions, dhs-16

mutants stimulated high expression of hypodermal daf-9::gfp

relative to wild type (Figure 4C). The high expression of daf-

9::gfp is consistent with reduced DA levels, since its expression was

strikingly reduced to wild-type levels upon feeding lathosterone as

well as the DAs, but not lathosterol (Figure 4D, Figure S5). By

contrast, 4-cholesten-3-one failed to rescue the upregulation seen

in dhs-16 mutants, again suggesting that dhs-16 function may be

more crucial to the D7-DA branch (Figure S5). Finally, we found

that daf-9::gfp upregulation seen in daf-7/TGF-b and daf-2/InsR

mutants at 15uC and 20uC was also reversed by D7-DA (Figure 4E–

F). Altogether these data suggest that IIS, TGF-b, and hormone

biosynthesis normally promote DA signaling, which feeds back on

hypodermal daf-9 (see Discussion for model).

DHS-16 Is Expressed in Multiple Endocrine Tissues and Is
Regulated by Insulin/IGF-I Signaling

To gain insight into DA producing endocrine tissues and

regulation, we established transgenic lines carrying dhs-16::gfp

extrachromosomal arrays and analyzed the expression pattern.

These C-terminal gfp fusions were functional as measured by

efficient rescue of both Daf-c and Mig phenotypes of dhs-

16(tm1890) mutants (Table 1). dhs-16::gfp was strongly expressed

in the hypodermis, and thus partially overlaps with daf-9

expression. It was also expressed robustly in the posterior

pharyngeal bulb, which is involved in feeding/pumping behavior

and concentrates sterols [42], as well as a handful of unidentified

head and tail neurons (Figure 5A)—that is, in cells not overlapping

with daf-9 [40]. When crossed into the background of daf-2/InsR

mutants, we observed a 2-fold upregulation of dhs-16::gfp in the

hypodermis of L3 stage animals as well as in dauer larvae (p,0.05)

(Figure 5B, unpublished data). By contrast, no significant changes

were observed in the absence of daf-16/FOXO, daf-12/NHR, or

daf-7/TGF-b. Similar upregulation was seen in the absence of daf-

36/Rieske oxygenase (Figure 5B), consistent with a role down-

stream of daf-36 in DA biosynthesis and responsive to perturba-

tions in the pathway.

dhs-16 Is Partially Required for Longevity in the Absence
of the Germline

In the gonadal longevity pathway, animals lacking germline

stem cells live 50%–60% longer than animals with an intact

gonad [15,43]. Increased lifespan is not due to sterility as

animals lacking both somatic gonad and germline have normal

lifespans. It is thought that gonadal signals act in an opposing

manner, with the germline producing lifespan-shortening and

somatic gonad producing lifespan-extending signals. The

gonadal longevity pathway is dependent upon daf-16/FOXO

and daf-12/NHR, as well as the hormone biosynthetic genes daf-

36/Rieske oxygenase and daf-9/CYP450 [15,25,44]. Ablation of

the germline precursors by laser microsurgery leads to an

increased lifespan in wild-type animals, which is no longer seen

in these mutant backgrounds. Recently, lifespan-extending

signals from the somatic gonad were suggested to be the DAs

themselves, because daf-9 is expressed in the spermatheca and

the short lifespan of somatic gonad-ablated animals is restored

by feeding DAs [45]. Given the importance of DAs in this

process, we asked whether dhs-16 also functions in the gonadal

longevity pathway. We found that the lifespan of dhs-16 null

mutants after removal of the germline precursors by laser

microsurgery was significantly reduced (mean = 1963 d) com-

pared to that of wild-type (mean = 4163 d; p,0.0001)

(Figure 6A, Table S2). The failure of a complete suppression

of longevity in these animals may be due to residual DA

production. Interestingly, aging populations of germline-ablated

dhs-16 mutant animals showed early short-lived but later long-

lived mortality trajectories, with an inflection point around days

10–12 seen in both independent experiments, suggesting two

subpopulations or distinct temporal events.

A molecular correlate of gonadal longevity is the localization of

GFP-tagged DAF-16 to intestinal nuclei, dependent upon daf-12,

daf-36, and daf-9 [17,46,47]. We performed laser microsurgery on

animals carrying an integrated daf-16::gfp and found that DAF-16

nuclear localization was much weaker in dhs-16 mutants compared

to wild-type (p,0.05) (Figure 6B–C). As seen in the lifespan

studies, we also noted two distinct populations in DAF-16

localization, weakly versus strongly nuclear-localized. However,

no correlation was found between strong localization and longevity

(unpublished data). Thus, DHS-16 functions in the gonadal

longevity pathway, presumably due to a requirement for maximal

DA production to promote long life in the absence of the germline.

To see if dhs-16 phenotypes in the gonadal pathway stem from a

deficiency in DA production, we asked whether DAF-16::GFP

localization defects could be rescued by lathosterone and DA. To

do this, we used a genetic model of germline ablation glp-1(e2141ts)

and measured the ratio of nuclear to cytoplasmic DAF-16::GFP

expression in individual intestinal cells. As seen in the laser

ablation experiments, glp-1 induced DAF-16::GFP nuclear local-

ization in the intestine during the first day of adulthood, which was
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significantly reduced in the dhs-16;glp-1 double mutant background

(p,0.001) (Figure 6D). Similar results were obtained upon

treatment of glp-1 animals with dhs-16 RNAi (Figure S6).

