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Abstract

The minor allele of rs11136000 within CLU is strongly associated with reduced Alzheimer’s disease (AD) risk. The mechanism
underlying this association is unclear. Here, we report that CLU1 and CLU2 are the two primary CLU isoforms in human brain;
CLU1 and CLU2 share exons 2–9 but differ in exon 1 and proximal promoters. The expression of both CLU1 and CLU2 was
increased in individuals with significant AD neuropathology. However, only CLU1 was associated with the rs11136000
genotype, with the minor ‘‘protective’’ rs11136000T allele being associated with increased CLU1 expression. Since CLU1 and
CLU2 are predicted to encode intracellular and secreted proteins, respectively, we compared their expression; for both CLU1
and CLU2 transfected cells, clusterin is present in the secretory pathway, accumulates in the extracellular media, and is
similar in size to clusterin in human brain. Overall, we interpret these results as indicating that the AD-protective minor
rs11136000T allele is associated with increased CLU1 expression. Since CLU1 and CLU2 appear to produce similar proteins
and are increased in AD, the AD-protection afforded by the rs11136000T allele may reflect increased soluble clusterin
throughout life.
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Introduction

Clusterin (CLU, APOJ) has been implicated in diseases ranging

from cancer to Alzheimer’s disease (AD) (reviewed in [1,2,3,4]).

Although the primary role of clusterin in AD is unclear, CLU is

implicated in AD by several lines of evidence, including (I) CLU

mRNA and clusterin protein is increased in AD [5,6], (ii) clusterin

is a component of plaques [4,5,7], (iii) clusterin modulates AD-

related pathways such as inflammation and apoptosis [1,8,9] and

(iv) clusterin acts as an amyloid-beta (Aß) chaperone to alter Aß

aggregation and/or clearance ([10,11], reviewed in [4,12,13,14]).

The physiologic relevance of CLU to AD was confirmed recently

when CLU single nucleotide polymorphisms (SNP)s were associ-

ated with AD risk [15,16,17,18,19]. Overall, CLU genetic

variation is essentially unequivocally associated with AD given

the robust statistical power of the initial genome-wide association

studies and subsequent replication studies [15,16,17,18,19]. How

CLU SNPs modulate clusterin to alter AD risk is unknown.

Two CLU isoforms, CLU1 and CLU2, have been reported that

consist of nine exons and differ only in their first exons and

associated proximal promoters; CLU1 is predicted to encode a

nuclear protein and CLU2 a secreted protein (reviewed in [20]).

Additional reported isoforms include a CLU isoform that lacks

exon 5 and a CLU isoform that lacks exon two, which encodes the

leader sequence, resulting in another nuclear clusterin [21,22].

Here, we investigated the hypothesis that CLU isoforms are

differentially modulated by AD status and AD-associated SNPs.

We identified CLU1 and CLU2 as the major CLU isoforms in

human brain. Quantitative expression studies show that both

CLU1 and CLU2 are increased in AD but only CLU1 is associated

with rs11136000. Lastly, although CLU1 and CLU2 are predicted

to produce intracellular and secreted proteins, respectively,

immunofluorescence and Western blot studies indicate that

CLU1 and CLU2 both produce secreted proteins that are similar

to those detected in the human brain. Overall, we interpret our

results as suggesting that SNP-mediated increases in secreted,

soluble clusterin expression may act to reduce AD risk.

Methods

Ethics Statement
The work described here was performed with approval from the

University of Kentucky Institutional Review Board.

Cell Culture
SH-SY5Y (human neuroblastoma) and HepG2 (human hepa-

tocellular carcinoma) cells were maintained in Dulbecco’s

modified Eagle’s medium (DMEM) supplemented with 10% fetal

bovine serum, 50 U/ml penicillin and 50 mg/ml streptomycin at

37uC in a humidified 5% CO2 - 95% air atmosphere.

