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Abstract
It is crucial to consider dynamics for understanding the biological function of proteins. We used a
large number of molecular dynamics trajectories of non-homologous proteins as references and
examined static structural features of proteins that are most relevant to fluctuations. We examined
correlation of individual structural features with fluctuations and further investigated effective
combinations of features for predicting the real-value of residue fluctuations using the support
vector regression. It was found that some structural features have higher correlation than
crystallographic B-factors with fluctuations observed in molecular dynamics trajectories.
Moreover, support vector regression that uses combinations of static structural features showed
accurate prediction of fluctuations with an average Pearson’s correlation coefficient of 0.669 and a
root mean square error of 1.04 Å. This correlation coefficient is higher than the one observed for
the prediction by the Gaussian network model. An advantage of the developed method over the
Gaussian network models is that the former predicts the real-value of fluctuation. The results help
improve our understanding of relationships between protein structure and fluctuation.
Furthermore, the developed method provides a convienient practial way to predict fluctuations of
proteins using easily computed static structural features of proteins.
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Introduction
Thanks to worldwide efforts in structural genomics 1–3 we now know over 75 thousand
protein tertiary structures 4. This number is only a small fraction as compared with of the
number of known protein sequences. Computational methods can predict structures for more
than a half of newly sequenced proteins by means of template-based modeling with a
sufficiently high accuracy 5–8. For some of the remaining proteins, it is possible to predict
their structures in a de novo fashion if they are small and structurally simple 9–14. Thus, the
problem of protein structure prediction is practically gradually being solved, and it may be
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completely solved in the near future. Obviously, for the most difficult (and “atypical”) cases
of monomeric structures and to a much larger extent for the plethora of possible protein-
protein (and protein-nucleic acid, protein-carbohydrate, etc.) complexes structure prediction
will remain a challenging task for decades 9;15–17. The knowledge of protein tertiary
structures facilitates fast developments in various branches of molecular medicine and
biotechnology 18;19. It, however, becomes more and more obvious that in order to
understand the underlying molecular mechanisms of life we need to see biomolecules “in
action”.

Protein dynamics, resulting from a specific flexibility of their structures, has drawn much
attention recently in both theoretical and experimental molecular biology. Studies of
dynamics of protein structures and their assemblies are important for understanding the
mechanisms of protein function in various cellular processes 20;21, in particular, ligand
binding, enzymatic reactions 22, conformational diseases 23, and protein-protein
interaction 24. The understanding of protein flexibility is also important for practical
applications such as development of computer-aided methods of enzyme design 25;26 and
drug development 27.

In X-ray protein crystallography, which determines the Cartesian coordinates of atoms in
proteins, uncertainties/fluctuations of atomic positions are provided in the form of B-
factors 28. The B-factor measures the mobility of atoms, but it also reflects some inherent
aspects of crystallographic techniques. Moreover, fluctuations estimated by B-factors are
influenced by the molecular environment of the crystal structure. Protein mobility in
solution could differ qualitatively from that in a crystal. Eastman et al. showed that B-factors
are an accurate measure of fluctuations for stable parts of proteins, but significantly
underestimate motion in flexible regions 29. Somewhat more straightforward measures of
structure fluctuations could be derived from NMR experiments, although resulting estimates
can be flawed by various limitations of actual measurements and by the computational
schemes of their interpretation 30–33. Therefore, these methods do not fully reflect actual
fluctuations of proteins.

Molecular Dynamics (MD) is the most straightforward method for theoretical studies of
dynamic aspects of molecular systems. Due to the progress in computing technology it is
now practical to simulate protein systems in a timescale of tens of nanoseconds.
Nevertheless, such simulations remain costly. With a significantly less computational
requirement, the internal motion of a protein can be approximated by the normal mode
analysis of a harmonic model of proteins 34. Another possibility is to employ simulations
using coarse grained representations of protein structures. A simple approach is the Gaussian
Network Model (GNM) and its derivatives 35–38. Long-time simulation at an intermediate
resolution can be achieved using simplified protein models, such as UNRES 39 and
CABS 40. These models enable a low resolution study of dynamics (or stochastic dynamics)
in timescales by a few orders of magnitude longer than possible by all-atom MD 41–44. A
weak point of studying dynamics using coarse grained models is a lack of straightforward
scaling between the models’ time and the real time. Thus, all-atom MD simulations should
be always used as a reference for coarse grained dynamics.