Supplementation with DA or lathosterone, but not lathosterol,

restored DAF-16::GFP nuclear localization in both cases. These

results suggest that DHS-16 normally promotes DA signaling,

which stimulates DAF-16/FOXO nuclear localization in animals

lacking the germline. Thus, dhs-16 contributes to gonadal longevity

by linking DA production to DAF-12 activity and nuclear

localization of DAF-16/FOXO.

Figure 4. dhs-16 modulates feedback regulation of hypodermal daf-9 expression. (A) In response to mild stress (e.g., growth at 25uC),
hypodermal daf-9 is upregulated in N2 wild-type animals (WT) carrying an integrated dhIs64(daf-9::gfp) array (shown at left). This is rescued upon
growth with 33 mM D7-DA (shown at right). Arrowheads indicate the XXX R/L neuroendocrine cells in which daf-9 expression is relatively unchanged,
and arrows indicate hypodermal expression. The expression levels are displayed quantitatively to the right of each image, as the percentage of
animals observed with strong (green), weak (yellow), or no (red) hypodermal GFP expression (N$3, M 6 SD; ***p,0.0001). (B) Under stressful growth
conditions at 27uC N2 wild-type animals still undergo reproductive development but have high hypodermal daf-9::gfp expression (left), whereas dhs-
16 mutants mostly develop as dauer larvae and shut off hypodermal daf-9::gfp expression (right) (**p,0.01). (C) Under normal growth conditions at
20uC, hypodermal daf-9 upregulation is low in wild-type (left), whereas upregulation is seen in the dhs-16(tm1890) mutant background (right),
suggesting daf-9 upregulation in response to DA deficiency (***p,0.0001). (D) Upregulation of hypodermal daf-9::gfp seen in dhs-16 mutants is not
rescued by provision of 33 mM of the upstream DA precursor lathosterol (left) but is rescued by the downstream product lathosterone (right)
(**p,0.01). (E) Upregulation of hypodermal daf-9::gfp seen in reproductively growing daf-7(e1372)/TGF-b mutants (left) is rescued by DA (right)
(**p,0.01). (F) Upregulation of hypodermal daf-9::gfp seen in reproductively growing daf-2/InsR mutants (left) is also rescued by DA (right)
(***p,0.0001).
doi:10.1371/journal.pbio.1001305.g004

Elucidation of C. elegans Bile Acid-Like Pathways

PLoS Biology | www.plosbiology.org 9 April 2012 | Volume 10 | Issue 4 | e1001305



Discussion

Endogenous small molecule metabolites that regulate animal

longevity are emerging as a novel approach to influence health

and life span. The dafachronic acids are an important class of bile

acid metabolites that regulate C. elegans longevity through DAF-12

nuclear receptor signal transduction. DA signaling has also been

implicated in the control of nematode parasitism. Here we have

identified new components involved in DA biosynthesis, including

DHS-16, a short chain dehydrogenase, and EMB-8, a cytochrome

P450 reductase, and deduced the biochemical activity of DHS-16

to be a novel 3b-hydroxysteroid dehydrogenase. By controlling

ligand availability, DHS-16 regulates DAF-12 activity and thereby

directly influences the life plan and life span of C. elegans.

Importantly, identified intermediates in bile acid metabolism

may also provide unique ways to impact both animal longevity

and nematode pathogenesis.

Several lines of evidence reveal that DHS-16 is a DA hormone

biosynthetic gene. First, mutant animals show the phenotypic

profile of other DA pathway mutants, including Daf-c and gonadal

Mig phenotypes, perturbation in daf-9 feedback regulation, and

abrogation of life span extension when the germline is absent.

Second, mutants have a similar pattern of genetic epistasis,

working downstream of insulin/IGF and TGF-b signaling but

upstream of daf-12, and enhancing phenotypes of other mutations

in DA biosynthetic genes. Third, mutant phenotypes are rescued

by DA as well as specific precursors in the biosynthetic pathway.

Fourth, mutants have decreased expression of a DAF-12/DA

dependent target gene mir-241. Partial loss of emb-8 function also

shares a similar spectrum of larval phenotypes.

Our data support a role of DHS-16 in the 3b-dehydrogenation

of lathosterol to lathosterone, which is required for maximal

biosynthesis of D7-DA. Feeding experiments predict a defect in the

conversion of lathosterol to lathosterone, suggesting a function in

the metabolism of 3-alcohol to 3-keto steroids. In concert with this,

sterol profiles reveal that mutants are deficient in the putative

product lathosterone as measured by mass spectrometric methods.

Although dhs-16 mutants do not accumulate the putative precursor

lathosterol, this outcome might be expected if lathosterol can be

metabolized through other pathways. Also because absolute levels

of lathosterol are an order of magnitude greater than lathosterone,

perturbation of this step might have a negligible effect.