CLU Expression Plasmid
Expression plasmids encoding CLU1 and CLU2 were generated

from SH-SY5Y cellular mRNA that was reverse transcribed by

using the primer 59-TAGGTGCAAAAGCAACAT-39 which

corresponds to sequence just after the CLU stop codon. CLU1

and CLU2 cDNAs were then amplified by PCR with forward
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primers 59-TGAGTCATGCAGGTTTGCAG-39 (CLU1) and 59-

ATGATGAAGACTCTGCTGCTG-39 (CLU2) used in combina-

tion with the common reverse primer 59-CTCCTCCCG-

GTGCTTTTTG-39. PCR fragments were ligated into pcDNA3.1/

V5-His-TOPO T/A cloning vector (Invitrogen, Carlsbad, CA).

Clones encoding CLU1 and CLU2 were detected by PCR

screening and clone integrity confirmed by sequencing.

Human Autopsy Tissue
De-identified human brain specimens were provided by the

University of Kentucky AD Center Neuropathology Core [23,24].

AD and non-AD designations followed NIARI neuropathology

guidelines, which include indices of neuritic senile plaques and

neurofibrillary tangles, and provide a likelihood staging of AD

neuropathological diagnosis [25,26]. Individuals with ‘‘low’’ AD

neuropathology were cognitively intact prior to death and had no

or low likelihood of AD by NIARI criteria; their average age at

death was 81.8610.2 (mean 6SD, n = 17). Individuals with

‘‘high’’ AD neuropathology represented a combination of

demented individuals with high likelihood of AD by NIARI

criteria (n = 27) and cognitively intact individuals that were found

to have moderate or high AD neuropathology at death (n = 7);

their average age at death was 81.966.2 (mean 6SD, n = 34). The

average post-mortem interval (PMI) for low AD neuropathology

individuals was 3.060.8 hours (mean 6 SD, n = 17) while the

PMI for high AD neuropathology individuals was similar

(3.260.8 hours (n = 34)). Choroid plexus samples were from six

individuals with an average age at death of 80.06 3.3 years and

PMI of 2.961.1 hours. Fetal tissue RNA samples were obtained

commercially (Stratagene, Santa Clara, CA) and have been

described previously [27].

PCR Amplification
Total RNA was extracted from human brain specimens and

converted to cDNA in 1 mg aliquots with random hexamers and

reverse transcriptase (SuperScript III, Invitrogen), essentially as we

described previously [24,28,29,30]. PCR primers were designed

such that the splicing of each internal CLU exon as well as CLU1

and CLU2 were evaluated (Table 1). In initial screening, cDNA

pooled from five high AD neuropathology and five low AD

neuropathology samples were subjected to PCR-amplification

(Platinum Taq, Invitrogen) by using each primer pair and a PCR

profile consisting of initial denaturation for 5 minutes at 95uC,

followed by 27–32 cycles of 94uC for 30 s, 60uC for 30 s, and

72uC for 1 min, and final extension at 72uC for 7 min (Perkin

Elmer 9600). PCR products were separated by polyacrylamide gel

electrophoresis, stained with SYBR Gold and visualized by using a

fluorescence imager (Fuji FLA-2000). The identity of the PCR

products was confirmed by direct sequencing (Davis Sequencing,

Davis, CA).

Real-time PCR
The expression level of CLU1 and CLU2 was quantified by real-

time PCR. Each isoform was specifically amplified by using a sense

primer corresponding to sequence within their respective exon 1,

i.e., 59-GCGAGCAGAGCGCTATAAAT-39 for CLU1 and 59-

AGATGGATTCGGTGTGAAGG-39 for CLU29, and an anti-

sense primer corresponding to sequence at the exon 2–3

boundary, i.e., 59-GACATTTCCTGGAGCTCATTG-39. Note

that the CLU1 sense primer contains the TATA sequence

suggested by Schepeler et al to be present only in a longer

‘‘CLU34’’ isoform [31]. The 20 ml real-time PCR mixture

containing approximately 20 ng of brain cDNA, 1 mM of each

primer and 16 PerfecTaq PCRSupermix (Quanta Biosciences,

Gaithersburg, MD) was subjected to real-time PCR (Bio-Rad,

Hercules, CA). PCR profiles consisted of pre-incubation at 95uC
for 2 min, followed by 40 cycles of 95uC for 15 s, 60uC for 30 s,