A number of computational methods for predicting protein fluctuations have been published;
however, almost all of them evaluated their prediction results mainly in comparison with the
crystallographic B-factor of proteins. As discussed above, the B-factor does not fully capture
the mobility of proteins in solution. As we show in this work the fluctuations observed in
MD and the B-factor correlate rather poorly, as was also concluded in a previous work 29.
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There are a series of works that use GNM or its variants for predicting B-factors of
proteins 35;38;45;46. Micheletti et al. extended GNM by adding Cβ atoms (βGM). The
fluctuations of residues predicted by βGM were compared with the fluctuations from the
MD simulation of HIV-1 protease 47. The self-consistent pair contact probability method,
which is similar in its spirit to GNM, was used to predict fluctuations and compared with B-
factors 48. The Zhou group developed an all-atom mean-field model to predict
fluctuations 49.

Structural features of proteins were also investigated that can indicate fluctuations
represented by B-factors. These features include solvent accessibility of residues50, distance
from a residue to the center of mass of the protein 51, eigenvectors of the square distance
matrix52, and predicted local fragment structures 53. An alternative direction pursued was to
predict B-factors from protein sequences. Machine learning methods, such as Support
Vector Machine 54;55, the random forest algorithm 56, or an artificial neural network 57,
were used to predict fluctuations using sequence information and structural features that can
be predicted from sequences, such as the secondary structure and the accessible surface area
of residues.

In this work we used Support Vector Regression (SVR) to investigate the relationship
between protein structure and dynamics. We employed various structural characteristics as
well as structure fluctuation profiles predicted by GNM as input for SVR. The target
reference is the dynamics observed in long MD simulations for a representative set of 592
globular proteins. To the best of our knowledge, this is the first time that protein fluctuations
have been investigated on such a large dataset of MD simulations. In this context we also
analyzed differences of protein dynamics deducted from the B-factors and the in-solvent
dynamics computed by MD simulations. A more practical purpose of this work is to provide
a fast (essentially instantaneous in comparison to MD) and reliable method that can be used
for predicting fluctuations of protein structures. Unlike existing works mentioned above, we
predict the real-value of residue fluctuations rather than simply showing correlation between
predicted and actual fluctuations values. Remarkably, our method predicts fluctuation highly
accurately with an average error of less than 1.1 Å. The correlation coefficient of our
prediction with the actual fluctuations observed in MD simulations is higher than that of
GNM. We also found that some of the static structural features, such as residue contact
number, have higher correlation with the residue fluctuation in MD simulation than B-
factors do. The developed software for predicting fluctuation, named flexPred, has been
made freely available for the academic community.

Materials and Methods
Dataset of molecular dynamics trajectories

The MD trajectories of proteins were selected from MoDEL (Molecular Dynamics Extended
Library) 58. Out of 1897 entries in the database, the following entries were discarded:
trajectories for protein structures solved by nucleic magnetic resonance (NMR), those which
include more than one protein chain in the simulation, and trajectories for proteins whose
length differ from the corresponding entries in the Protein Data Bank (PDB) 4. These MD
trajectories were computed using AMBER 59, GROMACS 60, or NAMD 61 force fields. If
more than one simulation is available for a protein, we used the first one with an earlier
entry date in the database. The MoDEL trajectory files were uncompressed with the
PCASuite software 62. 837 trajectories remained after this filtering process. From this
subset, we removed redundant proteins using the PISCES server 63 with a sequence identity
cutoff of 35%. The final number of trajectories is 592. This dataset contains proteins from
all main classes in the CATH database 64: 111 proteins in the α class (18.75%), 149 proteins
in the β class (25.17%), 256 in the αβ class (43.24%), and 76 in the few secondary structure
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class (12.84%). The length of the proteins ranges from 21 to 994 residues (Figure 1). The
simulation time was 10 ns for most of the proteins (96.11%), while the rest of the proteins
had shorter trajectories: 5 nanoseconds (ns) (0.33%), 2 ns (2.36%), 1 ns (0.5%), and one
protein each with 6.5 ns, 6.0 ns, 5.5 ns, and 4.5 ns.