Importantly, microsomes expressing DHS-16 are able to convert

lathosterol to lathosterone, critical in vitro evidence that DHS-16

possesses or supports this biochemical activity. DHS-16 is also

capable of producing 4-cholesten-3-one from cholesterol in vitro,

although dhs-16 mutants still contain normal levels of this sterol. It

seems likely, however, that DHS-16 has other substrates and

activities. In the future, it should be interesting to determine the

activities of the parasitic nematode DHS-16 orthologs, as they

could be important therapeutic targets for treating such pathogens.

By elucidating metabolites and associated biochemical activities,

the overall architecture of the C. elegans DA biosynthetic pathway is

emerging, revealing not only key changes to previously proposed

models, but also that critical biochemical aspects of metazoan bile

acid metabolism are remarkably conserved (Figure 7A). The first

step in the D7-DA branch, the conversion of cholesterol to 7-

dehydrocholesterol, is carried out by the DAF-36/Rieske oxygen-

ase [24,29]. A similar activity is proposed for the Drosophila

homolog, neverland, in ecdysteroid biosynthesis [48,49]; thus,

elucidation of early steps in the nematode pathway could

illuminate other unsolved analogous early steps in ecdysteroid

biosynthesis. Although mammals lack an obvious homolog of this

Rieske oxygenase, the first step in mammalian bile acid

biosynthesis involves 7-hydroxylation of cholesterol by CYP7A1

[24,50]. Speculatively, this may indicate that chemical modifica-

tion at the 7-position of the sterol nucleus is important for

partitioning cholesterol towards bile acid synthesis. 7-dehydrocho-

lesterol may then be converted to lathosterol by an as yet

unidentified 5a-reductase, as in mammalian pathways. Although

C. elegans harbors multiple 5a-reductase homologs, RNAi knock-

down did not display phenotypes typical of DA deficiency (Wollam

and Antebi, unpublished), possibly because of redundancy. DHS-

16 is implicated as a 3b-hydroxysteroid dehydrogenase in the

conversion of lathosterol to lathosterone. A similar activity, albeit

on different substrates, is ascribed to the mammalian 3b-HSDs

(e.g., HSD3B7) [50], yet DHS-16 is not orthologous to these

enzymes, and uniquely may not involve obligate D4/D5-isomer-

ization for activity. We suggest that the discovery of DHS-16

Figure 5. dhs-16 expression pattern and regulation. (A) A
functional dhs-16::gfp is expressed in the hypodermis (arrowheads),
head neurons (arrows), and posterior pharyngeal bulb (arrowheads). (B)
Reduction of IIS in the daf-2(e1368) background results in 2-fold
upregulation of dhs-16::gfp in the hypodermis of L3 stage animals at
20uC (*p,0.05), although no significant change was seen in the
absence of daf-16/FOXO, daf-12/NHR, or daf-7/TGFb. Similar upregula-
tion was seen in the daf-36(k114)/Rieske oxygenase mutant back-
ground, consistent with a role of dhs-16 downstream of daf-36 in DA
production (N$3, M 6 SEM, *p,0.05).
doi:10.1371/journal.pbio.1001305.g005
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activity in worms might inform mammalian biology, and we

speculate that the liver-expressed SDR-O/SDR9C7 could have an

analogous activity in mammalian bile acid synthetic pathways.

Although dhs-16 affects D7-DA levels, additional dhs-16 and

lathosterone-independent mechanisms for the synthesis of D7-DA

appear to exist. Next, a critical step in bile acid synthesis entails the

successive oxidation of the cholesterol side chain to the 26-

carboxylic acid moiety, which is carried out by DAF-9/CYP450 in

a manner similar to mammalian CYP27A1. This step is likely

facilitated by EMB-8/CYP450 reductase, since the Daf-c

phenotypes of emb-8 RNAi map to the same step as daf-9/

CYP450 based on sterol rescue experiments. Finally, our data also

suggest that HSD-1 is not required for 4-cholesten-3-one

production as previously proposed, or for D7-DA production

under some conditions, but is likely acting in another pathway. In

particular, the unexpected observation that loss of hsd-1 restores

D7-DA production in dhs-16 mutants at 20uC implies there are

additional pathways and ligands with complex regulation that

remain to be found. As there are numerous HSD, DHS, and

CYP450 enzymes in C. elegans with potential to carry out such

Figure 6. dhs-16 is partially required for longevity in the absence of the germline. (A) Lifespan of dhs-16(tm1890) animals after ablation of
germline precursor cells by laser microsurgery. One representative experiment is shown. N2 wild-type (WT) animals live twice as long when the
germline is ablated. Longevity is significantly attenuated in dhs-16 ablated animals (N = 2, p,0.0001). (B) DAF-16::GFP strongly localizes to intestinal
nuclei of day 1 adults after ablation of the germline by laser microsurgery in control animals, whereas the degree of localization is reduced in
germline-ablated dhs-16 mutants. Magnified views of boxed regions are shown to the right. (C) The degree of DAF-16::GFP nuclear localization after
germline ablation is shown quantitatively as the percentage of animals with strong (green) or weak (yellow) localization (N = 3, M 6 SD; *p,0.05). (D)
The ratio of intestinal DAF-16::GFP intensity in the nucleus versus cytoplasm reveals increased levels of nuclear expression in germline deficient glp-
1(e2141ts) mutants at the restrictive temperature of 25uC compared to control animals. Localization is significantly decreased in dhs-16;glp-1 double
mutant animals, and is restored upon provision of lathosterone or D7-dafachronic acid, but not lathosterol (N = 3, M 6 SD; ***p,0.0001, **p,0.001).
doi:10.1371/journal.pbio.1001305.g006
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reactions, examination of double and triple mutants as well as

enzymatic activities will be required to resolve these issues in the

future.