and 72uC for 20 s. Specificity of the reactions was evaluated by

showing a single PCR product by gel electrophoresis and by

performing a melting curve analysis after PCR amplification. The

PCR product copy number in each sample was determined

relative to standard curves that were amplified in parallel and were

based upon previously purified and quantified PCR products. The

copy numbers were then normalized to the geometric mean of the

copy numbers of hypoxanthine-guanine phosphoribosyltransferase

1 and ribosomal protein L13A as described (Vandesompele et al.,

2002; Zhang et al., 2005). All real-time PCR assays were repeated

twice.

Genotyping
DNA samples were genotyped for rs11136000 by using

unlabeled PCR primers and TaqMan FAM and VIC dye-labeled

MGB probes (Pre-designed SNP Genotyping Assay, Applied

Biosystems, Foster City, CA) on a real-time PCR machine (Bio-

Rad, Hercules, CA).

Statistical Analysis
Variation in CLU isoform expression were analyzed as a

function of rs11136000 genotype, AD neuropathology, sex and

age by using a general linear model (SPSS v.18 (IBM, Somers,

NY)). A dominant mode of inheritance was assumed to maximize

statistical power.

Immunofluorescence
CLU expression plasmids were transfected into SH-SY5Y cells

by using FuGene HD Transfection Reagent as directed by the

manufacturer (Roche Applied Sciences, Indianapolis, IN). Briefly,

3.756104 cells/well were maintained in a poly-L-lysine treated 8-

well chamber coverglass (Lab-Tek, Nunc, Rochester, NY) and

transfected the next day with CLU1 or CLU2 expression plasmid.

Twenty-four hours after transfection, cells were washed with

phosphate buffered saline (PBS) and fixed with ice-cold methanol

for 5 minutes. Non-specific antibody binding sites were blocked by

incubating the cells with 5% goat serum in PBS with 0.1% Tween-

20 (PBST) for 1 hour and the cells were then incubated with

mouse anti-V5 antibody (1:1000 dilution, ab27671, Abcam,

Cambridge, MA) and either rabbit anti-calnexin antibody (1:200

dilution, SPA-860, Stressgen, Victoria, BC, Canada) or rabbit

Table 1. PCR Primers for evaluating splice variation.

Exons
Amplified

Product
Size Primer Primer Sequence

1a-5
(For CLU1)

596 bp Exon 1a Forward GCGAGCAGAGCGCTATAAAT

Exon 5 Reverse GATGCGGTCACCATTCATC

1b-5
(For CLU2)

567 bp Exon 1b Forward AGATGGATTCGGTGTGAAGG

Exon 5 Reverse GATGCGGTCACCATTCATC

4–6 598 bp Exon 4 Forward AGAGTGTAAGCCCTGCCTGA

Exon 6 Reverse AGACAAGATCTCCCGGCACT

5–9 675 bp Exon 5 Forward GGACATCCACTTCCATAGCC

Exon 9 Reverse ACTTGGTGACGTGCAGAGC

doi:10.1371/journal.pone.0033923.t001
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anti-TGN46 antibody (1:1000 dilution, ab16052, Abcam) in 5%

goat serum at 4uC overnight. The next day, cells were washed with

PBST three times and incubated with a mixture containing Alexa-

488 goat anti-mouse IgG antibody (1:200 dilution, Molecular

Probes, Carlsbad, CA) and Alexa-568 goat anti-rabbit IgG

antibody (1:200 dilution, Molecular Probes) in 5% goat serum at

room temperature for an hour. After washing with PBST, cells

were stained with 10 mg/ml of Hoechst 33258 (Molecular Probes)

for 30 minutes, washed with PBS, and subjected to fluorescence

microscopy.