Definition of fluctuation
The fluctuation of amino acid residue i is defined in two ways. It can be defined as a root
mean square deviation (RMSD) of the mean position of an atom in an MD trajectory:

(Eq. 1)

xi(tj) is the Cartesian coordinates of the Cα atom of residue i at time tj in the trajectory, T is
the number of time frames in the trajectory, and <xi> is the average position of the Cα atom
of residue i in the trajectory. We also used the coordinates in the PDB file as the reference:

(Eq. 2)

where xi
ref is the coordinates of the Cα atom of residue i in the PDB file. The distance of

residue positions is computed after superimposing the PDB structure on each frame. If
alternative positions of the atom are recorded in the PDB files, the first position of the atom
was used. As shown in Figure 2, these two definitions give similar fluctuations of residues,
but not identical. The correlation coefficient of the two fluctuation values is 0.86. The
fluctuation value is smaller when the mean of a trajectory is used as the reference (Eq. 1) in
almost all the cases (99.9 %). Unless noted, we use the second definition of fluctuation (Eq.
2) in the results that will be shown below, because we compare the fluctuations from MD
with B-factors and GNM, both of which are attributed to PDB structures.

Structural features of proteins
We considered the following static protein structural features.

1. B-factor (temperature factor) 28. The B-factor reflects dynamic motion, the static
disorder of the atom in the crystal structure, and also errors in model building. The
B-factor values are taken from the PDB file.

2. Square of the distance between a residue and the protein center of mass, which is
defined as follows:

(Eq. 3)

where xi is the position of the Cα atom of residue i. A previous paper showed that
this parameter has good correlation with the B-factor 51;52.

3. Residue contact number, which is defined as the number of surrounding residues
whose Cα atom is closer than a cutoff distance. The contact number was also
shown to correlates well with the B-factor 65;66.

4. Number of hydrophobic/hydrophilic residue contacts, where the number of residue
contacts is separately counted for hydrophobic and hydrophilic residues.
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Hydrophobic/hydrophilic residues are those which have a positive/negative value
on the Kyte-Doolittle hydrophobicity scale 67.

5. Solvent accessibility surface area (Å2). This parameter is defined as water exposed
surface of a residue. We used the DSSP program 68 to compute the accessibility
surface area of amino acids, which are then normalized with the value in the
tripeptide with glycines on both sides of the target amino acid residue 69.

6. Residue depth, which is defined as the distance of the Cα atom or the average
distance of all the atoms in a residue to the closest water molecule 70. Protein
surface was computed with the MSMS program 71. The hsexpo program was used
to compute residue depth 72.

7. Lower/upper half-sphere exposure of a residue 72, which is defined as the number
of contacts within a half-sphere of a radius of 13 Å centering at either the Cα or the
Cβ atom of the residue. The sphere is divided into half by a plane perpendicular to
the Cα-Cβ vector.

8. Secondary structure. Each residue is classified into eight classes, i.e. seven
secondary structure types defined by DSSP 68 or other.