Homologs of other genes implicated in mammalian bile acid

metabolism are found in the C. elegans genome, including the D-

bifunctional protein and Sterol Carrier Protein-x, which function

in shortening side chains of mammalian bile acids [50]. The C.

elegans counterparts, DHS-28 and DAF-22, have a different known

role, promoting synthesis of dauer pheromone by shortening the

long chain fatty acid side chains of ascarosides [51]. Intriguingly,

dauer pheromone works in a manner opposite to DA to promote

dauer formation, but it is unknown whether DAF-22 and DHS-28

also influence C. elegans bile acid metabolism or whether shorter

chain bile acids are found in the worm. In conclusion, it is striking

that many of the activities in the nematode pathway are

biochemically analogous to those found in mammals, yet the

enzymes are not always strict structural orthologs, suggesting

potential convergent evolution (Figure 7A). Speculatively, this

similarity might have been exploited by parasitic nematodes to

signal entry into the appropriate host.

Although daf-9 and dhs-16 expression partially overlap in the

hypodermis, daf-36 is found in non-overlapping tissues including

the intestine as well as epidermal seam cells in dauers [24,25]. The

fact that the various gene products have distinct expression

patterns suggests distributed synthesis of DA, which likely requires

transport mechanisms. ABC and Niemann-Pick Type C1-like

transporters, which are also implicated in dauer formation (mrp-1,

ncr-1,-2), may be involved [30,52]. Distributed synthesis could be

deployed to make specific DAF-12 ligands with various activities,

to localize activity within particular tissues, or to develop a

consensus mechanism enabling each tissue to influence the dauer

decision.

Regulatory feedback circuitry is a common feature of both

mammalian and C. elegans bile acid-like synthesis, dependent upon

FXRa and its homolog DAF-12, respectively. In mammals,

feedback regulation converges on CYP7A1, although hints of

CYP27A1 regulation are evident [53]. In C. elegans, DA production

is regulated primarily through hypodermal daf-9/CYP450 expres-

sion [40,41], but other control points, such as dhs-16 and daf-36,

are now evident and deserve closer study. Our observations on the

regulation of hypodermal daf-9 expression and its dependence on

DA suggests a three-state model in which environmental cues work

through dauer signaling pathways and DA biosynthesis to dictate

regulation of daf-9 expression through daf-12 dependent feedback

(Figure 7B): (i) Harsh stress results in a shutdown of DA

production, repression of daf-9 expression, and dauer formation;

(ii) mild stress initially results in decreased DA production,

provoking compensatory upregulation of daf-9 to maintain

hormone levels and reproductive development; and (iii) favorable

conditions result in DA excess causing negative feedback on daf-9

expression and reproductive development [40]. dhs-16 regulation

is somewhat different. Contrary to predictions from genetic

epistasis, dhs-16::gfp is not downregulated by decreased IIS or

TGF-b, but surprisingly upregulated by reduced IIS and DA.

These observations suggest that other regulatory points in the

pathway, such as daf-9, take precedence, or that regulation takes

place at the level of DHS-16 activity or metabolite production.

Moreover it also implies that dhs-16 may function in negative

feedback by IIS, DA, or its metabolites.

These complex feedback circuits impact not only dauer

formation and reproductive development but also lifespan at

elevated temperatures. In ttx-1 mutants, upregulation of hypoder-

mal daf-9 at 25uC fails and animals are short lived [54]. Short

lifespan resembles that seen in daf-9(rh50) hypomorphs, and in

both cases lifespan is restored to normal by loss of daf-12,

suggesting that sufficient DA production is required to ensure

lifespan-promoting activities of DAF-12 at elevated temperatures.

Although the DAs modulate nematode lifespan, whether small

molecule bile acid-like metabolites can influence mammalian

lifespan remains unknown. Elevated bile acid levels are associated

with the long-lived Little mouse, as well as expression of xenobiotic

detoxification genes, partially dependent upon FXRa [55].

Treatment of wild-type mice with cholic acid induces a similar

xenobiotic detoxification expression profile. These studies suggest

that BAs may act through FXRa to induce the xenobiotic response

and impact lifespan, possibly as a means of longevity assurance. In

worms as well, microarray analyses indicate that genes involved in

xenobiotic metabolism are altered in long-lived daf-2/InsR and

daf-12(rh273) ligand-binding domain mutants [56,57]. Bile acids

reduce serum triglycerides, increase insulin sensitivity, and

decrease inflammation in animals fed high-fat diets [58].

Furthermore, polymorphisms in FXR may also be associated

with reduced IGF levels and murine longevity [59]. In the future,

it will be interesting to see if bile acid signaling plays a conserved

role in impacting mammalian longevity.