Western Blot
SH-SY5Y cells or HepG2 cells were grown in a 100 mm dish

(2.66106 cells/dish) for 24 hours and then transfected with CLU1

or CLU2 expression plasmid by using FuGene HD Transfection

Reagent as directed by the manufacturer (Roche Applied

Sciences). Twenty-four hours after transfection, cell medium was

replaced with Opti-MEM (Invitrogen) and cells maintained for

another 24 hours. The conditioned medium was collected and the

cells washed with 5 ml of room-temperature PBS. Cells were then

lysed in 0.5 ml of RIPA butter (50 mM Tris, pH 8.0, 150 mM

NaCl, 1% NP-40, 0.5% deoxycholic acid, 0.1% SDS) containing

16 protease inhibitor cocktail (Roche Applied Sciences) for

30 minutes on ice with occasional rocking. Cell lysates were

centrifuged at 10,0006g for 10 minutes at 4uC and the

supernatant collected. Conditioned medium was centrifuged at

2506g for 10 minutes and 0.5 ml of the supernatant was collected

and supplemented with 16 protease inhibitor cocktail (Roche

Applied Science). Human brain anterior cingulate tissue samples

were prepared by homogenizing ,0.5 mg tissue in RIPA buffer

supplemented with 16 protease inhibitor cocktail, centrifuging at

14,0006g for 10 minutes at 4uC, and then collecting the

supernatant. After the protein concentration of each sample was

determined (Micro BCA Protein Assay Reagent Kit, Pierce,

Rockford, IL), 15 or 20 mg protein were mixed with SDS sample

loading buffer containing b-mercaptoethanol, boiled for 5 minutes

and subjected to polyacrylamide gel electrophoresis on a 7.5%

polyacrylamide gel. Proteins were transferred to nitrocellulose

membranes (Bio-Rad). The blots were then incubated with 5%

nonfat dry milk for 1 hour at room temperature and probed

overnight with mouse anti-V5 antibody (1:5000 dilution, Abcam)

or mouse anti-clusterin antibody (1:200, B-5 Santa-Cruz) at 4uC.

After washing with PBST four times for 5 minutes each, the blots

were incubated with peroxidase-conjugated sheep anti-mouse

antibody (1:1,000 dilution, Jackson ImmunoResearch) for 1 hour

at room temperature. Bound peroxidase was visualized by using a

SuperSignal West Pico kit (Pierce) and a molecular imager

(ChemiDoc XRS System, Bio-Rad). For studies involving PNGase

F digestion, each protein sample was treated with PNGase F as

directed by the manufacturer (New England Biolabs, Ipswich,

MA). Briefly, 15 mg protein of each sample was denatured at

100uC for 10 minutes and incubated with 1,500 units of PNGase F

at 37uC for 2 hours. Samples were then analyzed by Western blot

as described above.

Results

To begin to evaluate CLU expression, we screened human brain

cDNA to identify CLU isoforms present in brain. Previously

reported isoforms include CLU1 and CLU2, which are identical in

exons 2–9 but differ in exon 1, as well as isoforms lacking exons 2

or 5 ([21,22], reviewed in [20]). RT-PCR analyses of pooled

human brain cDNA samples detected only CLU1 and CLU2

(Figure 1A–1B). CLU2 translation is predicted to result in a

secreted protein, beginning at the initial ATG in exon 2 that is

common to both CLU2 and CLU1 (Figure 1C). In contrast, CLU1

translation is predicted to initiate at an ATG within its exon 1,

which is in-frame with the ATG site in the common exon 2.

Hence, CLU1 is predicted to encode a protein identical to that

encoded by CLU2 except that the CLU1 protein would contain 52

additional amino acids at its amino terminus (Figure 1C). This

change is predicted by PSORTII to result in an intracellular and

likely nuclear, form of clusterin (reviewed in [20]). In summary,

CLU1 and CLU2 are the primary CLU isoforms in brain and are

predicted to encode intracellular and secreted proteins, respec-

tively.

To evaluate whether rs11136000, the primary AD-related CLU

SNP [15,16,17,18,19], is associated with CLU expression, we

quantified CLU1 and CLU2 expression in a series of brain samples.