9. Fluctuations predicted by the Gaussian Network Model (GNM) 35;36. GNM is a
coarse-grained model where Cα atoms are connected by springs. GNM has been
used for investigating protein dynamics including the prediction of B-factor values
of proteins 38. We downloaded GNM codes from the Jernigan laboratory
(http://ribosome.bb.iastate.edu/). Fluctuations were computed with a residue
contact distance cutoff of 16 Å 73 and without using cutoff 38. Residue contacts in a
protein are represented as the Kirchhoff matrix in GNM:

(Eq. 4)

where rij is the distance between two atoms, i and j, and rc (= 16 Å) is the cutoff
value. GNM without cutoff uses the following modified Kirchhoff matrix:

(Eq. 5)

In both methods, the average fluctuation of residue i over time is defined by:

(Eq. 6)

where C is constant.

Support Vector Regression
We combined the structural features listed above to predict fluctuations using Support
Vector Regression (SVR). The LIBSVM package 74 with Gaussian kernels was used. Since
it was not feasible to test all the possible combinations of features, features were added or
changed one at a time starting from the one which has the largest correlation coefficient with
residue fluctuation. We performed five-fold cross validation using the dataset of trajectories.
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The default set of parameters in libsvm, C = 64.0, γ = 1, and ε = 0.5, was used, which was
shown to perform best among others tested in the first few feature combinations in the five-
fold cross validation (data not shown).

Evaluation of fluctuations prediction
Pearson’s correlation coefficient was used to examine how well individual features or
predicted fluctuations correlated with actual fluctuations in the MD trajectories. Average
correlation coefficients were computed using all the trajectories in the dataset.

In addition, the error of predicted fluctuations was quantified as the RMSD to the reference
trajectory fluctuation:

(Eq. 7)

where N is the length of the protein, ΔRi
pred is predicted, and  is actual

fluctuation (Eq. 2) of residue i.

Availability of the developed program
The program for predicting the fluctuation of residues in a protein structure is made freely
available for the academic community at http://kiharalab.org/flexPred/. Both the web server
and the source code written in Python are available. It takes a PDB file of a query protein for
input data and outputs a predicted fluctuation value for each residue. The computational
time for a protein is typically within a couple of seconds to twenty seconds depending on the
length of the protein.

Results and Discussion
The relationships between structural features and residue fluctuations are examined in
several aspects. First, we compare the correlation coefficient of individual static structural
features with actual fluctuations. Then, we explore different combinations of features to
make accurate prediction of fluctuations using SVR. Then, the accuracy of the fluctuation
prediction by SVR and by GNM is further examined. Finally, we also consider the structural
variation of models by NMR in comparison with prediction as well as the fluctuations
observed in MD trajectories.

Correlation of static structural features of proteins with fluctuations
In Table 1, we compared the correlation coefficient of individual structural features with the
fluctuation of residues observed in the MD trajectories. Eight different distance cutoff
values, 6, 8, to 16 Å, were used for the residue contact number. The top of the table shows
the correlation of the B-factor (0.484). Interestingly, several static structural features,
namely, the distance to the center of mass, the contact number computed with the cutoff of
12–22 Å, have more significant correlation with the fluctuations than the B-factor. Among
the static features, the largest correlation coefficients were observed for the residue contact
number (15 and 16 Å). These results indicate that the motion of chains in the MD
trajectories is better captured by the coarse-grained topological structures of proteins rather
than the B-factor.

As a reference, we also show the correlation of the fluctuations predicted by GNM (bottom
rows of Table 1). GNM showed higher correlation than the other structural features. Note
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that GNM actually simulates dynamic motion of protein structures; thus it has a different
nature from the other static features compared in the table. Consistently with the previous
work by Yang et al. 38, GNM without using a distance cutoff showed higher correlation than
GNM with a distance cutoff.

Since the residue contact number (with a 16 Å cutoff) and the square of distance to the
center of mass showed two largest correlation coefficients among the static structure
features examined, we used these two features as the basis for combinations of input features
for training SVR in the next section.