Materials and Methods

C. elegans Strains
Worms were grown on NGM agar seeded with the E. coli bacteria

OP50 at 20uC unless noted otherwise [60]. NGM contains

cholesterol at a 5 mg/mL concentration, which is omitted in low

cholesterol conditions. Strains were outcrossed at least three times

prior to use. The following genotypes were used: N2, daf-36(k114),

dhs-16(tm1890), daf-9(k182), daf-9(dh6), daf-12(rh61rh411), hsd-

1(mg433), ncr-1(nr2022), daf-12(rh273), daf-2(e1368), daf-2(e1370),

daf-7(e1372), daf-5(e1386), daf-16(mu86), dhs-16(tm1890) daf-

12(rh61rh411), dhs-16(tm1890) daf-16(mu86), dhs-16(tm1890) daf-

5(e1386), dhs-16(tm1890) daf-9(k182), dhs-16(tm1890) daf-36(k114),

dhs-16(tm1890) ncr-1(nr2022), dhs-16(tm1890) hsd-1(mg433), dhs-

16(tm1890) daf-2(e1370), daf-36(k114) daf-9(k182), dhIs64(Pdaf-

9::daf-9::gfp), dhs-16(tm1890) dhIs64(Pdaf-9::daf-9::gfp), daf-16(mu86)

Figure 7. Biosynthesis and regulation of nematode bile acids. (A) A revised model of the dafachronic acid biosynthetic pathway from dietary
cholesterol, with newly identified activities shown in red. Although dhs-16 is required for lathosterone production, mutant animals still produce low
levels of D7-DA. An alternative pathway for D7-DA synthesis is therefore likely. In addition, hsd-1 is not required for 4-cholesten-3-one production as
previously proposed, but may be involved in producing alternative dafachronic acids. These ligands may have complex regulation and influence the
synthesis of one another. Comparison to mammalian bile acid synthesis (right) reveals conserved aspects of bile acid biochemistry. Nematode and
mammalian bile acid synthesis involves modification at the 7-position (shown in pink), which speculatively may partition cholesterol towards bile acid
synthesis, and in both pathways oxidation of the 3-alchohol and oxidation of the sidechain at the 27-position occurs (shown in orange). (B) Model of
hormonal feedback on hypodermal daf-9::gfp expression. (i) Stressful environmental conditions result in downregulation of IIS and TGF-b signaling,
suppression of DA synthesis, and hypodermal daf-9 expression by the DAF-12/DIN-1 repressor complex, resulting in dauer formation. (ii) Moderately
stressful environments result in modest downregulation of dauer signaling pathways and DA synthesis, with compensatory upregulation of
hypodermal daf-9, allowing for reproductive development. (iii) In favorable environments with low levels of stress, active IIS and TGF-b signaling
results in ample DA production, with low expression of hypodermal daf-9. Note it is unknown whether DAF-12 regulates daf-9 directly or indirectly.
doi:10.1371/journal.pbio.1001305.g007
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muIs109(Pdaf-16::gfp::daf-16;Podr-1::rfp), dhs-16(tm1890) daf-16(mu86)

muIs109(Pdaf-16::gfp::daf-16;Podr-1::rfp), glp-1(e2141), glp-1(e2141)

daf-16(mu86) muIs109(Pdaf-16::gfp::daf-16;Podr-1::rfp), and glp-1

(e2141) dhs-16(tm1890) daf-16(mu86) muIs109(Pdaf-16::gfp::daf-

16;Podr-1::rfp).

The extrachromosomal line dhEx396(Pdhs-16::dhs-16::gfp;lin-

15[+]) was crossed into various mutant backgrounds for regulation

analysis. Images of key tissues were taken at 406 magnification,

calibrated with InSpeck Green Microscopy Image Intensity

Calibration Beads (Molecular Probes), and comparison analysis

was performed using ImageJ software (http://rsbweb.nih.gov/ij/).

The dhIs64 strain carries an integrated Pdaf-9::daf-9::gfp, previously

described [40]. The same procedure was followed for these strains,

and expression levels were categorized accordingly. daf-16(mu86)

muIs109(Pdaf-16::daf-16::gfp;Podr-1::rfp) animals were kindly pro-

vided by Malene Hansen.

Plasmids
For dhs-16::gfp construction, a 3.9 kb fragment containing the

dhs-16 coding region and 2.3 kb upstream promoter region was

amplified with primers 59-GCG GCCGCCTTCTCTCTTGC-

ACCCTTGTTTGT-39 (forward) and 59-GGTACCTCAGA-

AACTGTAACATTATG-39 (reverse) and cloned into pCRII-

TOPO vector. KpnI/NotI-digested dhs-16-TOPO was then inserted

into the KpnI/NotI-digested gfp vector L3871 (Fire vector kit 1997).

The construct was injected with the lin-15[+] marker into lin-

15(n765) mutant animals, and F1 animals were selected by rescue

of the syn-muv phenotype. Two independent lines displayed

similar expression patterns. The dhEx396 extrachromosomal line

fully rescued the gonadal migration defects and dauer-constitutive

phenotypes of the dhs-16(tm1890) mutant animals.

Genetic Screens
RNAi screens were carried out essentially as described [61].