The CLU isoforms were quantified in separate real-time PCR

assays that used forward primers corresponding to their unique

exon 1 and a common reverse primer that targeted the exon 2–3

boundary. Copy numbers were determined relative to a standard

curve for each isoform and normalized to the geometric mean of

housekeeping genes [23,32]. The expression of CLU1 and CLU2

were modestly coordinately regulated (Figure 2A), with CLU2

being consistently greater than CLU1; the overall CLU2: CLU1

ratio was 3.3561.84 (mean 6 SD, n = 51). To gain further insights

into CLU isoform expression, we quantified CLU1 and CLU2 in a

series of single human fetal tissue samples as well as a set of six

adult choroid plexus samples (Figure 2B). Among the fetal tissues,

the CLU2: CLU1 ratio varied widely from 0.3 (skin) to 6.2 (kidney)

(Figure 2B). The CLU2:CLU1 ratio in choroid plexus, which

produces cerebrospinal fluid, was 5.7260.65 (mean 6 SD, n = 6).

We next evaluated CLU isoform expression as a function of AD

neuropathology, rs11136000 status, sex and age. We found that

CLU1 expression was significantly increased with high AD

neuropathology and the minor rs11136000T allele (Figure 2C,

Table 2). In contrast, CLU2 expression was significantly increased

with AD neuropathology but not rs11136000 genotype, and

decreased with age (Figure 2D–E, Table 3). Overall, both CLU1

and CLU2 expression was increased with AD, confirming prior

reports. However, only CLU1 expression was associated with

rs11136000. Since the minor rs11136000T allele was associated

with both increased CLU1 expression and reduced AD risk

[15,16,17,18,19], we interpret these results as suggesting that

increased CLU1 expression is associated with reduced AD risk.

CLU1 and CLU2 are predicted to encode intracellular and

secreted proteins, respectively (Figure 1). Therefore, we evaluated

the proteins produced by CLU1 and CLU2 transfected cells to

discern whether these corresponded to the intracellular and

secreted forms of clusterin that have been reported [4,8,33]. When

each isoform was transiently transfected into neural SH-SY5Y

cells, immunofluorescence analyses showed a similar subcellular

localization pattern (Figure 3). The proteins produced by CLU1

and CLU2 tended to concentrate within the Golgi apparatus, as

established by double-labeling with an antibody against trans-

Golgi network protein 46 (TGN46) (Figure 3A). Relatively modest

amounts of clusterin were also detected within the endoplasmic

reticulum (ER), as established by double labeling with calnexin

(Figure 3B). Nuclear, cytosolic, or mitochondrial-associated

clusterin was not observed. Hence, the clusterin produced by

CLU1 and CLU2 manifests an intracellular localization that

includes the ER and Golgi, consistent with a possible secretory

pathway for both proteins.

CLU1 is predicted to encode a 501 amino acid protein with a

molecular weight of 57.8 kDa while CLU2 is predicted to encode

449 amino acids, totaling 52.5 kDa. During maturation of secreted

AD SNP and CLU Isoform Expression
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Figure 1. CLU1 and CLU2 are the primary CLU isoforms expressed in human brain. The exon layout for the CLU1 and CLU2 isoforms is shown
(A). Coding and non-coding exonic regions are represented by black and white boxes, respectively, while introns are shown as thin black lines. The
first ATG site in each isoform is shown as well. Evaluation of CLU splicing by RT-PCR identified only CLU1 and CLU2 in human brain cDNA (B), i.e., single
PCR products are observed upon amplification from exon 1a – exon 5 (lane 1), exon 1b – exon 5 (lane 2), exon 4 – exon 6 (lane 3) and exon 5 – exon 9
(lane 4). Molecular weight markers are shown at the left. The predicted protein sequences encoded by CLU1 and CLU2, beginning with the initial ATG
sites shown in A, are shown in panel C. The sequence in gray font is unique to CLU1 while sequence in black font is common to CLU1 and CLU2. The
boxed amino acid sequence represents signal sequence that is removed from clusterin-2 upon its translocation to the ER. Two nuclear localization
sequences, as predicted by PSORT II (http://psort.ims.u-tokyo.ac.jp/form2.html), are underlined. The asterisk shows the clusterin cleavage site that
separates the a- and b- subunits.
doi:10.1371/journal.pone.0033923.g001