SVR models for predicting residue fluctuation using static structure features
Next, we employed SVR to predict the fluctuation of residue positions in the MD
trajectories using various combinations of static structural features. Fluctuation predictions
by GNM (at the bottom of Table 1) were not included as features. Five-fold cross validation
was performed, in which SVR parameters were trained on four-fifths of the dataset, while
prediction was made for the rest of the one-fifth of the dataset. This procedure was repeated
five times to make prediction for all data in the dataset. Starting from the combination of the
residue contact number (with 16 Å cutoff) and the square of distance to the center of mass,
which are the two features that showed the highest correlation with fluctuations (Table 1),
seventeen different feature combinations were tested by adding one feature at a time (Table
2).

Among the seventeen feature combinations examined, all except for two (the feature set 1
and set 17) showed higher correlation with actual fluctuations than GNM (Table 1). The
largest correlation coefficient, 0.669, was achieved for the feature set 15, which uses the
residue contact numbers with different distance cutoffs. In terms of average RMS, all the
feature combinations predicted residue fluctuations within an RMS of 1.1 Å, ranging from
1.042 Å to 1.092 Å. The smallest RMS was achieved for feature sets 6, 7, 12, 13, and 14,
which combine the residue contact numbers, the square distance from the center of mass,
and the B-factor. Sets 6 and 7 additionally used information about the secondary structure.
The RMS and the average correlation coefficients (Table 2) correlate moderately with a
correlation coefficient of 0.627 (Fig. 3). Figure 4 shows the distribution of the average
correlation coefficients between predicted and actual fluctuations (Fig. 4A) and the average
RMS (Fig. 4B) for each protein, which were predicted using feature set 12. Remarkably, the
majority (70%) of proteins fluctuations were predicted within an RMS of 1.0 Å. The strong
advantage of the developed SVR models is that they predict the real-value of fluctuation,
unlike GNM which predicts only the relative magnitude of residue fluctuations that need to
be rescaled to obtain actual fluctuation values.

Incorporating dynamic (GNM) features to SVR models
We further investigated whether adding GNM as an input feature can improve fluctuations
prediction with SVR. We used 〈(ΔRi)2〉 for the fluctuations from GNM (Eq. 6) without a

distance cutoff because it has higher correlation with the actual fluctuations than 
does. To each of the feature sets examined in Table 2 we added 〈(ΔRi)2〉 predicted by GNM
and performed five-fold cross validation. The resulting fluctuation prediction with and
without GNM was compared in terms of the correlation coefficient (Fig. 5A) and the RMS
(Fig. 5B) with the actual fluctuations.

Adding GNM in the feature set made slight improvement in the RMS of the predicted
fluctuations (Fig. 5B) except for one case (feature set 12), lowering RMS on average by
0.010. However, small consistent deterioration of the correlation coefficient was observed
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(Fig. 5A) when GNM was added. The average decrease in the correlation coefficient is
0.013. Thus, GNM did not make significant contribution to improving fluctuation
prediction.

Comparison of SVR model prediction results with B-factor fluctuation values
In Figure 6, we show four examples of actual and predicted fluctuations as well as
fluctuations derived from the B-factors. For residue i with a B-factor of Bi, the fluctuation is
defined as

(Eq. 8)

The fluctuations from the B-factor was also rescaled to achieve a smaller RMS with the
actual fluctuations (i.e. fluctuations from MD trajectories) as follows

(Eq. 9)

where  are the maximum and the minimum values of actual

fluctuations, and  are the maximum and the
minimum fluctuation values computed from B-factor values (Eq. 8) in the protein. α is a
weighting factor explored from 0.1 to 1.0 with an interval of 0.1 to seek smaller RMS for the
actual fluctuations (Table 3). In Figure 6, α is set to 1.0 for the plots of “Fluctuation from B-
factor, rescaled”. Note that this rescaling obviously changes the RMS but does not change
the correlation coefficient to the actual fluctuation. The acutal fluctuations in the MD
trajectories are defined by Equation 2 and predictions were made using feature set 15 in
Table 2. The right panel of each protein visualizes the magnitude of actual fluctuations in a
color scale from blue to red with blue showing small while red for large fluctuation.