RNAi clones were plated in 12-well plates, two daf-36(k114)

hermaphrodites placed in each well to lay eggs, and grown at

25uC. Mig and Daf phenotypes were scored in L4/young adult

animals of the next generation. Screens were carried out on the

whole genome. Other genes identified in the screen will be

described elsewhere.

Isolation of Microsomes
Isolation of microsomes from HEK293T cells was performed as

described [62]. Cells were grown in T-75 flasks and transfected

with vector only or FLAG-tagged DHS-16. Expression of DHS-16

was verified by immunoblot, using anti-FLAG antibodies (Sigma).

Microsomal fractions were resuspended in 0.1 M KPO4 buffer,

pH 7.4, containing 1 mM EDTA and 20% glycerol, and stored at

280uC.

Microsomal Incubations
Microsomes were thawed on ice and brought to 80 mg/mL in

0.1 M KPO4 buffer, pH 7.4, containing 1 mM EDTA. Substrates

were added at 100 mM in 0.5 mL total volume, pre-incubated for

3 min at 37uC, and reacted with 1 mM NAD for 16 h at 37uC.

Reactions were processed by extracting twice with 2 mL MTBE,

combining the top layers and drying under nitrogen. 0.5 mg of

cholesterol-d7 was added as an internal standard for extractions.

Rescue Assays
Microsomal extracts from three incubations were combined and

resuspended in 50 mL methanol, mixed with 56 concentrated

OP50, vacuum dried, resuspended in 100 mL 16 OP50, and

plated on 3 cm plates containing 3 mL NGM agar. For rescue,

,100 embryos from a 4–8 h egg laying were transferred onto the

bacterial lawn, and scored for dauer arrest at 27uC after 48 h. For

rescue experiments with pure steroids, 10 mL compounds in

ethanol (or ethanol alone) were mixed with 40 mL 56 concen-

trated OP50 bacteria and plated. Final concentrations include the

total volume of agar (3 mL). Dauer arrest was scored after 60 h at

20uC and after 48 h at 25uC and 27uC.

Nematode Lipid Extracts
Worms were grown on twenty 10 cm NGM agar plates seeded

with OP50 bacteria. Gravid adults were bleached and the

resulting embryos transferred to liquid culture (S-complete

medium supplemented with 1006 concentrated OP50). Two

to three successive rounds of growth and lysis were performed.

For the final round, worms were grown at 20uC until the L3-L4

stage, harvested, frozen in liquid nitrogen, and stored at 280uC.

Thawed worms were homogenized by sonication, and total

lipids (plus 1 mg cholesterol-d7 or CDCA-d4/107 worms) were

extracted with 2:1 chloroform:methanol. The resulting chloro-

form layer was dried under nitrogen. For GC/MS/MS analysis,

growth and lysis of worms was carried out on 10 cm NGM

plates.

LC/MS/MS Analysis
Samples were analyzed by LC/MS/MS using 6410 Triple

Quadrupole LC/MS instrument (Agilent Technologies) equipped

with an ESI source in positive ion mode. Samples were dissolved in

methanol, spiked with cholesterol-d7 as an internal standard, and

separated on a Zorbax XDB-C18 column (4.6650 mm, 3.5 mm)

at 0.4 mL/min. The mobile phase consisted of HPLC grade water

(A) and methanol (B) both containing 5 mM NH4Ac. The

following gradient was run: 0–1 min, 90% (B); 1–3.3 min, 90%

to 100% (B); 3.3–20 min, 100% (B). MS parameters were as

follows: gas temperature 175uC, nebulizer pressure 35 psg, drying

gas (nitrogen) 10 L/min, VCap 4,000 V (positive) and 6,000 V

(negative), and column temperature 40uC. Using MRM monitor-

ing (in positive-ion mode) the following transitions were observed:

cholesterol-d7 (m/z 411R376, RT 12.8 min), lathosterone (m/z

402R385, RT 13.9 min), lathosterol (m/z 404R369, RT

12.6 min), 7-dehydrocholesterol (m/z 385R369, RT 11.7 min),

and 4-cholesten-3-one (m/z 385R109, RT 12.7 min). Fragmentor

voltage and collision energy settings for each compound are

summarized in Table S3.

GC/MS/MS Analysis
Dafachronic acid levels were analyzed by GC/MS/MS on a

7000A Triple Quadrupole GC/MS instrument (Agilent Technol-

ogies) equipped with an ESI source and an HP-5ms column.

Briefly, lipid extracts were spiked with 5b-cholanic acid as an

internal standard, derivitized with trimethylsilyldiazomethane, and

analyzed in MRM mode. The following transitions were observed:

5b-cholanic acid (m/z 374.3R264.0) and D7-dafachronic acid (m/

z 428.3R229.1). The methods used for analysis of all other

compounds will be described elsewhere.

Lifespan Analysis
Adult lifespan assays and gonadal cell ablations were performed

as previously described [25]. Day 0 corresponds to the L4 stage.