Figure 2. Expression of CLU isoforms in human tissues. CLU1 and CLU2 isoforms were quantified by isoform-specific RT-PCR in a series of adult
human cingulate and choroid plexus samples (A–B) as well as a human fetal tissues (B). Within A, each marker reflects the expression of CLU1 and
CLU2, normalized to housekeeping genes, in a single brain sample. Within B, the value in parentheses following the tissue name is the CLU1:CLU2
ratio. CLU1 expression shows a positive association with AD neuropathology and rs11136000T allele (C). CLU2 expression was increased in individuals
with AD pathology and decreased with age (D–E).
doi:10.1371/journal.pone.0033923.g002

AD SNP and CLU Isoform Expression
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clusterin, the protein is N-glycosylated and proteolyzed to generate

a heterodimer that is maintained by disulfide bonds [20]. To

compare the size of the proteins produced by CLU1 and CLU2, we

performed Western blot analyses of transfected SH-SY5Y cells;

ectopic clusterin was detected via a V5 epitope tag (Figure 4 A–B).

Cell lysates contained both intact and cleaved clusterin while

conditioned medium contained only cleaved clusterin; the

clusterin protein produced by CLU1 and CLU2 appeared equal

in size (Figure 4A). To discern whether glycosylation differences

may obscure differences in the clusterin molecular weight derived

from their primary sequence, the protein mixtures were digested

with PNGase F to remove N-linked sugars prior to electrophoresis;

the size of the proteins produced by CLU1 and CLU2 transfected

cells were both decreased similarly by PNGase treatment

(Figure 4B). We considered the possibility that CLU translation

may show cell-type specificity, and therefore repeated this study in

an unrelated cell line by transfecting CLU1 and CLU2 into HepG2

cells. As with the SH-SY5Y cells, CLU1 and CLU2 transfected cells

produced clusterin of similar size, even after PNGase F digestion

(Figure 4C). Hence, we found no evidence to suggest that the

proteins produced by CLU1 and CLU2 differ in cellular

localization, size, glycosylation, or proteolytic cleavage. Rather,

when these Western blot studies are considered in combination

with the immunofluorescence studies, CLU1 and CLU2 appear to

produce equivalent proteins that are similarly translated, glycosy-

lated, and cleaved as they pass through the ER and Golgi in the

secretory pathway to the extracellular space.

To evaluate whether the clusterin proteins produced by CLU1

and CLU2 in vitro are similar to those produced in vivo, we

compared ectopic clusterin with endogenous clusterin in SH-

SY5Y cells and in human brain by Western blotting with a

clusterin antibody. Endogenous clusterin in SH-SY5Y cells

migrates at a slightly lower molecular weight than that resulting

from CLU transfection, reflecting the 5.1 kDa V5/His tag encoded

by the pcDNA3.1 vector expressing transfected CLU (Figure 4D).

Importantly, this 5.1 kDa size difference between endogenous and

transfected clusterin is similar to the size difference between the

CLU1 and CLU2-predicted proteins, indicating that if the proteins

encoded by CLU1 and CLU2 differed by 5 kDa, the proteins

would be resolved easily under these experimental conditions. The

endogenous SH-SY5Y clusterin migrates similarly to the intact

protein detected in brain homogenates suggesting these cellular

forms are similar to those present in vivo (Figure 4D). To extend

this analysis to the heterodimeric form of clusterin, we also

performed electrophoresis under non-reducing conditions. We

found that heterodimeric protein from CLU1 and CLU2

transfected cells appeared similar in size to each other and to the

forms found in brain (Figure 4E). Hence, CLU1 and CLU2

produce proteins in vitro that are similar in size to endogenous

clusterin in vitro and human brain.