The first example, retrovirus coat protein (PDB ID: 1mof) (Figs. 6A, B), exhibits a large
fluctuation at two termini and at the end of the long helix. Prediction by SVR captured
fluctuating residues and the magnitude fairly well with a correlation coefficient of 0.80 and
an RMS of 1.55 Å. The fluctuations derived from B-factor have lower correlation with the
actual fluctuations (correlation coefficient of 0.69) with a larger RMS of 1.91 Å even after
rescaling. In the second example (Figs. 6C, D) of homing endonuclease PI-PfuI (PDB ID:
1dq3), overall fluctuation is not large but shows high peaks of fluctuation at loop regions.
The predicted fluctuations have a correlation coefficient of 0.81 while the fluctuations from
B-factor have a moderate correlation of 0.50. The third example, DNA-binding protein gp32
(PDB ID: 1gpc) (Figs. 6E, F), has the largest fluctuation at the loop of residues 150–160 and
over 3 Å fluctuation at the other loop regions, which are captured well by the prediction.
Predicted fluctuations have a correlation coefficient of 0.78 and a small RMS of 1.04 Å. In
contrast, the correlation of fluctuations from B-factor is 0.55 with a larger RMS of 1.93 Å.
The last example, MTCP-1 (PDB ID: 1a1x) (Figs. 6G, H) is a β-barrel protein with a long
loop at residues 50 to 60. Relatively large fluctuation was observed at the N-terminus and at
the loop regions that connect β-strands (e.g. residues 35–40), which are well predicted. The
overall RMS of the prediction is 0.79 Å and the correlation coefficient with the actual
fluctuations is 0.82, better than the fluctuations derived from B-factors.

Consistent with Table 1, the fluctuations from B-factors correlate only moderately with the
actual fluctuations. Fluctuations computed from B-factors using Eq. 8 have always a larger
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RMS than the SVR prediction. The agreement of the fluctuations from B-factors can be
improved if it is rescaled individually for each protein as shown in the second column from
the right in Table 3; however, the value of the optimal scaling factor α differs from protein
to protein and thus cannot be known beforehand. In contrast, our prediction by SVR has a
significantly higher correlation with the actual prediction and it predicts the real-value of the
fluctuations satisfactorily without any rescaling.

MD fluctuations and fluctuations from NMR models
The MoDEL database also contains simulations of protein structures determined by NMR.
We selected 140 non-redundant protein structures determined by NMR that contain more
than ten models in their PDB files. Redundant proteins were removed by considering
sequence identity according to the PISCES database 63. Using the 140 proteins, we
compared fluctuations observed in the NMR models, MD trajectories, and the predicted
fluctuations. The results are summarized in Table 4. The fluctuation prediction was carried
out using feature set 16, which does not contain the B-factor term (NMR structures do not
have B-factors).

It is shown that the prediction has a significant correlation (0.739) with the structural
variation of the models derived from NMR. Interestingly, the correlation coefficient between
the prediction and NMR is highest among the other two pairs, prediction vs. MD and NMR
vs. MD.