Exploded and egg-laying defective animals were excluded from the

analysis. Statistical analyses were performed using the log-rank

(Mantel-Cox) method with GraphPad Prism software.
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DAF-16::GFP Nuclear Localization Experiments
Strains carrying the integrated muIs109(daf-16P::daf-16::gfp)

array were used in germline ablations and placed at 20uC. After

4 d, at day 1 of adulthood, worms were scored for nuclear

localization of DAF-16::GFP in intestinal cells under a dissection

microscope. Worms with a clearly dotted appearance throughout

the body were scored as strongly localized. In glp-1 experiments,

worms were kept at the restrictive temperature of 25uC from eggs

until scoring at day 1 of adulthood, and two of three experiments

were performed blind. Images of the anterior intestinal cells were

taken at 406magnification and the relative expression intensity of

individual nuclei versus equal areas of adjacent cytoplasm was

determined using Image J software (http://rsbweb.nih.gov/ij/).

qRT-PCR
Real-time quantification for microRNAs by RT-PCR was

performed with a protocol modified from a previous report [63].

Briefly, total RNA was purified from L3 stage larvae using TRIzol

(Invitrogen) and the miRNeasy kit (Qiagen). TaqMan MicroRNA

Reverse Transcription kit (Applied Biosystems) was used to

generate cDNA with microRNA-specific primers. qRT-PCR was

performed with Power SYBR Green master mix (Applied

Biosystems) according to the manufacturer’s instructions. Sno-

RNA U18 was used as an internal control. The following primers

were used: 59-CAGTGCAGGGTCCGAGGT-39 (U18-RT); 59-

GGCAGTGATGATCACAAATC-39(U18-f); 59-TGGCTCAG-

CCGGTTTTCTAT-39 (U18-r); 59-GTCGTATCCAGTGC-

AGGGTCCGAGGTATTCGCACTGGATACGACTCATTT-39

(mir-241-RT); 59-CGCTGAGGTAGGTGCGAG-39 (mir-241-f);

and 59-GTGCAGGGTCCGAGGT-39 (microRNA reverse

primer).

Phylogenetic Tree and Multiple Sequence Alignment
Sequences were retrieved using PSI-BLAST [64] with filter

turned on. Reciprocal BLASTs were used to determine ortholo-

gous relationships between human, nematode, and fly proteins.

HomoloGene [65] was used wherever available. Multiple

sequence alignments were done with ClustalX [66] using standard

parameters. For tree building, the multiple sequence alignment

was trimmed using the GBlocks server [67] with relaxed settings.

The tree was calculated using Phyml [68] with standard settings

and 500 bootstrap steps. The resulting tree was displayed in

Dendroscope [69] and prepared for publication using Adobe

Illustrator. The sequence of A. suum DHS-16 was determined by

BLAST against the expressed-sequence tag database for A. suum

and sequencing cDNA fragments amplified from A. suum adult

head cDNA (provided by the laboratory of Angela Mousley,

Queen’s University Belfast, Northern Ireland, U.K.). The

sequence was submitted to NCBI and has received the following

GenBank accession number: JF753272.

Statistical Analysis
Results are presented as M 6 SD or SEM, as indicated. p values

were calculated using GraphPad Prism software by Student’s t test.

Supporting Information

Figure S1 Phylogenetic tree and multiple sequence
alignment of DHS-16 and homologs. (A) Phylogenetic tree

displaying the evolutionary relationships between C. elegans DHS-

16 and related SDR enzymes. Clades are formed according to

phylum, preventing unambiguous interpretation of orthology

relationships. A. suum DHS-16 is clearly the ortholog of the

DHS-16 proteins of other nematodes. Arthropod relatives include

Shroud and CG8888, although these show substantial divergence.

There was also a notable expansion of Retinol Dehydrogenase 16-

type enzymes in mouse. Species abbreviations are as follows: As,

Ascaris suum; Ce, Caenorhabditis elegans; Cr, Caenorhabditis remanei; Dm,

Drosophila melanogaster; Hs, Homo sapiens; Mm, Mus musculus; Tc,

Tribolium castaneum. Accession numbers are as follows: As DHS-16:

JF753272; Ce DHS-16: NP_504554; Ce DHS-20: NP_505941; Ce

DHS-2: NP_491575; Cr DHS-16: XP_003112544; Cr DHS-20:

XP_003113962; Cr DHS-2: XP_003112163; Dm Shroud:

NP_651725; Dm CG8888: NP_610724; Tc Shroud: XP_973118;

Tc CG8888: XP_967401; Mm SDR9C7: NP_081577; Mm

HSD17B6: NP_038814; Mm RD1: NP_536684; Mm RD5:

NP_598767; Mm RD16: NP_033066; Mm RD9: NP_694773;

Mm RD9: NP_694773; Mm RD2: NP_671755; Mm R3aHSD:

NP_663399; Mm SDR9: NP_780721; Hs SDR9C7: NP_683695;

Hs HSD17B6: NP_003716; Hs RD16: NP_003699; Hs SDR9:

NP_005762; Hs 11cRD: NP_002896. (B) Multiple Sequence

Alignment of the DHS-16 protein with putative orthologs in

humans and Ascaris suum as well as with the closely related C. elegans

DHS-2 and DHS-20. Identical residues are highlighted in bright

yellow and those that are conserved in dark yellow. The SDR/

NAD(P)-Binding Rossmann domain is highlighted in light blue

and according to its position in C. elegans DHS-16.