Discussion

The main findings of this report are several. First, CLU1 and

CLU2 are the primary CLU isoforms in human brain and differ in

their first exon and proximal promoter. Second, the expression of

only CLU1 was associated with rs11136000 while both CLU1 and

CLU2 were increased with robust AD neuropathology. Third,

CLU1 and CLU2 produce secreted clusterin proteins that are

similar to each other and to clusterin in human brain. Since CLU is

increased in AD and CLU1 is increased with the minor

rs11136000T allele, which is also associated with reduced AD

risk, we interpret our results as suggesting that increased CLU

expression throughout life may reduce AD risk. Overall, these

results identify a possible means underlying the association of

rs11136000 with AD risk.

The association between CLU expression and rs11136000 was

discerned because the CLU isoforms were analyzed separately. For

example, when we analyzed total CLU expression in the same

fashion as reported here, total CLU was not associated with

rs11136000 (p = 0.51) although a robust association with AD

pathology was observed (p = 0.005, Ling et al., unpublished

observations). The lack of a significant association between

rs11136000 and total CLU is somewhat disconcerting since

CLU1 and CLU2 appear to produce a similar protein. We

speculate that (i) the threshold for clusterin biological significance

may be less than the threshold for overall CLU statistical

significance and/or (ii) CLU1 may be enriched in a cell type

different than CLU2, which may affect its functionality. We note

that the lack of an association between total CLU and rs11136000

was similar to prior reports that total CLU mRNA or clusterin

protein were not associated with rs11136000 [17,34]. As the

clusterin produced by CLU1 and CLU2 appears similar, discerning

an association between rs11136000 and clusterin would be

especially challenging in tissues with a large proportion of CLU2.

In this regard, CLU2 was the major isoform in choroid plexus,

suggesting that an association between cerebrospinal fluid clusterin

and rs11136000 would be difficult to detect. The differential

regulation of CLU1 and CLU2 was not unexpected because CLU1

and CLU2 have separate proximal promoter regions. Consistent

with this observation, Cochrane et al found that androgen-

treatment in a prostate cancer cell line decreased CLU1 expression

while enhancing CLU2 expression [35]. Although the identifica-

tion of the functional SNPs and transcription factors that modulate

Table 2. Analysis of CLU1 Expression.

Parameter Coeff. SE P value

AD Neuropathology 0.01675 0.00551 0.004

Rs11136000 (dominant model) 0.01927 0.00798 0.020

Sex 20.00708 0.01503 0.640

Age 20.00112 0.00104 0.286

CLU1 expression was analyzed as a function of rs1136000, AD neuropathology,
sex and age by using a general linear model. This model assumed a dominant
mode of inheritance for the SNP. The estimated marginal means for CLU1 in
rs11136000 CC versus CT/TT individuals were 0.11260.013 and 0.15160.010
(mean 6 SE), respectively. The estimated marginal means for low and high AD
neuropathology were 0.10660.014 and 0.15760.009 (mean 6SE), respectively.
These values were modeled with age equal to 82.3 years.
doi:10.1371/journal.pone.0033923.t002

Table 3. Analysis of CLU2 Expression.

Parameter Coeff. SE P value

AD Neuropathology 0.06482 0.02483 0.012

Rs11136000 (dominant model) 0.00697 0.03594 0.847

Sex 0.03399 0.06766 0.618

Age 20.01024 0.00467 0.033

CLU2 expression was analyzed as a function of rs1136000, AD neuropathology,
sex and age by using a general linear model. A dominant mode of inheritance
was assumed for rs11136000. The estimated marginal means for low and high
AD neuropathology were 0.33260.062 and 0.52660.041 (mean 6SE),
respectively. These values were modeled with age equal to 82.3 years.
doi:10.1371/journal.pone.0033923.t003

AD SNP and CLU Isoform Expression
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CLU expression is beyond the scope of this report, we note that

rs11136000 resides within intron 3 and is common to both CLU1

and CLU2. Hence, rs11136000 is likely not functional but rather is

in linkage with a functional SNP more proximal to the CLU1

promoter. In summary, the association between rs11136000 and

CLU1 was dependent upon analyzing the two CLU isoforms

separately.