Conclusion
We used a large number of MD trajectories of non-homologous proteins as references and
examined static structural features of the proteins that are most relevant to fluctuations. We
examined the correlation of individual structural features with fluctuations and then
investigated effective combinations of features for SVR to predict the real-value of
fluctuation of residues. The main findings of this work are summarized as follows. First of
all, two types of structural features, the distance to the center of mass of the protein and the
residue contact number, showed a higher correlation coefficient with fluctuations than B-
factor does. Combinations of static features used as input for SVR achieved accurate
prediction of fluctuations with a correlation coefficient of 0.67 and RMS of 1.042 Å. This
correlation coefficient is higher than GNM has to the actual fluctuation. Our method predicts
the structural variation of NMR models also well. The current study demonstrates that
flexibility of proteins is inherently coded in coarse-grained static protein structural features,
even more than in the crystallographic B-factors. Thus, protein motion is determined by its
static structure that is coded by its sequence, which could be considered as an extension of
the Anfinsen’s dogma 75. Indeed series of studies on GNM has also demonstrated that
motion of a protein is determined by its structure. However, the current work further shows
that static structural features can predict the real-value of fluctuations, which GNM has not
been shown to be able to do. As the importance of protein dynamics has been more
recognized for biological function, the prediction method we developed has also a practical
value in the wide areas of biology and biotechnology.
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Figure 1.
Histogram of the length of proteins in the dataset. There are in total 592 proteins.
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Figure 2.
Average fluctuations of proteins in MD trajectories using two definitions. X values show
fluctuations of residues relative to the crystal structures of proteins in the PDB (Eq. 2) while
y values are fluctuations relative to the mean structure of each MD trajectory (Eq. 1).
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Figure 3.
The average correlation coefficient and RMS of predicted and actual fluctuations.
Predictions were made with SVR using seventeen different feature combinations (Table 2).
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Figure 4.
Distribution of A, corelation coefficients; B, RMS (Å); of predicted and actual fluctuations
computed for 592 proteins in the dataset.
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Figure 5.
Comparison of the prediction performance with and without using GNM as a feature.
〈(ΔRi)2〉 predicted by GNM was added to each SVR feature set listed in Table 2. A, Average
correlation coefficient; B, average RMS predicted by SVR with and without 〈(ΔRi)2〉 from
GNM are plotted.
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Figure 6.
Examples of predicted fluctuations in comparison with B-factor derived fluctuations and
MD simulation fluctuations. Left panels show the values of fluctuations: red, fluctuations
observed in the MD trajectories; green, predicted fluctuations; dotted blue line, fluctuations
computed from B-factors; dotted magenta line, rescaled fluctuations from B-factors (α =
1.0). The correlation coefficients and RMS are summarized in Table 3. Right-hand panels
show the magnitude of fluctuations in a color scale with blue indicating lower fluctuations
and red for higher fluctuations. A, B, 1mof; C, D, 1dq3; E, F, 1gpc; G, H, 1a1x.
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Table 1

Correlation coefficients between structural features and fluctuations.

Structural Features Number of proteins with p-
value < 0.05 (%) a)

Avg. corr. coeff. b)

B-Factor 565 (95.4) 0.484 (0.504)

Distance to center of mass 584 (98.6) 0.509 (0.514)

Square of distance to center of mass 586 (99.0) 0.545 (0.549)

Contact number (cutoff 6 Å) 571 (96.5) −0.374 (−0.384)

Contact number (8 Å) 591 (99.8) −0.480 (−0.481)

Contact number (12 Å) 590 (99.7) −0.554 (−0.556)

Contact number (15 Å) 587 (99.2) −0.568 (−0.571)

Contact number (16 Å) 571 (96.5) −0.567 (−0.571)

Contact number (18 Å) 587 (99.2) −0.562 (−0.565)

Contact number (20 Å) 585 (98.8) −0.555 (−0.559)

Contact number (22 Å) 584 (98.6) −0.545 (−0.551)

Accessible Surface Area (ASA) c) 580 (98.0) 0.404 (0.407)

ASA normalized 590 (99.7) 0.476 (0.477)

Residue depth (residue mean) d) 559 (94.4) −0.352 (−0.371)

Residue depth (Cα) 553 (93.4) −0.339 (−0.359)

Half upper sphere exposure (Cα) e) 568 (95.9) −0.385 (−0.398)

Half lower sphere exposure (Cα) 567 (95.8) −0.389 (−0.402)

Half upper sphere exposure (Cβ) 537 (90.7) −0.339 (−0.363)

Half lower sphere exposure (Cβ) 561 (94.8) −0.383 (−0.399)

Prediction by GNM (cutoff 16 Å) f) 586 (99.0) 0.643 (0.648)

Prediction by GNM (no cutoff) 591 (99.8) 0.646 (0.646)

The largest correlation coefficients among the static structural features are highlighted in bold.

a)
The number of proteins that have significant correlation coefficient to the fluctuations (with p-value < 0.05) are counted. The total number of

trajectories (proteins) is 592.