(TIF)

Figure S2 Gene structure of the dhs-16 locus. (A) The

genomic environs of the dhs-16 locus on Chromosome V are

displayed. The cosmid C10F3 (blue) contains the dhs-16 sequence

(C10F3.2). Below, the structure of the dhs-16 gene is shown, which

consists of 3 exons and 2 introns, the SDR/NAD(P)-Binding

Rossman fold domain (green) and two predicted transmembrane

domains (blue). The tm1890 allele (red) is a 607 bp deletion

spanning the first exon and is a predicted null allele; the flanking

sequences are shown. (B) The structure of the C-terminal dhs-

16::gfp fusion construct used in expression analyses.

(TIF)

Figure S3 Additional rescue experiments provide pre-
dictions of DA synthesis. (A) Proposed precursors of the DAs

(33 mM) do not rescue the Daf-c phenotypes of the daf-12(rh273)

ligand-binding domain mutant (N = 2, M 6 SD). (B) N2 wild-type

animals do not display Daf-c phenotypes at 27uC on the empty

vehicle ethanol or any of the compounds tested (N$3, M 6 SD).

(C) Lathosterone and the DAs give more efficient rescue of dhs-

16(tm1890) mutants (***p,0.0001) compared to 4-cholesten-3-one

(**p,0.01) at nanomolar concentrations (250 nM) (N$3, M 6

SD). (D) daf-36(k114) mutant animals are rescued with 7-

dehydrocholesterol and proposed downstream precursors of the

DAs (N = 3, M 6 SD; ***p,0.0001). (E) Rescue of dhs-16;daf-36

double mutants is similar to dhs-16 single mutant animals,

consistent with a role of dhs-16 downstream of daf-36 (N = 3, M

6 SD; ***p,0.0001). (F) Rescue of dhs-16;hsd-1(mg433) double

mutant dauer formation is also similar to dhs-16 single mutant

animals (N = 3, M 6 SD; ***p,0.0001). hsd-1 single mutants do

not form dauers under these conditions.

(TIF)

Figure S4 Influence of hsd-1 on DA metabolites. (A)

Complete GC/MS/MS analysis of sterol levels in L3-stage N2

wild-type, dhs-16(tm1890), hsd-1(mg433), and dhs-16;hsd-1 double

mutants at 20uC reveals that no significant changes in the

proposed DA precursors are present in hsd-1 animals, and that it is

not required for 4-cholesten-3-one production as previously

proposed. HSD-1 likely acts in a parallel pathway, possibly

making another as yet unknown ligand for DAF-12. Double

mutants display deficiencies in lathosterone and 4-methyl sterols at
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20uC, but not D7-dafachronic acid (N$6, M 6 SEM; **below

detection limit, *p,0.05). (B) Levels of lathosterone, 4-cholesten-3-

one, and D7-dafachronic acid at the elevated temperature of 25uC
relative to N2 wild-type. No significant change in lathosterone or

4-cholesten-3-one is noted in hsd-1 single mutants, whereas DA

levels are elevated relative to wild-type. dhs-16;hsd-1 double

mutants display decreased levels of DA, corresponding with the

more severe L2d and dauer phenotypes displayed by these

animals, but show increased levels of 4-cholesten-3-one, presum-

ably due to feedback (N$3, M 6 SEM; **below detection limit,

*p,0.05).

(TIF)

Figure S5 Homeostatic feedback on hypodermal daf-9
expression. (A) daf-9::gfp hypodermal expression is upregulated

in dhs-16(tm1890) mutants at 20uC (***p,0.0001). Lathosterone

and the DAs fully rescue this upregulation, while proposed

upstream precursors do not (**p,0.01). The fraction of animals

with strong (green), weak (yellow), or no (red) hypodermal GFP

expression is shown (N$3, M 6 SD). (B) At 27uC, dhs-16 mutant

animals enter dauer diapause, in which daf-9::gfp hypodermal

expression is downregulated. Animals that do not enter dauer

display higher levels of daf-9 expression than N2 wild-type, as seen

at 20uC (**p,0.01). Feeding lathosterone rescues the dauer

phenotype and restores daf-9::gfp expression to wild-type levels

(N$3, M 6 SD; **p,0.01).

(TIF)

Figure S6 RNAi knockdown of dhs-16 reduces DAF-
16::GFP localization in germline-less mutant animals.
Treatment of glp-1(e2141ts) animals with dhs-16 RNAi leads to a

reduction in strongly nuclear-localized intestinal DAF-16::GFP in

day 1 adults at the restrictive temperature of 25uC. Percent

animals with strong localization (green) and weak localization

(yellow) are displayed. Localization is restored upon provision of

lathosterone or D7-dafachronic acid, but not with lathosterol

(N = 3, M 6 SD; **p,0.01, *p,0.05).

(TIF)

Table S1 Knockdown of emb-8 leads to DA deficiency-
associated phenotypes.

(DOC)

Table S2 Longevity in the absence of the germline is
partially dependent upon dhs-16.

(DOC)

Table S3 Settings for LC/MS/MS analysis of DA
precursors.

(DOC)
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