Since earlier predictions were that CLU2 encodes a secreted

protein while the additional 52 amino-terminal residues encoded

by CLU1 would result in its intracellular localization [20], we

expected clusterin in CLU1 and CLU2 transfected cells to differ in

cellular locale and size. In support of this prediction, the ATG

translation initiation sites in the CLU1-specific exon 1a as well as

the common exon 2 both satisfy Kozak consensus sequence

requirements (http://bioinfo.iitk.ac.in/AUGPred/). However,

clusterin in CLU1 and CLU2 transfected cells was localized to

the secretory pathway and was equivalent in size under conditions

that would easily discern their predicted five kDa size difference,

especially after PNGase F treatment to remove sugar residues.

Hence, CLU1 and CLU2 produce similar secreted proteins in vitro.

Comparable results were obtained in two cell types, suggesting

that CLU1 and CLU2 generally produce soluble clusterin protein.

The most parsimonious interpretation of these data is that CLU1

translation is generally initiated at the common exon 2 ATG. The

possibility exists that a portion of CLU1 translation is initiated at

the exon 1a ATG at levels too low to be readily detected or that

produce an unstable protein which is rapidly degraded. Distin-

guishing among these possibilities is a future direction for this

work. Overall, we summarize our current results by noting that the

proteins produced from CLU1 and CLU2 in vitro are similar to each

other, and similar in size to those present in human brain, leading

us to interpret our data as supporting the possibility that CLU1 and

CLU2 generally produce secreted clusterin protein in vitro and in

vivo.

A logical extension of the finding that AD risk is reduced with a

genetic variant that correlates with increased CLU expression is

that other factors that increase CLU expression may also reduce

AD risk. Furthermore, since CLU expression is increased in AD

without reversing the disease, we speculate that enhanced CLU

expression reduces AD risk only if CLU expression is increased well

before AD onset, mimicking the likely SNP effects. One possible

modulator of interest is age-dependent changes in sex hormones

since CLU isoforms are differentially regulated by androgens [35].

Stress has also been shown to upregulate CLU in many instances

[36] and may cause the AD-associated increase in CLU observed

here. In terms of possible therapeutic agents, multiple histone

deacetylase inhibitors increase CLU expression robustly in vitro

[37]. Interestingly, one member of this class, valproate, increases

CLU expression in human astrocytes [37] and reduces amyloid

accumulation as well as behavioral deficits in mouse amyloid

models [38,39]. While valproate may also act via other

mechanisms [38], the actions of valproate on CLU expression

may be relevant to its neuroprotection and merit further

exploration to reduce AD risk.

Limitations of this study include that rs11136000 and AD

neuropathological status capture only ,20% of the variance in

CLU expression. Identifying the unknown factors that account for

the additional variance, which could include epigenetic factors,

will facilitate understanding of CLU expression. Moreover,

variability in these factors could facilitate or obscure the SNP

association with CLU1 expression described here, suggesting that

replication of these data in additional samples is necessary for their

Figure 3. CLU1 and CLU2 encoded proteins are localized to the ER and Golgi. SH-SY5Y cells were transfected with vectors encoding CLU1
and CLU2; the resultant clusterin expression was localized by a vector-derived V5 epitope tag. The subcellular localization for both proteins
overlapped with the Golgi, as shown by co-labeling with antibody against TGN46 (A) and with the ER, as shown by co-labeling with an antibody
against calnexin (B).
doi:10.1371/journal.pone.0033923.g003
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acceptance by the research community. Additionally, since the

nuclear form of clusterin arising from an isoform lacking exon 2

has been associated with apoptosis [21,22], this isoform may be

transiently expressed and hence below our limits of detection,

especially in comparison with CLU1 and CLU2.

In conclusion, the AD-protective allele of rs11136000 was

associated with increased expression of CLU1 but not CLU2 in our

dataset. Both CLU1 and CLU2 produce a soluble, secreted

clusterin protein that is similar to that observed in human brain.

Discerning the association between rs11136000 and CLU1

depended upon analyzing these two CLU isoforms separately.
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