b)
The average value calculated only for the subset of proteins with p-value<0.05 is shown in the parentheses.

c)
Accessible surface area (Å2) of amino residues without normalization. The next row is the correlation with the normalized Accessible surface

area.

d)
The residue depth computed as the average distance for each atom in the residue and the distance for the Cα atom (next row).

e)
The lower/upper half-sphere exposure of a residue using the Cα or the Cβ atom to determine the position of the plane which cut the sphere to

half.

f)
Fluctuations predicted by GNM (Eq. 6).
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Table 2

Summary of fluctuation prediction using SVR models with different feature combinations.

Feature
Set

Features used a) Number of
proteins

with p-value
< 0.05 (%)

Average
corr. coeff. b)

RMS (Å)c)

1 C(16), D2 584 (98.6) 0.638 (0.644) 1.075

2 C(16), D2, B 587 (99.2) 0.654 (0.658) 1.067

3 C(16), D2, B, C(18) 587 (99.2) 0.655 (0.659) 1.060

4 C(16), D2, B, C(18), Sec 589 (99.5) 0.661 (0.664) 1.048

5 C(16), D2, B, C(18), Res-type 586 (99.0) 0.652 (0.657) 1.063

6 C(16), D2, B, C(18), Sec, C(12) 589 (99.5) 0.665 (0.668) 1.042

7 C(16), D2, B, C(18), Sec, C(12), C(8) 588 (99.3) 0.667 (0.668) 1.042

8 C(16), D2,C(18), C(12), C(8), C(6) 588 (99.3) 0.656 (0.660) 1.053

9 C(16), D2, B, C(18), C(12), C(8), C(6) 588 (99.3) 0.666 (0.669) 1.045

10 C(16), D2, B, C(18), C(12), C(8), C(6), Sec 589 (99.5) 0.665 (0.667) 1.043

11 C(16), D2, B, C(18), C(12), C(8), C(6), Acc 587 (99.2) 0.665 (0.669) 1.045

12 C(16), D2, B, C(18), C(12), C(8), C(6), C(20) 588 (99.3) 0.666 (0.670) 1.042

13 C(16), D2, B, C(18), C(12), C(8), C(6), C(20), C(22) 588 (99.3) 0.667 (0.670) 1.042

14 C(16), D2, B, C(18), C(12), C(8), C(6), C(15), C(20), C(22) 588 (99.3) 0.666 (0.670) 1.042

15 C(16),B, C(18), C(12), C(8), C(6), C(20), C(22) 588 (99.3) 0.669 (0.673) 1.073

16 C(16), C(18), C(12), C(8), C(6), C(15), C(20), C(22) 587 (99.2) 0.660 (0.665) 1.092

17 C(16), B, C(18), C(12), C(8), C(6), C(20), C(22), HP 587 (99.2) 0.647 (0.651) 1.092

a)
C(x), the residue contact number with x Å distance cutoff; B, B-factor; D2 - square of the distance between the Cα atom to the protein center of

mass; Sec, the secondary structure; Acc, normalized accessible surface area; HP, the number of hydrophilic/hydrophobic contacts, Res-Type,
amino acid type of residues.

b)
The average correlation coefficients between predicted and actual fluctuations. Values calculated only for the subset of proteins that have

significant correlation with p-value < 0.05 is shown in the parentheses.

c)
The RMS (Eq. 7) was averaged over all the proteins in the dataset.
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Table 4

Comparison of fluctuations of NMR models, MD, and our prediction.

Compared data Number of
proteins with p-
value < 0.05 (%)

Corr. coeff. RMS(Å)

NMR vs. MD 136 (97.1) 0.651 (0.667) 2.425

NMR vs. prediction 138 (98.6) 0.739 (0.747) 1.808

MD vs. prediction 138 (98.6) 0.686 (0.693) 2.165

140 non-redundant proteins in the MoDEL database were used whose structures were determined by NMR.
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